Skip to main content

A Sequential Data Mining Method for Modelling Solar Magnetic Cycles

  • Conference paper
  • 3146 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Abstract

We propose an adaptive data-driven approach to modelling solar magnetic activity cyclesbased on a sequential link between unsupervised and supervised modelling. Monthly sunspot numbers spanning over hundreds of years – from the mid-18th century to the first quarter of 2012 - obtained from the Royal Greenwich Observatory provide a reliable source of training and validation sets.An indicator variable is used to generate class labels and internal parameters which are used to separate high from low activity cycles. Our results show that by maximising data-dependent parameters and using them as inputs to a support vector machine model we obtain comparatively more robust and reliable predictions. Finally, we demonstrate how the method can be adapted to other unsupervised and supervised modelling applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clilverd, M., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.: Predicting Solar Cycle 24 and beyond. Space Weather 4(7) (2006)

    Google Scholar 

  2. Colak, T., Qahwaji, R.: Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7(12) (2009)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Glasby, F.: Planets, Sunspots and Earthquakes: Effects on the sun, the earth and its inhabitants; iUniverse (2002) ISBN-13: 978-0595226412

    Google Scholar 

  6. Izenman, A., Wolf, J.R., Wolfer, A.: An Historical Note on the Zurich Sunspot Relative Numbers. Journal of the Royal Statistical Society 146, Part 3, 311–318 (1983)

    Article  Google Scholar 

  7. Kitiashvili, I., Kosovichev, A.: Prediction of solar magnetic cycles by a dataassimilation method; Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. In: Strassmeier, K., Kosovichev, A., Beckman, J. (eds.) Proceedings IAU Symposium, vol. 259. International Astronomical Union (2009)

    Google Scholar 

  8. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. John Wiley (1996)

    Google Scholar 

  9. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley (2000)

    Google Scholar 

  10. Mwitondi, K., Bugrien, J.: Harnessing data flow potentials for sustainable applications of Science, Technology and Innovation for African Development. In: 22nd International CODATA Conference on Scientific Data and Sustainable Development, Cape Town, pp. 24–27 (2010)

    Google Scholar 

  11. Mwitondi, K., Said, R.: A step-wise method for labelling continuous data with a focus on striking a balance between predictive accuracy and model reliability. In: International Conference on the Challenges in Statistics and Operations Research, Kuwait City, March 08-10 (2011)

    Google Scholar 

  12. NOOA (2012), http://www.ngdc.noaa.gov/stp/solar/ssndata.html#hemi

  13. R Version 2.13.0 for Windows; R Foundation for Statistical Computing (2011)

    Google Scholar 

  14. Ross, J.: (2009), http://www.sott.net/articles/show/181839

  15. Silbergleit, V.: Probable Values of Current Solar Cycle Peak. Advances in Astronomy 2012, Article ID 167375 (2012)

    Google Scholar 

  16. Tax, D., Duin, R.: Support Vector Data Description. Machine Learning 54, 45–66 (2004)

    Article  MATH  Google Scholar 

  17. Wolf, J.R.: Message from the observatory in Berne. Flacken solar observing. Communications of Natural History; Society in Bern, 169–173 (1848)

    Google Scholar 

  18. Wolf, J.R.: New studies of the period of Sunspots and their meanings. Communications of Natural History; Society in Bern 255, 249–270 (1852)

    Google Scholar 

  19. Wolf, J.R.: Communications on the sunspots. Quarterly Journal of the Entomological Society of Zurich, 157–198 (1861)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mwitondi, K.S., Said, R.T., Yousif, A.E. (2012). A Sequential Data Mining Method for Modelling Solar Magnetic Cycles. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics