Skip to main content

A Differential-Algebraic Multistate Friction Model

  • Conference paper
Book cover Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7628))

Abstract

Fidelity with friction properties and easiness of implementation are both important aspects for friction modeling. Some empirically motivated models can be implemented easily due to their simple expression and small number of parameters, but they cannot capture faithfully the main properties of friction. Some physically motivated models give close agreement with the friction properties, but they can be too complex for some applications. This paper proposes a differential-algebraic multistate friction model that possesses easiness of implementation and adjustment, a relatively small number of parameters and a compact formulation. Moreover, it captures all standard properties of well-established friction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. on Automatic Control 50(11), 1883–1887 (2005)

    Article  MathSciNet  Google Scholar 

  2. Dahl, P.: A solid friction model. Tech. rep., Aerospace Corporation, El Segundo, CA (1968)

    Google Scholar 

  3. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of sytem with friction. IEEE Trans. on Automatic Control 40(3), 419–425 (1995)

    Article  MATH  Google Scholar 

  4. Åström, K.J., Canudas-de-Wit, C.: Revisting the LuGre friction model. IEEE Control Systems Magazine 28(6), 101–114 (2008)

    Article  MathSciNet  Google Scholar 

  5. Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. on Automatic Control 47(5), 787–792 (2002)

    Article  MathSciNet  Google Scholar 

  6. Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. on Automatic Control 45(4), 675–686 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribology Letters 16(1-2), 81–93 (2004)

    Article  Google Scholar 

  8. Moerlooze, K.D., Al-Bender, F., Brussel, H.V.: A generalized asperity-based friction model. Tribology Letters 40(1), 113–130 (2010)

    Article  Google Scholar 

  9. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Systems Magazine 28(6), 64–81 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macrosopic measurements. Tribology Letters 16(1-2), 95–105 (2004)

    Article  Google Scholar 

  11. Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the leuven integrated friction model structure. IEEE Trans. on Automatic Control 47(4), 683–687 (2002)

    Article  MathSciNet  Google Scholar 

  12. Lampaert, V., Al-Bender, F., Swevers, J.: A generalized maxwell-slip friction model appropriate for control purposes. In: Proc. of IEEE International Conference on Physics and Control, St. Petersburg, Russia, pp. 1170–1177 (2003)

    Google Scholar 

  13. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. Trans. ASME: J. of Applied Mechanics 33(4), 893–900 (1966)

    Article  MathSciNet  Google Scholar 

  14. Goldfarb, M., Celanovic, N.: A lumped parameter electromechnical model for describing the nonlinear behavior of piezoelectric actuators. Trans. ASME: J. of Dynamic Systems, Measurement, and Control 119, 478–485 (1997)

    Article  MATH  Google Scholar 

  15. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press, London (1968)

    Google Scholar 

  16. Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. Submitted to Multibody System Dynamics

    Google Scholar 

  17. Kikuuwe, R., Yasukouchi, S., Fujimoto, H., Yamamoto, M.: Proxy-based sliding mode control: a safer extension of PID position control. IEEE Trans. on Robotics 26(4), 670–683 (2010)

    Article  Google Scholar 

  18. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. LNACM, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Brogliato, B., Daniilidis, A., Lemarechal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems & Control Letters 55(1), 45–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. on Robotics 22(6), 1176–1188 (2006)

    Article  Google Scholar 

  21. Gonthier, Y., Mcphee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody System Dynamics 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, X., Kikuuwe, R., Yamamoto, M. (2012). A Differential-Algebraic Multistate Friction Model. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2012. Lecture Notes in Computer Science(), vol 7628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34327-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34327-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34326-1

  • Online ISBN: 978-3-642-34327-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics