Skip to main content

Simulation of Flexible Objects in Robotics

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012)

Abstract

In this paper, we present what appears to be the first simulation model for grasping of flexible bodies based on the three-dimensional elastic constitutive relations and Newton’s Second Law for solids known as the Navier-Cauchy equations. We give an overview of the most important equations for strain, stress, and elasticity tensors based on which we outline the format of the Navier-Cauchy equations of motion in the general anisotropic case. We then specifically study the equations for homogeneous isotropic bodies. We formulate a numerical scheme based on finite differences for solving the equations. Finally, we present preliminary experimental work and outline future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, A.T.: Graspit!: A versatile simulator for robotic grasping. PhD thesis, Citeseer (2001)

    Google Scholar 

  2. Program, A., Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics, 231–247 (1997)

    Google Scholar 

  3. León, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M., Morales, A., Asfour, T., Moisio, S., Bohg, J., Kuffner, J., Dillmann, R.: OpenGRASP: A Toolkit for Robot Grasping Simulation. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 109–120. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Jørgensen, J., Ellekilde, L., Petersen, H.: RobWorkSim - an Open Simulator for Sensor based Grasping. In: ISR/ROBOTIK 2010 (2010)

    Google Scholar 

  5. Nguyen, B., Trinkle, J.: dvc3D: a three dimensional physical simulation tool for rigid bodies with contacts and Coulomb friction. In: The 1st Joint International Conference on Multibody System Dynamics (2010)

    Google Scholar 

  6. Johns, J.: Rayleigh waves in a poroelastic half-space. Journal of Acoustical Society of America, 952–962 (1961)

    Google Scholar 

  7. Willatzen, M.: Exact power series solutions to axisymmetric vibrations of circular and annular membranes with continuously varying density in the general case. Journal of Sound and Vibration, 981–986 (2002)

    Google Scholar 

  8. Schliwa, A., Winkelnkemper, M., Bimberg, D.: Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)AsGaAs quantum dots. Phys. Rev. B (2007)

    Google Scholar 

  9. COMSOL: COMSOL Multiphysics, Burlington, MA (2011)

    Google Scholar 

  10. Binder, J.B.: Algor finite element modeling tools aid aerospace. Aerospace America (1995)

    Google Scholar 

  11. ANSYS: ANSYS Structural, Canonsburg, PA (2011)

    Google Scholar 

  12. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London, 307–357 (1911)

    Google Scholar 

  13. Mosegaard, J.: Cardiac Surgery Simulation - Graphics Hardware meets Congenital Heart Disease. PhD thesis, Department of Computer Science, University of Aarhus, Denmark (October 2006)

    Google Scholar 

  14. Bell, M.: Flexible object manipulation. PhD thesis, Dartmouth College Hanover, New Hampshire (2010)

    Google Scholar 

  15. Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., Kosevich, A.M.: Theory of Elasticity, 3rd edn. Butterworth-Heinemann (1986)

    Google Scholar 

  16. Feynman, R.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Boston (1963)

    Google Scholar 

  17. Russell, D.L., White, L.: An elementary nonlinear beam theory with finite buckling deformation properties. SIAM Journal of Applied Mathematics, 1394–1413 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fugl, A.R., Petersen, H.G., Willatzen, M. (2012). Simulation of Flexible Objects in Robotics. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2012. Lecture Notes in Computer Science(), vol 7628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34327-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34327-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34326-1

  • Online ISBN: 978-3-642-34327-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics