Skip to main content

EEG Based Foot Movement Onset Detection with the Probabilistic Classification Vector Machine

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7666))

Included in the following conference series:

Abstract

A critical issue in designing a self-paced brain computer interface (BCI) system is onset detection of the mental task from the continuous electroencephalogram (EEG) signal to produce a brain switch. This work shows significant improvement in a movement based self-paced BCI by applying a new sparse learning classification algorithm, probabilistic classification vector machines (PCVMs) to classify EEG signal. Constant-Q filters instead of constant bandwidth filters for frequency decomposition are also shown to enhance the discrimination of movement related patterns from EEG patterns associated with idle state. Analysis of the data recorded from seven subjects executing foot movement using the constant-Q filters and PCVMs shows a statistically significant 17% (p<0.03) average improvement in true positive rate (TPR) and a 2% (p<0.03) reduction in false positive rate (FPR) compared with applying constant bandwidth filters and SVM classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Millan, J.R., Mourino, J.: Asynchronous bci and local neural classifiers: An overview of the adaptive brain interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 159–161 (2003)

    Article  Google Scholar 

  2. Scherer, R., Schloegl, A., Lee, F., Bischof, H., Jansa, J., Pfurtscheller, G.: The self-paced Graz brain–computer interface: methods and applications. Comput. Intell. Neurosci., 79826 (2007)

    Google Scholar 

  3. Mason, S.G., Birch, G.E.: A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47, 1297–1307 (2000)

    Article  Google Scholar 

  4. Fatourechi, M., Ward, R.K., Birch, G.E.: A self-paced brain–computer interface system with a low false positive rate. J. Neural Eng. 5, 9–23 (2008)

    Article  Google Scholar 

  5. Galán, F., Oliva, F., Guardia, J.: Using mental tasks transitions detection to improve spontaneous mental activity classification. J. Med. Biol. Eng Comput. 45(6), 603–612 (2007)

    Article  Google Scholar 

  6. Hasan, B.A.S., Gan, J.Q.: Unsupervised movement onset detection from EEG recorded during self-paced real hand movement Med. Biol. Eng. Comput. 48, 245–253 (2010)

    Article  Google Scholar 

  7. Solis-Escalante, T., Muller-Putz, G.R., Pfurtscheller, G.: Overt foot movement detection in one single Laplacian EEG derivation. J. Neurosci. Methods 175, 148–153 (2008)

    Article  Google Scholar 

  8. Pfurtscheller, G., Solis-Escalante, T.: Could the beta rebound in the EEG be suitable to realize a “brain switch”? Clin. Neurophysiol. 120, 24–29 (2009)

    Article  Google Scholar 

  9. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  10. Chen, H., Tiňo, P., Yao, X.: Probabilistic Classification Vector Machines. IEEE Trans. Neural Net. 20, 901–914 (2009)

    Article  Google Scholar 

  11. Wang, T., Deng, J., He, B.: Classifying EEG-based motor imagery tasks by means of time–frequency synthesized spatial patterns. Clin. Neurophysiol. 115, 2744–2753 (2004)

    Article  Google Scholar 

  12. Yamawaki, N., Wilke, C., Liu, Z., He, B.: An enhanced time-frequency-spatial approach for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 250–254 (2006)

    Article  Google Scholar 

  13. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 258–265 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohammadi, R., Mahloojifar, A., Chen, H., Coyle, D. (2012). EEG Based Foot Movement Onset Detection with the Probabilistic Classification Vector Machine. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics