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Abstract - The advantages offered by the electronic 
component LED (Light Emitting Diode) have caused a quick 
and wide application of this device in replacement of 
incandescent lights. However, in its combined application, the 
relationship between the design variables and the desired 
effect or result is very complex and it becomes difficult to 
model by conventional techniques. This work consists of the 
development of a technique, through artificial neural 
networks, to make possible to obtain the luminous intensity 
values of brake lights using SMD (Surface Mounted Device) 
LEDs from design data. Such technique can be used to design 
any automotive device that uses groups of SMD LEDs. Results 
of industrial applications, using SMD LED, are presented to 
validate the proposed technique. 

Keywords: Brake light, SMD LED, neural networks, 
intelligent systems. 

 

1 Introduction 

The LED device is an electronic semiconductor 
component that emits light. At present time, it has been used 
in replacement of incandescent lights because of its 
advantages, such as longer useful life (around 100,000 
hours), larger mechanic resistance to vibrations, lesser 
heating, lower electric current consumption and high fidelity 
of emitted light color [1]. 

However, in designs where incandescent lights are 
replaced by LEDs, some of their important characteristics 
must be considered, such as direct current, reverse current, 
vision angle and luminous intensity [2]. 

The SMD LEDs are suitable for use in a wide variety of 
electronic equipment, including cordless and cellular phones, 
notebook computers, hand-held products, network systems, 
and automotive interior applications. 

In automobile industry, incandescent lights have been 
replaced by LEDs in the brake lights, which are a third light 
of brakes [3]. In these brake lights are used sets of SMD 
LEDs usually organized in a straight line. The approval of 
brake light prototypes is made through measurements of 
luminous intensity in different angles, and the minimum 
value of luminous intensity for each angle is defined 
according to the application [4]. Several aspects related to the 

physical properties of luminous intensity can be found in 
[13]. 

The main difficulty found in the development of brake 
lights is in finding the existent relationship between the 
following parameters: luminous intensity ( IV ) of the SMD 
LED, distance between SMD LEDs ( d ) and number of 
SMD LEDs ( n ), with the desired effect or result, i.e., there is 
a complexity in making a model by conventional techniques 
of modeling, which are capable to identify properly the 
relationship between such variables. The prototype designs of 
brake lights have been made through trials and errors, causing 
increasing costs of implementation due to time spent in this 
stage. Moreover, the prototype approved from this system 
cannot represent the best relationship cost/benefit, since few 
variations are obtained from configurations of approved 
prototypes. The artificial neural networks are applied in cases 
like this one, where the traditional mathematic modeling 
becomes complex due to nonlinear characteristic of the 
system. These networks are able to learn from their 
environment and to generalize solutions, making them 
attractive to this type of application. 

More specifically, multilayer perceptron artificial neural 
networks are used to estimate all values of luminous intensity 
required in brake light designs, which use SMD LEDs in their 
structures. In these cases, several brake light configurations 
can be simulated from the proposed approach, and those 
future prototype configurations that will meet the minimum 
values of luminous intensity required by traffic (vehicle 
safety standards) regulations can be identified. 

2 Overview of automotive applications 
using LEDs 
Modern automotive vehicles use incandescent lamps for 

parking, turning, and brake lights. These red and yellow 
lights typically employ a standard clear incandescent bulb 
behind a colored lens. However, incandescent bulbs consume 
a disproportionately large amount of energy for the amount of 
colored light they project from the vehicle's lighting fixture. 

Recently, automotive industries have supported the 
development of schemes that replace the inefficient 
incandescent lights described above with more efficient lights 
like the Light Emitting Diode. Because LEDs produce light at 
the wavelength necessary for automotive use, less energy is 
consumed by these lighting fixtures than those that use white 



light generated by incandescent bulbs. Moreover, LEDs 
exhibit long lifetimes that are on the order of 100,000 hours. 
Coupled with the ruggedness inherent in solid-state devices, 
this indicates that LEDs may be useful for low maintenance 
applications. Fast response times also make them ideal for 
some automotive equipment. 

In [4] is demonstrated that the conversion of a turn 
signal from an incandescent light to LED is possible with the 
latest advancements in LED designs. In [1] is proposed a 
system based on LEDs for vehicle traffic control applications. 
From geometric considerations, the system requires a cluster 
of 200 red, amber, and green or 200 multicolor LEDs for a 
single three-light system. In [3] is presented a vehicle that 
uses LEDs in its headlights. To obtain white light from an 
LED, a blue LED was placed behind a phosphor that emits 
yellow light when stimulated by the blue. Since yellow light 
stimulates the red and green receptors of the eye, the resulting 
mix of blue and yellow light gives the appearance of white 
(often called “lunar white”). 

In [8] is described a light-emitting diode brake-light 
messaging (LEDBM) system that can be used to avoid rear 
collisions. The LEDBM is comprised of modulated LED 
brake lights that communicate information about a vehicle's 
state to any following vehicle that is equipped with an 
LEDBM receiver. In [11] is proposed a robust vehicle 
detection method that uses vision to extract bright regions 
brake lights. In [12] is presented a vision system dedicated to 
the detection of vehicles in reduced visibility conditions; this 
system can identify brake light luminosity in order to avoid 
collisions. 

This paper presents an industrial application using 
artificial neural networks to estimate values of brake light 
luminous intensity from design data. Although this study is 
aimed at the application of LED in brake lights, the methods 
developed and described here can also be used in other 
applications, such as headlights, turn lights, rear lights, traffic 
lights, or any other application where SMD LEDs can be used 
in groups. 

3 SMD LEDs applied in brake lights 

LED is an electronic device composed by a chip of 
semiconductor junction that when traversed by an electric 
current provides a recombination of electrons and holes. 
Figure 1 shows the representation of a junction being 
polarized.  

However, this recombination demands that the energy 
produced by free electrons can be transferred to another state. 
In semiconductor junctions, this energy is released in form of 
heat and by emission of photons, i.e., light emission [5]. In 
silicon and germanium the largest energy emission occurs in 
form of heat, with insignificant light emission. However, in 
other materials, such as GaAsP or GaP, the number of light 
photons emitted is sufficient to build a source of quite visible 
light [6]. This process of light emission, which is intrinsic 
characteristic of the LEDs, is called electroluminescence [7]. 

In Fig. 2 can be observed the representation of the basic 
structure of a SMD LED. 
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Fig. 1.  Junction PN being polarized. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Basic representation of SMD LED structure. 
 

In brake lights the SMD LEDs are applied in set and 
generally organized in a straight line on a printed circuit board 
(PCB). In this PCB, besides the SMD LEDs, there are 
electronic components, basically resistors, which are 
responsible for the limitation of electric current that circulates 
through the SMD LEDs. 

The main parameters used in brake lights designs are 
given by:  SMD LED luminous intensity ( IV ), distance 
between SMD LEDs ( d ) and number of SMD LEDs ( n ). In 
Fig. 3 is illustrated a basic representation of a brake light. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3.  Representation of a brake light. 
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The main function of the brake light is to increase the 
safety of the vehicle (acting as a prevention system) and to 
reduce the risk of back collisions. Recent studies show the 
development of brake lights equipped with modulated signal 
transmitters containing information about the vehicle in which 
it is installed. Other vehicles that have the respective 
reception system of those modulated signals receive them, and 
their information’s have been used to prevent back collisions 
[8]. In Fig. 4 is illustrated a brake light installed. 

 
 

 

 

 

 

Fig. 4.  Representation of a brake light installed. 

At the moment there is no model or technique for 
designing brake lights and the prototypes are elaborated 
according to the common sense of designers, i.e., through trial 
and error methods. This occurs because the relationship 
between the variables involved with the light emission 
process of brake lights is completely nonlinear. 

After elaboration of the brake light prototype, it is 
necessary an approval of the sample. The process for the 
prototype validation is made by measuring the luminous 
intensity of the brake light in 18 positions or different angles 
(Fig. 5). After this process, the values obtained in each angle 
are compared with those values established by governmental 
rules. The minimum value of luminous intensity (IVBL) in each 
angle varies according to the application. In Figure 5 is shown 
a representation of a generic distribution diagram of brake 
light luminous intensity (IVBL) in relation to angle. The mean 
horizontal position is indicated by 0oH and the mean vertical 
position is indicated by 0oV. Thus, the position defined by the 
pair of angles (0oV, 5ºL) is represented by the shaded position 
shown in Fig. 5. 

0oU IVBL 

IVBL 

IVBL 

IVBL IVBL 

5oL 

IVBL 

IVBL 

IVBL 

IVBL 

IVBL 

IVBL 

0oH   10oL 

5oU 

 5oD 

 0oV 

5oR 10oR

IVBL IVBL 

IVBL IVBL 

IVBL 

IVBL IVBL 

 
Fig. 5.  Generic diagram of luminous intensity (IVBL) in 
relation to angle. 

4 Materials and methods 
For this study, 45 samples of brake lights were 

constructed with the following parameter variations: 

 Distance between SMD LEDs ( d ): 4.5 mm, 5.5 mm 
and 6.5 mm. 

 Number of SMD LEDs ( n ): 16, 22 and 28. 

 Luminous intensity of SMD LED ( Iv ): 600 mcd, 
800 mcd, 1200 mcd, 1500 mcd and 1800 mcd. 

This combination of parameters referring to each sample 
can be seen in Table I. It is important to remember that the 
minimum and maximum values of each parameter in the 
designed samples must be chosen in such a way as to 
represent the domain for parameter variation in future 
designs, because these designs will be made using the 
proposed neural network. 

A photometer was used to measure the luminous 
intensity of the samples, and it was coupled to a device 
permitting vertical and horizontal angle variation. In this way, 
it was possible to obtain the luminous intensity value from 18 
different angles. 

Table I.  Combination of parameters in each sample. 
Sample

d 
(mm) 

n 
(unit) 

IV 
(mcd) Sample 

d 
(mm) 

n 
(unit) 

IV 
(mcd) 

01 4.5 16 600 24 5.5 22 1500 
02 4.5 16 800 25 5.5 22 1800 
03 4.5 16 1200 26 5.5 28 600 
04 4.5 16 1500 27 5.5 28 800 
05 4.5 16 1800 28 5.5 28 1200 
06 4.5 22 600 29 5.5 28 1500 
07 4.5 22 800 30 5.5 28 1800 
08 4.5 22 1200 31 6.5 16 600 
09 4.5 22 1500 32 6.5 16 800 
10 4.5 22 1800 33 6.5 16 1200 
11 4.5 28 600 34 6.5 16 1500 
12 4.5 28 800 35 6.5 16 1800 
13 4.5 28 1200 36 6.5 22 600 
14 4.5 28 1500 37 6.5 22 800 
15 4.5 28 1800 38 6.5 22 1200 
16 5.5 16 600 39 6.5 22 1500 
17 5.5 16 800 40 6.5 22 1800 
18 5.5 16 1200 41 6.5 28 600 
19 5.5 16 1500 42 6.5 28 800 
20 5.5 16 1800 43 6.5 28 1200 
21 5.5 22 600 44 6.5 28 1500 
22 5.5 22 800 45 6.5 28 1800 
23 5.5 22 1200     

Initially, the first sample was positioned relative to a 
screen representing the luminous intensity diagram illustrated 
in Fig. 5. The photometer was placed at the first angle, and 
the measurement of the luminous intensity was registered. 
This procedure was repeated until the luminous intensity 
value referring to last angle of the sample was registered. 
Figure 6 illustrates this procedure for the pair of angles (0ºH, 
5oU) shown in Fig. 5.  
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Fig 6. Luminous intensity diagram in relation to the brake 
light prototype. 

The sample was then removed from the device, and a 
new sample was attached in order to measure the luminous 
intensity; all procedures are repeated until the value of the last 
angle of the last sample was registered. 

From the design data provided in Table 1 and the 
measurement results of luminous intensity of brake light 
samples from different angles, a multilayer perceptron 
network was trained as will described. During this stage, a 
variation of the main network parameters was achieved. The 
number of layers, number of neurons per layer, activation 
function for each layer, and type of training were changed in 
order to obtain a neural network topology that could generate 
an acceptable mean squared error and ensure an efficient 
generalization. The best neural architecture for the 
simulations was selected by means of a cross-validation 
technique [10]. 

The topology chosen consisted of two hidden layers with 
5 neurons in the first layer and 10 neurons in the second layer. 
The training algorithm was Levenberg-Marquardt [9]. The 
main advantage of this algorithm arises from its ability to 
accelerate the neural network convergence process, and it is 
considered to be the fastest method for training moderate-
sized perceptron networks. In comparative terms, the 
Levenberg-Marquardt algorithm is about 100 times faster than 
the backpropagation method. For our application, the network 
inputs were defined by the 3 main parameters involved in 
brake light design, i.e. 

 Distance between SMD LEDs   d  (mm). 
 Number of SMD LEDs   n . 
 Luminous intensity of SMD LED  IV  (mcd). 

The network output is composed by a unique signal 
which provides what is the intensity level produced by the 
brake light in a particular angle, i.e. 

 

 Luminous intensity of brake light   IVBL  (cd). 

After training, using the 18 different angles, one training 
for each angle, it was possible to estimate the total luminous 
intensity produced by the brake light in different angles. To 
validate the proposed approach are used data coming from 
samples not used in the network training. A comparison 
between the estimated values by the network and those 
provided by experimental tests is accomplished to analyze the 
efficiency of the proposed approach.  

5 Results and discussion 
The computational implementations of the neural 

networks used in this application were carried out using the 
software Matlab/Simulink. After the training process, the 
neural modeling was used to obtain luminous intensity values 
of brake lights, as previously described. Figure 7 illustrates a 
comparison between luminous intensity values (IVBL) obtained 
by experimental tests (ET) and those estimated by the 
artificial neural network (ANN). In this configuration 
(Situation I), the used sample presents distance ( d ) between 
SMD LEDs equal to 5.5 mm, the number of SMD LEDs (n) 
is equal to 28 and the luminous intensity of each SMD LED   
( Iv ) has a value equal to 800 mcd. 
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Fig. 7.  Comparative illustration (Situation I). 

 

From Fig. 7 it is observed that the generalization 
produced by the network to estimate values of luminous 
intensity in several angles is very satisfactory. In this case, the 
mean relative errors calculated were around 2.8% and with 
variance of 1.19%. 

Figure 8 illustrates another comparison between 
luminous intensity values ( IVBL ) obtained by experimental 
tests (ET) and those estimated by the artificial neural network 
(ANN). For this configuration (Situation II), the used sample 
presented the same distance ( d ) and the same SMD LEDs 
number of the previous situation; but, the luminous intensity 
of each SMD LED ( Iv ) has a value equal to 1200 mcd. 
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Fig. 8.  Comparative illustration (Situation II). 
 

In this case (Situation II), the mean relative errors 
calculated were around 3.0% and with variance of 1.61%. 

Figure 9 illustrates another comparison between 
luminous intensity values ( IVBL ) obtained by experimental 
tests (ET) and those estimated by the artificial neural network 
(ANN). In this configuration (Situation III), the used sample 
presents distance ( d ) between SMD LEDs equal to 6.5 mm, 
the number of SMD LEDs (n) is equal to 22 and the 
luminous intensity of each SMD LED ( Iv ) has a value equal 
to 1200 mcd. 
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Fig. 9.  Comparative illustration (Situation III). 

 
In this case (Situation III), the mean relative errors 

calculated were around 2.9% and with variance of 1.47%. 
Through these results it is possible to infer that the 

network presented efficient results for estimation of luminous 
intensity values of brake lights. It should be taken into 
account that the proposed neural network has considered the 
main parameters involved with the design of brake lights. In 
the selection process of the best neural architecture used in 
simulations was adopted the cross-validation technique [10].  

6 Conclusions 
This work presents a technique based on use of artificial 

neural networks for determination of luminous intensity 
values for brake lights, in which are considered the main 
design characteristics. Therefore, the developed tool 
constitutes a new technique that can efficiently be applied in 
this type of problem. 

The developed methodology can also be generalized and 
used in other applications that use groups of SMD LEDs, such 
as in headlights, turning lights, rear lights, traffic lights, 
electronic panels of messages, etc. 

The developed tool has significantly contributed for 
reduction of costs in relation to implementation stage of brake 
lights, i.e, it minimizes spent time in prototype designs. The 
tool has also allowed simulating many options for 
configurations of brake lights without need of building them, 
which also assists in the selection process of sample that 
offers an appropriate relationship between cost and benefit. 
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