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Abstract. The aim of this work is to use this dynamic island model to
autonomously select local search operators within a classical evolutionary
algorithm. In order to assess the relevance of this approach, we will use
the model considering a population-based local search algorithm, with no
crossover and where each island is associated to a particular local search
operator. Here, contrary to recent works [6], the goal is not to forecast
the most promising crossovers between individuals like in classical island
models, but to detect at each time of the search the most relevant LS
operators. This application constitutes an original approach in defining
autonomous algorithms.

1 Introduction

Island Models [9] are simultaneously considering a set of populations clustered
in islands which are evolving independently during some search stages while
interacting periodically. This model, which constitutes an additional abstraction
level in comparison to classical genetic and memetic algorithms, allows to propose
several diversification levels and to simplify its parallelization.

Most of the time, island models are used in a static way, where individuals
are migrating from population to population following a determinate scheme [7],
or are specifically chosen in order to reinforce the populations diversities [8, 4, 1].
Nevertheless, it is possible to dynamically regulate migrations between islands
in considering a transition matrix [5]. Such a model can reinforce or reduce the
migration probabilities during the evolutionary process in function of the impact
of previous analog migrations. The aim is to auto-adapt migration without any
given scheme, to dynamically regulate the gathering or isolation of individuals in
function of the search progress, and consequently to adapt the population sizes.

In classical uniform island models, islands are following the same evolution-
ary rules, so they differ only by their individuals. The dynamic model allows to
regulate interactions between individuals or group of individuals. We propose
to extend this model in assigning to each island different local search operators.
An appropriate and autonomous regulation of migration flows will affect dy-
namically the resources to the most pertinent operators in function of the search
progress. In experimenting this model without crossovers but with a proper local
search operator for each island, the objective is not only to regulate the inter-
actions between individuals, but to simulate a reactive controller which assigns
individuals to the most promising islands.



2 Island Models Framework

2.1 Island Models as a Complete Digraph

In [5] we proposed an island model framework which dynamically supervises
the commonly-used specification parameters [1] like the number of individuals
undergoing migration, the policy for selecting immigrants or the topology of the
communication among subpopulations. An island model topology is represented
by a complete labeled digraph G = (X,X2).

Migration policies are given by a transition (stochastic) matrix T , where
T (i, j) represents the probability for an individual to migrate from island i to
island j (or to stay at the same island if i = j). One can denote Tt the matrix
at time (or generation) t.

An application of this dynamic evolution of the model topology is to deter-
mine pertinent migration probabilities at each time of the search, considering a
classical multi-population based genetic algorithm. The dynamic regulation of
migration policies can produce different size islands, which prevents poor-quality
subpopulations or islands to require as many computational effort as promising
ones. However, if different islands represent different mutation or local search
operators, then the aim is to dynamically provide a well-adapted repartition of
individuals in function of these operators and considering the search progression,
which can be assimilated to an operator selection process.

2.2 Migration Policy

Algorithm 1 is the generic algorithm we used for the autonomous operator selec-
tion within an island model context. In order to allow a maximum of adaptability,
we chose to update the migration process after each local search iteration (for
the whole population). Ideational, less frequent mutations process do not mini-
mize the effective number of mutations (individuals moving to other islands) but
only provide a less reactive search. As a dynamic algorithm, transition values
are expected to be regulate accordingly.

Initialize population;
repeat

foreach population do
foreach individual do

One local search iteration;

Update the Transition Matrix T;
Migration Process;

until stop condition;
Algorithm 1: Generic Dynamic Island Model (DIM) Algorithm.



The crucial point concerns the update of the transition matrix T , which
follows a learning process:

Tt = (1− β)(α.Tt−1 + (1− α).Rt) + β.Nt

Rt is a reward matrix, computed after migration process t− 1 and LS step t,
and which takes into account the comparative pertinence of the last migrations.
Using an intensive strategy, for each island, the migration which have brought
the best average accuracy score acc of individuals (typically their fitness im-
provement) receives the maximum reward. More formally, if Mijt is the set of
individuals which have migrated from island i to island j in migration process
t− 1 (∪iMijt is the set of individuals in island j during iteration t):

Rt(i, j) =

{
1/|B| if j ∈ B,

0 otherwise,

with B = argmax
j′

∑
x∈Mij′t

acc(x)

|Mij′t|

Nt is a noise stochastic matrix with random values.
The two parameters α and β allow to manage the update of the transition

matrix. α represents the importance of the knowledge accumulated during the
last migrations and β the amount of noise which is necessary to explore alterna-
tive ways and to keep the model reactive.

3 Experimentations

In this section we show that the behavior of our population-based local search
algorithm is very close of the theoretical results. Moreover, we remark that it is
not very dependent of the parameter tuning.

3.1 One-Max Problem

The One-Max problem is a simple and well-known problem, commonly used to
assess the performance of Adaptive Operator Selection algorithms [3, 2]. The n-
bits One-Max problem considers n-length bit strings; starting from 0n individuals
(i.e. strings made up of n zeros), the aim is to maximize the number of ones, that
is to reach the 1n bit string. The score of a bit string x, noted |x|1, corresponds
to its number of ones.

Recent works cited above use four mutation (or local search) operators: bit-
flip, which flips every bit with probability 1/n, and k-flip (with k = {1, 3, 5}),
which flips exactly k bits. In the following and depending on the context, bit-
flip and k-flip can denote the mutation operator as well as the corresponding
neighborhood relation. k-flip can easily be modelized as a neighborhood relation
Nk : {0, 1}n → 2{0,1}

n

such as x′ ∈ Nk(x) if and only if |h(x, x′)| = k (hamming



distance). It is more difficult to exprim the bit-flip operator with a neighborhood
relation, since it corresponds to a complete neighborhood with a non-uniform
move probability. However, we indicate in proposition ?? how one bit-flip move
can be reduced in one k-flip move with a determined probability of chosing k.

Intuitively, the 5-flip operator mutation will be more efficient when applied
on weak individuals (with a majority of zeros), while 1-flip will improve with
a higher probability individuals with a high proportion of ones.The domination
rates evolution of the four considered operators in function of the score of an
individual is shown in Figure 1 (with M = { 1-flip, 3-flip, 5-flip, bit-flip }).
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Fig. 1. Domination rates evolution for the
1000-bits One-Max problem.
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Fig. 2. Evolution of the population size in
each island with respect to the average fit-
ness of the population.

3.2 Theoretical vs Empirical Results

The expected behavior during the search is to use the 5-flip operator when
the population quality is weak (at the beginning), then the 3-flip operator and
finally the 1-flip operator when the population quality is sufficiently high. In our
experiments, this can be observed by the evolution of the population size in each
island with respect to the migrations. The more an island attracts individuals,
the more its assigned operator is applied.

Parameters for this experiment are:

– number of islands: 4 (one for each LS operator)
– population size: 400
– initial probabilities of migrations: 1 to stay in the same island
– (α, β): (0.8, 0.01)

To compare the experimental results with the theoretical values, we repre-
sent in Figure 2 the population size in each island with respect to the average
fitness of the population. The fact that this evolution of population sizes, i.e. the
computational effort of each operators, match with the theoretical domination



rates, show the accuracy of the proposed model and its pertinence to simulate
an operator selection mechanism.

3.3 Dynamic Model Parameters

Default used values for α and β are respectively 0.8 and 0.01. An increasing
value of α makes the search slower since informations obtained by recent migra-
tions are less considered for the update. On the contrary, decreasing value of α
minimizes the impact of the knowledge (learning process) and overestimates the
last migration effects, so the search can be wrong oriented by a migration which
provides exceptionally a good result.

The influence of β is important, but its exact setting is not crucial to the
smooth-running of the algorithm, even if a too high value of β make the search
slower. On the other hand, it must make sure that β 6= 0, otherwise some islands
can become and stay unreachable (transition probability equal to 0).

Effect of parameters α and β on the model are experimentally shown Figures
7 and 8.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600  700  800  900  1000

po
pu

la
tio

n 
si

ze

fitness

(a) (α,β)=(0.4,0.01)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600  700  800  900  1000

po
pu

la
tio

n 
si

ze

fitness

(b) (α,β)=(0.8,0.01)
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(c) (α,β)=(0.95,0.01)

Fig. 3. Changing the value of α: less or more inertness makes the model more stable
but dos not modify the global repartition of individuals
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(a) (α,β)=(0.8,0.01)
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(b) (α,β)=(0.8,0.2)
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Fig. 4. Changing the value of β: more noise makes the repartition of individuals more
uniform



4 Conclusion

This paper presents an original and efficient approach to design an autonomous
local search algorithm with an accurate selection of operators. The proposed
mechanism use a dynamic island model, where each island represents an opera-
tor. A learning process regulates and adapts migration policies during the search
depending to the impact of previous migrations. At each stage of the search, the
more efficient operators receive dynamically the great majority of computational
resources. In other words, the model is able to auto-adapt the attractive power
of each islands.

This application is an extension of the dynamic island model approach. In
previous work, we focus on the capacity for the model to dynamically regulate
the interaction between individuals in an evolutionary context, with crossovers
and the same configuration on each island, with promising results. Here, we
dissociate the exploitation / exploration dilemma to focus on the capacity to
allocate with relevance the resources to the most suitable operators. For that, we
used an experimental protocol which makes possible to assess the real efficiency
of the model (One-Max problem and comparison with theoretical values). The
next step is to apply this operator selection strategy to difficult problems, and
then to assemble this heterogeneous model within a more general evolutionary
context.
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