From Stack Traces to Lazy Rewriting Sequences

EXTENDED ABSTRACT

Stephen Chang
Northeastern University

Eli Barzilay
Northeastern University

California Polytechnic State University

Matthias Felleisen
Northeastern University

John Clements

Communicating Author: stchang@ccs.neu.edu

Abstract

Debugging lazy functional programs poses serious challenges. Due
to the complicated nature of lazy evaluation, some debugging tools
abandon laziness altogether. Other debuggers preserve laziness but
present it in a way that may confuse programmers because the focus
of evaluation jumps around in a seemingly random manner.

In this paper, we introduce the algebraic program stepper as a
new debugging tool for lazy programs. We conjecture that our tool
is suitable for clarifying the confusing nature of laziness. Prelimi-
nary classroom experiences have confirmed a prototype implemen-
tation of the stepper as a useful tool for novice programmers and
programmers new to lazy programming.

Mathematically speaking, our stepper renders lazy computa-
tions as the standard rewriting sequences of a program rewriting
system. Our lazy semantics introduces lazy evaluation as a form
of parallel program rewriting. The semantics resembles graph re-
duction but remains intuitive for programmers because it empha-
sizes the source syntax. As a syntactic semantics, our rewriting sys-
tem represents a compromise between Launchbury’s store-based
semantics and a simple, axiomatic description of lazy computation
as sharing-via-parameters. We prove an equivalence between our
system and both of these semantics.

The stepper’s implementation leverages Racket’s continuation
marks for stack trace generation. We can therefore exploit existing
models of continuation marks and a correctness proof of Racket’s
eager algebraic stepper to prove the correctness of our lazy stepper.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.2 [Language Classification]: Ap-
plicative (functional) languages; D.3.3 [Processors]: Debuggers

General Terms lazy programming; debugging and stepping; lazy
lambda calculus

1. How Functional Programming Works

Hughes (1989) explains why lazy functional programming mat-
ters. Laziness helps programmers create programs from reusable
and composable modules. Unfortunately, laziness also increases
the distance between a programmer and the underlying machin-
ery. Specifically, laziness reduces a programmer’s ability to predict
when certain expressions are evaluated during program execution.
As long as things work, this cognitive dissonance poses no prob-

[Copyright notice will appear here once ’preprint’ option is removed.]

lems. When a program exhibits erroneous behavior, however, pro-
grammers are often at a loss. A programmer can turn to debugging
tools for help, but the evaluation of lazy programs is often confus-
ing enough that some debugging tools resort to hiding laziness from
the programmer in order to display useful information (Wallace
et al. 2001; Ennals and Peyton Jones 2003; Allwood et al. 2009).

To present an accurate portrayal of laziness, an ideal debugger
should not modify the execution model of a program. Some main-
tainers of GHC (Peyton Jones et al. 1992) seemingly share this
sentiment, since the bundled GHCi debugger abides by this ideal.
The authors of the GHCi debugger (Marlow et al. 2007) state that
their debugger “lets the programmer see the effects of laziness,”
and therefore, “shows the programmer what is actually happening
in their program at runtime.” The authors acknowledge, however,
that their debugger presents lazy computations in a way that is dif-
ficult to follow, mostly due to seemingly random jumps from one
place to another in the program.

In this paper we introduce algebraic stepping as a supplemen-
tal debugging mechanism for lazy languages. Given a functional
program, an algebraic stepper presents the evaluation of the pro-
gram directly as a manipulation of the source syntax, similar to the
algebraic calculations of a student of mathematics. Formally, the
manipulations create a rewriting sequence, which in turn, is based
on a formal lazy semantics. Based on preliminary classroom expe-
riences, algebraic stepping is an intuitive approach that illuminates
the nature of lazy evaluation. Our experience especially suggests
that this kind of tool benefits novice programmers when they try
to understand small programs, and programmers who are new to a
language and are trying to explore some linguistic feature.

PLT’s DrRacket (Findler et al. 2002) comes with an alge-
braic stepper (Clements et al. 2001) for the call-by-value Racket
language. This stepper utilizes Racket’s continuation marks, a
portable, lightweight stack inspection mechanism, to generate a
stack trace from which the by-value reduction sequence is then
reconstructed. We leverage this existing framework to build a step-
per for Lazy Racket (Barzilay and Clements 2005), an untyped
call-by-need language that uses the same evaluation mechanism as
Haskell. A Lazy Racket program macro-expands its surface syntax
into a plain Racket program enriched with appropriate delay and
force constructs (Hatcliff and Danvy 1997). Lazy Racket is used
primarily in educational settings, where we have tested a prototype
of the stepper so far. Since continuation marks are easily ported to
any language runtime, the techniques presented in this paper are
applicable to any language and are not specific to Racket.

The final version of this paper will present: (1) the stepper for
Lazy Racket; (2) its underlying semantics, a novel lazy program
rewriting system; (3) and a proof that the stepper correctly imple-
ments the standard rewriting semantics of the system. Our novel
lazy rewriting system introduces the idea of using parallel reduc-
tions to simulate shared reductions. The system resembles graph
reduction, except we emphasize reductions on the source syntax,
which is more intuitive for programmers, instead of first compiling

2011/8/23

to combinators. As a syntactic semantics, our system is a compro-
mise between Launchbury’s natural semantics (Launchbury 1993)
and Ariola et al.’s call-by-need A-calculus (Ariola et al. 1995). Our
semantics operates at a higher-level of abstraction than the natural
semantics, because we don’t have an explicit store. Our semantics
is also easier to understand than Ariola et al.’s calculus, on which
Gibbons and Wansbrough (1996) built a lazy debugging tool, be-
cause the calculus includes unusual reshuffling reductions that are
not present in any lazy language implementations.

Besides being more intuitive than existing semantics, our rewrit-
ing system has two additional advantages. First, there exists an
equivalence between the standard rewriting semantics of our sys-
tem and both Launchbury’s and Ariola et al.’s semantics, and as part
of our correctness proof, we demonstrate these correspondences.
Second, our rewriting system provides a convenient basis for a cor-
rectness proof of the stepper. We consider correctness proofs for
debugging tools nearly as important as proofs for compilers, be-
cause both are critical elements of a programmer’s tool chain. For
the correctness proof of our stepper, we construct a model of the
delay-and-force implementation, further enriched with continu-
ation marks (Clements et al. 2001), show that it bisimulates the
standard rewriting semantics, and finally, exploit a strategy from
Clements (2006) for the rest of the proof.

A Stepper oy o]
File Edit Tabs Help
< Step | Step = I Jump... |to beginning x| 1/6

(define (f x) (+ x x))
(f (+1 (+23)))

(define (f x) (+ x x))
= ((lambda (x) (+ x x))
(+1 (+23))
< Step | Step = IJump... to beginning x| 2/6
(define (f x) (+ x x)) (define (f x) (+ x x))
((lambda (x) (+ x x)) _(+

(+1 (+23)) (+1 (+23))
(+1 (+23))

< Step | Step > IJump... to beginning -l 3/6
(define (f x) (+ x x)) (define (f x) (+ x x))
(+ _(+ (+15) (+15))
(+1 (+ 2 3))
(+1(+23))

< Step | Step = IJump... to beginning 'I 4/6

(define (f x) (+ x x)) (define (f x) (+ x x))

(+ (+ 15 (+15)) (+ 8 8)

= Step | Step = IJump... to beginning 'I 5/6
(define (f x) (+ x x)) _ (define (f x) (+ x x))
(+ 6 6) 12

< Step || Step = IJump...ItD beginning j 6/6

|AH of the definitions have been successfully evaluated.

Figure 1. Lazy Stepper Example

2. Lazily Stepping Through a Small Example

Figure 1 shows the sequence of steps that the Lazy Racket stepper
displays for the following simplistic program:

#lang lazy
(define (f x) (+ x x))
(f (+1 (+23))

The Lazy Racket stepper comes with the DrRacket IDE. When a
programmer invokes the stepper, DrRacket brings up a separate

window of the program with navigation buttons that allow the
programmer to browse through a sequence of images. Each image
corresponds to one step in the reduction sequence.

A green box in an image indicates the location of the current re-
dex on the left-hand side of a reduction step. Similarly, a purple box
highlights the contractum on the right-hand side. The surroundings
of a redex is a context, i.e., a term with potentially several holes.
Each of the holes contains a reference to the current machine in-
struction. The context with respect to the leftmost-outermost hole is
a textual reconstruction of the lazy stack trace. The formal model of
the stepper explains this relationship in detail and also shows how
the stepper handles more advanced language features like higher-
order functions and cyclic structures.

Let us walk through the sequence in figure 1 in some detail.
In step 2, evaluation of the function argument is delayed, meaning
the unevaluated argument replaces each instance of the variable x
in the function body of f. Next the strictness of + demands the
evaluation of the summand (+ 2 3), a part of the unevaluated
argument that replaced the leftmost occurrence of x. Step 3 shows
how the expression is forced in two different places and step 4
shows a second instance of this form of simultaneous replacement.

Since the second occurrence of x refers to the same delayed
computation, its value is already available when the time comes to
evaluate it. At this point, it is trivial to compute the final outcome
of the function call; see step 5. In short, the stepper explains evalu-
ation as an algebraic process using a form of parallel reduction.

References

T. O. Allwood, S. Peyton Jones, and S. Eisenbach. Finding the needle: stack
traces for GHC. In Proc. 2nd Symp. on Haskell, pages 129—140, 2009.

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The
call-by-need lambda calculus. In Proc. 22nd Symp. on Principles of
Programming Languages, pages 233-246, 1995.

E. Barzilay and J. Clements. Laziness without all the hard work. In
Proc. Works. on Functional and Declarative Programming in Education,
pages 9—13, 2005.

J. Clements. Portable and High-level Access to the Stack with Continuation
Marks. PhD thesis, Northeastern University, 2006.

J. Clements, M. Flatt, and M. Felleisen. Modeling an algebraic stepper. In
Proc. 10th European Symp. on Programming, pages 320-334, 2001.

R. Ennals and S. Peyton Jones. HsDebug: debugging lazy programs by not
being lazy. In Proc. Works. on Haskell, pages 84-87, 2003.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for Scheme. J. of Functional Programming, 12(2):159-182, 2002.

J. Gibbons and K. Wansbrough. Tracing lazy functional languages. In Proc.
Computing: The Australasian Theory Seminar, pages 11-20, 1996.

J. Hatcliff and O. Danvy. Thunks and the A-calculus. J. of Functional
Programming, 7(3):303-319, 1997.

J. Hughes. Why functional programming matters. Computer J., 32(2):98—
107, 1989.

J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th Symp.
on Principles of Programming Languages, pages 144—154, 1993.

S. Marlow, J. Iborra, B. Pope, and A. Gill. A lightweight interactive
debugger for Haskell. In Proc. Works. on Haskell, pages 13-24, 2007.

S. Peyton Jones, C. Hall, K. Hammond, J. Cordy, H. Kevin, W. Partain, and
P. Wadler. The Glasgow Haskell Compiler: a technical overview, 1992.

M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing
for Haskell: a new hat. In Proc. Works. on Haskell, pages 151-170, 2001.

2011/8/23

