
Lazy Generation of Canonical Test Programs

Jason S. Reich, Matthew Naylor and Colin Runciman

Department of Computer Science, University of York

{jason,mfn,colin}@cs.york.ac.uk

Abstract Property-based testing can be a highly effective form of

lightweight verification, but it relies critically on the method used to

generate test cases. If we wish to test properties of compilers and related

tools we need a generator for source programs as test cases.

We describe experiments1 generating functional programs in a core first-

order language with algebraic data types. Candidate programs are gener-

ated freely over a syntactic representation with positional names. Static

conditions for program validity and canonical representatives of large

equivalence classes are defined separately. The technique is used to in-

vestigate the correctness properties of a program optimisation and two

language implementations.

Keywords: automated testing, SmallCheck, lightweight verification, com-

piler correctness, search-based software engineering.

1 Introduction

Testing, when used effectively, can reveal a wide variety of programming errors.

For the time invested in the implementation of testing, it can return a large

improvement in confidence of software correctness. For example, a suite of pro-

grams is often used (Partain, 1993; Dietz, 2008) for verifying a compiler’s correct

behaviour.

In property-based testing, program properties are defined in the host lan-

guage as functions returning a Boolean. A property-based testing library then

instantiates the arguments of these functions, searching for negative results.

The QuickCheck (Claessen and Hughes, 2000) property-based testing library for

Haskell uses generators that randomly select test values of the appropriate types.

This approach relies on failure cases occurring frequently enough to appear in a

random sample of a few hundred or a few thousand tests. SmallCheck and Lazy

SmallCheck (Runciman et al., 2008) instead fully explore a bounded enumer-

ation of all possible test values up to some size. This approach appeals to the

Small Scope hypothesis (Jackson, 2012, page 15) that programming errors will

appear for small data values.

1 Source code available at https://github.com/jasonreich/ProgGen.

https://github.com/jasonreich/ProgGen

data Pro = Pro (Seq1 Nat) Exp (Seq RedDef)

data RedDef = Lam Nat Bod

data Bod = Solo Exp

| Case Exp (Seq1 Alt)

data Exp = Var VarId

| App DecId (Seq Exp)
data VarId = Arg Nat

| Pat Nat
data DecId = Con Nat

| Red Nat
data Alt = Nat :→: Exp

Figure 1. Initial definition of our core language.

In this paper, we use Lazy SmallCheck to enumerate all small test programs

that are valid (well-formed, well-scoped and well-typed, §2), canonical (of a

regular form detailed in §3) and terminating (also §3).

Rather than directly constructing programs that satisfy these conditions,

we freely generate abstract syntax trees and filter out those for which some

required condition does not hold. With careful representation choices for the

freely generated abstract syntax, a lazy and condition-driven approach to test

generation can efficiently and effectively prune large classes of unwanted test

programs.

2 Generating Valid Programs of a Core Language

Our Core Language We choose to work with a first-order core functional lan-

guage with algebraic data types. In order to generate programs in this language,

we first define a datatype for its abstract syntax, as in Figure 1.

A program Pro cds e rds consists of a single datatype definition represented

as a sequence cds of one or more constructor arities, a main expression e to be

evaluated and zero or more top-level value definitions rds whose applications are

reducible. A top-level value definition Lam ar b is a lambda abstraction of arity

ar . The body may be just a single applicative expression Solo e or it may be

a case expression Case e as with alternatives for different constructions of the

subject e.

Expressions are, as usual, recursively composed applications with either vari-

ables or zero-arity applications as leaves. Variable references are explicitly tagged:

Arg for argument variables and Pat for pattern variables in alternatives. Applied

references are also tagged: Con for constructors and Red for top-level names

whose applications are reducible. These are all referenced by the natural-number

positions of their definitions.

Free Generation Using SmallCheck (Runciman et al., 2008) we can now define

functions to enumerate all values of these AST datatypes bounded by a given

depth of construction. The Serial instances are defined in Figure 2.

The type Seq a is synonymous with the list type [a] but the depth-bound is

the same for all elements of the list — a Seq a list bounded by depth d has at

most d items, each of which has depth at most d − 1. The Seq1 variant is for

lists with at least one element.

It is often convenient not to count simple tags or tupling structures when

determining the depth of a construction. The compositions with depth 0 are for

that purpose.

Let’s run the Pro series generator with increasing depth bounds, and count

the number of programs generated.

> [length (series i :: [Pro]) | i ← [0 . .]]
[0, 4, 3504, 27700575980220, ...

What do the four Pro values at depth one look like? These can be rendered

as follows,2 with the convention that arguments are renamed x,y,..., pattern

variables p,q,..., constructors A,B,... and top-level functions f,g,....

data D = A

¿ x

data D = A

¿ p

data D = A

¿ A

data D = A

¿ f

As these programs are freely generated from the abstract syntax type, they

are as yet unconstrained by any static semantics. Only one of them is valid

— the third one. At depth two there are already thousands of similar-looking

Pro values, hardly any of which are valid. Beyond depth two our machines are

overwhelmed by the task of enumeration.

Validity Test Only one of the programs generated at depth one was valid.

The other three referred to undefined variables or functions. At greater depths

another form of invalidity can occur: there may be arity disagreement between

uses and definitions. We must avoid, or cut short, the work of generating such

invalid programs.

We can define a predicate valid , as in Figure 3. The auxiliary functions validr ,

valide and valida test the validity of reducibles, expressions and applications re-

spectively. The first two arguments to valide are the enclosing scopes for argu-

ment and pattern variables.

If we test the property λp → valid p =⇒ True, of the 3,504 syntactically

generated programs at depth two, just 160 are found to be valid. So even this

simple validity check greatly reduces the number of programs to be tested. But

as things stand, we still have to generate a large number of invalid programs,

only to reject them as test cases.

2 Text in sans-serif indicates Haskell (host language) code. Code in the typewriter

typeface represents the target core language.

instance Serial Pro where

series = cons3 Pro ◦ depth 0
instance Serial RedDef where

series = cons2 Lam ◦ depth 0
instance Serial Bod where

series = (cons1 Solo ∪ cons2 Case) ◦ depth 0
instance Serial Exp where

series = cons1 Var ∪ cons2 App
instance Serial VarId where

series = (cons1 Arg ∪ cons1 Pat) ◦ depth 0
instance Serial DecId where

series = (cons1 Con ∪ cons1 Red) ◦ depth 0
instance Serial Alt where

series = cons2 (:→:) ◦ depth 0

Figure 2. The series generators for our initial syntactic representation.

-- Test a program is well-scoped and arity consistent.

valid :: Pro → Bool
valid (Pro (Seq1 cons) m (Seq eqns)) = valide 0 0 m ∧ all validr eqns
where

-- Test a reducable is well-scoped and arity consistent.

validr (Lam a (Solo e)) = valide a 0 e

validr (Lam a (Case s (Seq1 alts))) = valide a 0 s ∧
and [indexThen c cons (λp → valide a p e) | (c :→: e)← alts]
-- Test an expression is well-scoped and arity consistent, in context.

valide a (Var (Arg v)) = a 6≡ 0 ∧ v < a
valide p (Var (Pat v)) = p 6≡ 0 ∧ v < p
valide a p (App d (Seq es)) = valida d (N $ length es) ∧ all (valide a p) es

-- Test an application is well-scoped and arity correct.

valida (Con c) n = indexThen c cons (λn′ → n ≡ n′)
valida (Red f) n = indexThen f eqns (λ(Lam n′)→ n ≡ n′)

-- Index an element from a list and apply predicate. Default to False.

indexThen :: Nat → [a]→ (a→ Bool)→ Bool
indexThen (N i) xs f = (¬ ◦ null) xs ′ ∧ head xs ′
where xs ′ = map f (drop i xs)

Figure 3. Validity of positional programs.

Lazy Free Generation The problem of generating test cases that satisfy con-

ditions was a large part of the motivation for Lazy SmallCheck (Runciman et al.,

2008). This tool applies conditions to partially defined values. If a test value is

sufficiently defined to allow a condition to be evaluated to True (or to False),

then it is known from this single evaluation that all possible refinements of this

test value will also satisfy (or fail to satisfy) the condition. If the partiality of a

test value makes the condition undefined, the test value is refined at exactly the

place needed for evaluation of the condition to proceed further.

In principle, Lazy SmallCheck might run more test cases than SmallCheck

for the same condition — since it tests partial values as well as total ones. But

in practice, where there is a structural condition that most tests do not satisfy,

Lazy SmallCheck uses many fewer tests.

If we again test the property λp → valid p =⇒ True, but this time using

Lazy SmallCheck, just 187 tests are needed to obtain the same 160 programs at

depth two. That is just under 5% of the tests required under SmallCheck.

3 Canonicity

If we could only test a compiler using just two source programs, it would be a

better test if the two programs really were quite distinct, not just insignificant

variations of each other. The same argument applies even if we can use a large

number of test programs. Resources are always limited. So we don’t want to

waste them by testing umpteen versions of essentially the same program.

We shall use several principles to define canonical programs. Each of these

programs is a unique representative of a whole class of essentially equivalent

programs. The principles of canonicity are discovered through the analysis of

programs being generated.

3.1 Principles of Ordering and Complete Reference

The two programs below perform the same computation under the obvious iso-
morphism between their datatypes. The only difference between them is the

ordering of constructors, function definitions and case alternatives.

data D = A — B D D

f x y = case x of

A -¿ y

B p q -¿ B p (g q y)

g x = case x of

B p q -¿ p

¿ g (f A (B A A))

data D = A D D — B

f x = case x of

A p q -¿ p

g x y = case x of

A p q -¿ A p (g q y)

B -¿ y

¿ f (g B (A B B))

A canonical representative of both programs respects an ordering for each

of these things. Assuming the standard, automatically derived instances of Ord

canonicalOrder (Pro (Seq1 cons) (Seq eqns)) =

-- Non-strict ordering of constructor arities

orderedBy (6) cons ∧par
-- Strict lexicographic ordering of equations

orderedBy (<) eqns ∧par
-- Strict ordering of case-alternatives by constructor

and [orderedBy (<) [c | (c :→:)← alts]
| (Lam (Case (Seq1 alts)))← eqns]

orderedBy :: (a→ a→ Bool)→ [a]→ Bool
orderedBy f (x : y : zs) = f x y ∧ orderedBy f (y : zs)
orderedBy = True

Figure 4. Predicate for the ordering of constructors, equations and alternatives.

for our AST datatypes, a canonical ordering predicate for programs is given in

Figure 4.

The orderings over equations and alternatives are irreflexive; we forbid du-

plicate definitions. The ordering over constructor arities is not; we permit more

than one constructor of the same arity.

The following programs are also in direct correspondence. There is a duality

so far as the roles of the constructors A and B are concerned, and the arguments

of function f are flipped.

data D = A — B

f x y = case x of

A -¿ A

B -¿ y

¿ f B B

data D = A — B

f x y = case y of

A -¿ x

B -¿ B

¿ f A A

So here is a further ordering requirement in canonical programs. Constructors

of equal arity must be first used in the program in the same order as they are

declared in the datatype. And function arguments must be first used in the

function body in the order given by their argument positions.

Further, for any program that declares unused constructors, arguments or

pattern variables there is a simpler equivalent program without them. In a ca-

nonical program, all constructors and arguments are used.

Finally, a program with unused function definitions also has a smaller equi-

valent without them. In a canonical program, all functions can be reached by

a static call-chain from the main expression. See §3.6 for further discussion of

dead code.

After we impose all these ordering and complete-reference conditions, we

have just two programs at depth two, generated by Lazy SmallCheck as a result

of 109 tests. And at depth 3, instead of an overwhelming number of programs,

just 4,413 programs are produced as a result of 24,373,980 tests.

Unorderable Equations Consider the following programs that do not satisfy

the equation-ordering condition.

data D = A — B A

f x = B (g x)

g x = B (f x)

¿ f A

data D = A — B A

f x = B (g x)

g x = B (f x)

¿ g A

In the current positionally-referenced representation, these programs have no

canonical form. Reversing the equation ordering simply gives the other program.

Our solution for now is to limit the number of top-level definitions to two and

change the referencing scheme as follows. Within a top-level definition reference

is either recursive or else it references the other top-level definition: Self and

Other . Within the main expression, we keep positional naming. i.e. 0 and 1.

As both of these reference models can be implemented with Boolean values,

the Red constructor is changed to hold Bool instead of Nat. The definition of

valid also needs to be changed to account for the new referencing scheme. The

ordering predicates work without modification.

3.2 Principle of Depth Balance

To reach a rich space of small test programs, we need to generate function bodies

at around depth four or five. But we do not need datatypes with four or five

constructors, each with four or five arguments! Nor do we need multiple high-

arity function declarations.

At depth n, the default syntactic generators give between one and n con-

structors. The constructors and functions each have ar ity ≤ n . Not only is this

signature space far richer than we need to express interesting programs — LISP

has taught us that — but also the depth limits largely prevent uses of these

declarations from being generated anyway.

Therefore, mirroring the top-level two function limit, the number of con-

structor declarations and the arities of declarations are capped at two. This

could be implemented using a further condition but another approach will be

outlined in §3.4.

3.3 Principle of Caller/Callee Demarcation

Wherever there is an application of a defined function, there may be different

ways to split work between caller and callee. A canonical program should make

this split only in standardised ways.

Both caller and callee should do something. The caller must do something:

it cannot just be the application of the callee to some of the caller’s arguments

(or else any application of the caller could more simply be an application of the

callee). The principle of complete reference excludes many cases, but we also

exclude as a body any application of a function to exactly the same arguments.

The callee must also do something: a function body cannot simply be one of

the arguments (or else any application could be replaced by a subexpression).

Again the principle of complete reference already excludes most cases, but we

also exclude the identity.

Even in our original program representation, we had a form of caller/callee

constraint: case expressions can only occur outermost in a function body. So the

callee does the case distinction. In canonical programs, the caller computes the

case subject: that is, a case subject is just an argument variable, and by the

ordering principle, it must be the first argument.

This too could be implemented by a further condition, but we use another

approach, as the following section explains.

3.4 Principle of Nonredundant Representation

It is pleasing that Lazy SmallCheck can prune away the 3,502 invalid or non-

canonical programs of depth at most two by running only 109 tests, finally

delivering for us the two interesting test programs. But the very high proportion

of Pro values that fail the conditions does prompt a question: would a further

change of representation enable us to generate fewer invalid or non-canonical

programs in the first place?

We have already established that canonical case subjects are first arguments.

So in our new representation the case subject can be omitted.

For a program to be valid, all uses of constructors or functions must match

declared datatype and function arities. In a canonical program with complete

reference, it follows that the datatype can be determined from the other parts of

the program, and the arity of each function can be determined from its body. So

instead of generating a datatype definition and function arities, and testing for

valid and complete uses, we need only generate a main expression and function

bodies.

The cap of two on the number of constructors and functions can also be

encoded in the sequence representation types in programs, and in Bool index

types for declarations. With function arities bounded by two a Bool index also

suffices for argument variables. Figure 5 details the new representation.

Case-alternative patterns now reference constructors according to their posi-

tion, doing away with the need for a separate ordering condition for alternatives.

The arity of functions can be deduced by finding the maximum argument

in the function body. The datatype definition can be inferred by combining

information about program constructor applications and the maximum pattern

variable in constructor alternatives. Conditions are still used to prune away non-

canonical programs that are not precluded by the nonredundant representation.

The change to a nonredundant representation dramatically reduces the num-

ber of tests required at each depth. At depth 3 (analogous to the previous repres-

entation’s depth 4), only 25,393 tests are required to reduce a space of 2,371,256

data ProR = ProR ExpR (Seq0 ′2 BodR)

data BodR = SoloR ExpR | CaseR (AltR,AltR)
data ExpR = VarR VarIdR | AppR DecIdR (Seq0 ′2 ExpR)
data VarIdR = ArgR Bool | PatR Bool
data DecIdR = ConR Bool | RedR Bool
data AltR = NoAltR | AltR ExpR

Figure 5. Nonredundant representation of our core language.

programs to 11 canonical representatives. At depth 4, analogous to the previ-

ously unattainable depth 5, it takes 28,311,473 tests to find 423,582 canonical

programs.

3.5 Principle of Live Computation

Most interesting functional programs are recursive. But some recursively defined

functions can unproductively fail to terminate. For example, here are two pro-

grams generated at depth 4.

data D = A

f = g A

g x = case x of

A -¿ f

¿ f

data D = A — B D

f = B f

g x = case x of

A -¿ x

B p -¿ g p

¿ g f

To exclude programs such as the one on the left, we add the condition that

any recursive applications are either beneath a constructor, or else descend into
the construction of a recursive argument. At depth 3, this simple termination

condition does not reduce the number of programs produced but it does re-

duce the number of tests required to 19,099. At depth 4, only 74,414 canonical

programs are now produced after 20,550,413 tests.

This still leaves some non-terminating programs such as the one on the right.

(View D as Peano numerals, f as infinity and g as a semi-test for finite numbers.)

A far more sophisticated condition (e.g. Abel, 1998) would be needed to eliminate

such programs yet allow useful recursion.

For now, we have decided to accept that some unproductive programs will re-

main. A more sophisticated condition would require significant extra machinery

and adversely affect lazy pruning performance. However, property testing must

allow for the possibility of an unproductive program.

3.6 Principle of Live Code

The following programs are among those generated at depth 3. They are indis-

tinguishable in their execution as the B case alternatives are never used. Some

form of data-flow analysis is needed to detect dead code.

data D = A — B

f x y = case x of

A -¿ y

¿ f A B

data D = A — B

f x y = case x of

A -¿ y

B -¿ x

¿ f A B

data D = A — B

f x y = case x of

A -¿ y

B -¿ A

¿ f A B

Dynamic evaluation of candidate test programs, followed by a simple reach-

ability analysis, detects dead code more accurately than reachability analysis

alone. We must avoid unbounded computation arising from recursive applica-

tions, but to avoid unfolding all recursive calls would limit results too much.

Our solution is single-shot recursion: on any call path we evaluate at most two

applications of the same function.

The bounded evaluation traverses the abstract syntax tree in normal order,

contrasting with the other in-order conditions. Validity checks can therefore be

bypassed due to the use of Lazy SmallCheck’s parallel conjunction operator. As

validity is required for evaluation, a partial validity checker is integrated into

the dead code checker.

Although the live-code condition supersedes the function-reachability and

constructor-use of §3.1, it is still worth applying all these conditions. The com-

bination of different traversal orders may prune failures sooner.

Eliminating programs with dead code results in another dramatic fall in tests;

depth 3 requiring only 2,731 tests and depth 4 only 445,791 tests. Now just four

canonical programs remain at depth 3. These are the constant A program and

the following:

data D = A — B

f x = case x of

A -¿ B

¿ f A

data D = A

f x y = case x of

A -¿ y

¿ f A A

data D = A — B

f x y = case x of

A -¿ y

¿ f A B

The leftmost program could be interpreted as partial inversion with D as the

Boolean type. Both other programs are partial conjunction, where A is True and

B is False, with different inputs. Alternatively, these could be viewed as partial

disjunction where A is False and B is True.

At depth 4, we have just 64 programs that satisfy all these principles of

canonicity and validity.

4 Performance

So far, we have discussed performance abstractly, with regard to the number of

tests to reach a set of desirable programs. In this section, we shall also consider

Table 1. Performance of non-redundant representation at depth 3.

Conditions Execution time Tests required Remaining programs

Validity 2643ms 138,617 855

+ Ordering + Use 690ms 34,745 124

+ Caller/Callee 580ms 25,393 11

+ Live Computation 437ms 19,099 11

+ Live Code 72ms 2,731 4

execution time. All figures were obtained using GHC 7.0.3 on 2GHz dual-core

PC with 4GB of RAM.

Table 1 shows performance figures when applying the various conditions at

depth 3 of the non-redundant representation. The initial freely generated space

contains 2,043,136 ‘programs’. Execution times are measured using the Criterion

(O’Sullivan, 2011) benchmarking library, averaging 100 measurements and en-

suring a 0.95 confidence interval. As each additional condition is applied, the

number of tests required to reach a set of desirable programs falls. This trend

is mostly mirrored by a fall in execution time. However, execution time does

not fall quite as rapidly as the number of tests performed. The time per test

lengthens as the number of conditions increases. In fact, the mean execution

time per test increases by 38% from validity to the full suite of conditions for

canonicity.

Enumerating all canonical programs at depth 4 takes approximately 15 seconds.

At depth 5, it takes around 3 hours to produce the 310,003 canonical programs.

5 Applications

We use these canonical programs to investigate the correctness properties of lan-

guage implementations and program optimisations. The first example produces

a small program that exposes the differences between static binding and dynamic

binding. The second investigates some correctness properties of compiler optim-

isations both in terms of semantic preservation and performance improvement.

5.1 Static vs. Dynamic Binding

Suppose we implement different semantics for our source language. One version

uses static binding, evaluating arguments in the environment of the application

call. The other uses dynamic binding where arguments are evaluated in the

environment of the argument reference.

The generated programs are evaluated under each semantics up to a given

maximum derivation-tree depth and the results are compared under equality.

This property is defined as prop bind in Figure 6. Testing discovers a small

example program at depth 4, for which static binding and dynamic binding

produce different results.

prop bind :: Pro → Bool
prop bind e = isJust static ∧ isJust dynamic =⇒ static ≡ dynamic
where static = evalFor 1000 False e >>= return ◦ forceResult 5

dynamic = evalFor 1000 True e >>= return ◦ forceResult 5

Figure 6. A mistaken equivalence between static and dynamic binding.

data D = A — B D

f = g A A

g x y = case x of

A -¿ B y

B p -¿ g p x

¿ g f f

Under static binding, the program returns B (B A) as we would usually

expect. However, under the dynamic binding semantics, the program returns

B A. In the recursive call to g, the environment contains {x 7→ p, y 7→ x, p 7→ A}
when variable y is referenced.

5.2 Optimisations on a Sestoft Abstract Machine

Sestoft (1997) details the derivation of several abstract machines of improving

efficiency. These abstract machines evaluate expressions written in a core higher-

order functional language. A simple transformation converts our core first-order

language into a form that can be executed by the Sestoft Mark 2 abstract ma-

chine.

Our goal is to verify a simple program transformation that non-recursively

inlines function applications. In this case, we wish to ensure not only semantic

equivalence but also optimisation of reduction steps. These are formally defined

as prop inline sem and prop inline opt respectively in Figure 7.

At depth 5, the semantic equivalence property is satisfied by all 310,003

canonical programs. However, the following counterexample is found for the

optimisation property. If no inlining is performed then this program takes 44

steps to reduce to normal form. But if inlining is applied it takes 46 steps.

f x = case x of

A -¿ B x

B p -¿ g x p

g x y = case x of

A -¿ f y

B p -¿ x

¿ f (g A A)

prop inline sem :: ProR → Bool
prop inline sem p = isJust (haltState r0) =⇒ haltState r0 ≡ haltState r1
where r0 = (traceFor 1000 ◦ translate) p

r1 = (traceFor 1000 ◦ translate ◦ opt inline) p
prop inline opt :: ProR → Bool
prop inline opt p = isJust (haltState r0) =⇒ length r0 > length r1
where r0 = (traceFor 1000 ◦ translate) p

r1 = (traceFor 1000 ◦ translate ◦ opt inline) p
translate :: ProR → SestExpr
traceFor :: Int → SestExpr → [SestState]
haltState :: [SestState]→ Maybe SestExpr

Figure 7. Predicates for testing inlining transformation.

The reason is as follows. In the original, g A A is only evaluated once but

after inlining it is evaluated twice. The shared evaluation of x in the body of f

is lost.

6 Further Work

Verifying Canonicalisation We should like to verify that every interesting

test program has a canonical equivalent. The program generating framework

itself could be used to test the existence of canonical representatives for each

reasonable program. Assuming that every program is represented by a canonical

variant, we could write a function that transforms any given program into a

canonical representative. We could check that the function satisfies this specific-

ation.

Increasing Coverage Each canonical test program represents a class of pro-

grams performing equivalent computations but with different naming, ordering

or abstraction boundaries, or with redundant parts. Every valid core program

has an equivalent representative, and in that sense every core-program computa-

tion is represented in generated tests. This technique has proved very successful

in reducing the exhaustive space of test programs.

But what if some desired property of a compiler, or other program-processor

under test, fails only when a program is in some way non-canonical? If only

canonical programs are tested, such potential failures will go undetected. One

solution is to attach a post-processor to the canonical program generator. Given

each canonical program, the post-processor picks an equivalent at random, not

forgetting the possibility of picking the canonical program itself.

Extending the Core Language The core language used in this paper lacks

features found in other core representations of functional languages. For example,

both GHC External Core (Tolmach et al., 2009) and F-lite (Naylor and Runci-

man, 2010) include primitive values and operations, (recursive) local definitions

and higher-order functions.

The abstract syntax datatype, generator and validity checker could be exten-

ded to include these features. However, the search-space of generated programs

would be greatly enlarged. Some further principles of canonicity would be essen-

tial for practical purposes.

Generalising the Framework Although we have explained principles of ca-

nonicity in terms of our core language, the ideas are quite generic. In almost

every programming language, or other complex structural representation, there

are choices of names or positions, orderings and divisions between units, that do

not fundamentally alter the computations or structures being described. There

is also the possibility of parts that are in some sense redundant. So similar tech-

niques might be applied successfully to generate test examples in quite different

formalisms.

7 Related Work

The automatic generation of compiler test cases has long been an area of in-

terest. A survey from the late 1990s (Boujarwah and Saleh, 1997) discusses and

classifies a range of techniques. The papers cited generally use advanced gen-

erating grammars to ensure that only “semantically correct” (valid) programs

are produced. A few authors generate test programs freely over context-free or

EBNF grammars but with the stated aim of testing a compiler’s syntax checker.

For testing functional programs, the QuickCheck work, starting with the

award-winning paper at ICFP 2000 (Claessen and Hughes, 2000) has been hugely

influential. QuickCheck is a library for property based testing based on the defin-

ition of type-based generators for random test values. A recent paper (Palka

et al., 2011) describes the use of QuickCheck to generate random lambda terms

for compiler testing. De Bruijn (1972) indexing is used to avoid problems of

equivalence up to renaming. Aside from the use of random lambda terms, as

opposed to exhaustively enumerated small equational programs, another signi-

ficant difference from the approach reported here is that Palka et al. rely on a

generating context including the signatures of pre-defined functions.

Other functional-programming researchers have looked into program enu-

meration. For example, Katayama (2007) enumerates typed lambda terms. The

motivation is to provide exhaustive search for appropriately typed expressions

during program synthesis. Katayama highlights the advantages of a de Bruijn

representation, and the importance of excluding “equivalent expressions which

cause redundancy in the search space and multiple counting”. In this work too,

the generator generates terms applying a library of pre-defined functions, and

one of the equivalance-avoiding techniques is to apply known simplification laws

for these functions. But the discussion notes a need to do more to eliminate

duplicate or equivalent solutions.

8 Conclusions

Our aim has been to enumerate valid and canonical programs for the purposes

of compiler verification. We have shown that large spaces of freely generated

terms can be pruned effectively to yield ‘interesting’ programs. Exploration of

the search space indicates that Boolean programs such as partial inversion, con-

junction and disjunction appear at depth 3. Canonical programs involving Peano

numerals (e.g. addition) and lists (e.g. append) emerge at depth 6. This paper

roughly mirrors the process by which the principles were discovered.

First, an algebraic data type for the abstract syntax is defined and a free

generator is created using (Lazy) SmallCheck combinators. Through the obser-

vation of the resulting programs, conditions are defined to eliminate invalid and

non-canonical programs. The representation is reconsidered to eliminate the re-

dundancy that allows the invalid and non-canonical terms to arise. And so the

procedure repeats. Implementation details are occasionally reevaluated to ac-

count for the interactions of the different conditions.

We have discovered several principles of canonicity for our first-order lan-

guage and dramatically reduced the problem size. We expect that further in-

vestigation of the currently generated programs will reveal new principles of

canonicity or more restrictive variations of existing conditions.

We applied our testing technique to investigate several properties relating to

evaluation, compilation and optimisation. The results obtained are encouraging.

However, more complex applications motivated our work: we wish to investigate

the correctness and improvement properties of supercompilers. It remains to be

seen what further refinements of our technique will be needed to succeed in this

goal.

Acknowledgements The authors would like to thank Michael Banks, Emma

Maksymowicz and Chris Poskitt for their invaluable proof reading. They also ex-

tend their gratitude to the programme committee for their constructive feedback

on earlier drafts. This research was supported, in part, by the UK’s Engineering

and Physical Sciences Research Council through the Large-Scale Complex IT

Systems project, EP/F001096/1.

Bibliography

Abel, A.: foetus — termination checker for simple functional programs. URL:

http://www2.tcs.ifi.lmu.de/˜abel/foetus.pdf (1998)

Boujarwah, A.S., Saleh, K.: Compiler test case generation methods: a survey

and assessment. Information & Software Technology 39, 617–625 (1997)

de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser the-

orem. Indagationes Mathematicae 75(5), 381–392 (1972)

Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of

haskell programs. In: Proceedings of the fifth ACM SIGPLAN International

Conference on Functional Programming. pp. 268–279. ICFP ’00, ACM (2000)

Dietz, P.F.: The GCL ANSI Common Lisp test suite. URL: http://en.

scientificcommons.org/42309664 (2008)

Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,

Revised edn. (2012)

Katayama, S.: Systematic search for lambda expressions. In: Trends in Func-

tional Programming Volume 6, pp. 111–126. TFP2005, Intellect Books (2007)

Naylor, M., Runciman, C.: The Reduceron reconfigured. In: Proceedings of the

15th ACM SIGPLAN international conference on Functional Programming.

pp. 75–86. ICFP ’10, ACM (2010)

O’Sullivan, B.: The criterion package, v0.5.1.1. URL: http://hackage.

haskell.org/package/criterion (2011)

Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler

by generating random lambda terms. In: Proceedings of the sixth IEEE/ACM

Workshop on Automation of Software Test. pp. 91–97. AST ’11 (2011)

Partain, W.: The nofib benchmark suite of Haskell programs. In: Functional Pro-

gramming, Glasgow 1992. pp. 195–202. Workshops in Computing, Springer-

Verlag (1993)

Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck:

automatic exhaustive testing for small values. In: Proceedings of the first

ACM SIGPLAN symposium on Haskell. pp. 37–48. Haskell ’08, ACM (2008)

Sestoft, P.: Deriving a lazy abstract machine. Journal of Functional Program-

ming 7, 231–264 (1997)

Tolmach, A., Chevalier, T., The GHC Team: An external representation for the

GHC Core Language (for GHC 6.10). URL: http://www.haskell.org/ghc/

docs/6.10.4/html/ext-core/core.pdf (2009)

http://www2.tcs.ifi.lmu.de/~abel/foetus.pdf
http://en.scientificcommons.org/42309664
http://en.scientificcommons.org/42309664
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion
http://www.haskell.org/ghc/docs/6.10.4/html/ext-core/core.pdf
http://www.haskell.org/ghc/docs/6.10.4/html/ext-core/core.pdf

	Lazy Generation of Canonical Test Programs

