
 
This the accepted version of Global minimizer of large scale stochastic
rosenbrock function: canonical duality approach. 
 
      The final publication is available at link.springer.com and via  
 
       http://dx.doi.org/10.1007/978-3-642-34478-7_82
 

 
      Copyright 2012 Springer Science+Business Media 

COPYRIGHT NOTICE                  
 
 
 
UB ResearchOnline 
http://researchonline.ballarat.edu.au 
 
 

 



Global Minimizer of Large Scale Stochastic
Rosenbrock Function:

Canonical Duality Approach

Chaojie Li1, David Y. Gao1, Tingwen Huang2, Chuandong Li3,

1 School of Science, Information Technology and Engineering,
University of Ballarat, Mt Helen,VIC 3350, Australia

2 Texas A&M University at Qatar, Doha, P.O.Box 23874, Qatar
3 College of Computer Science, Chongqing University, Chongqing, 400030, PR China

Abstract. Canonical duality theory for solving the well-known bench-
mark test problem of stochastic Rosenbrock function is explored by two
canonical transformations. Global optimality criterion is analytically ob-
tained, which shows that the stochastic disturbance of these parameters
could be eliminated by a proper canonical dual transformation. Numeri-
cal simulations illustrate the canonical duality theory is potentially pow-
erful for solving this benchmark test problem and many other challenging
problems in global optimization and complex network systems.

1 Preliminary

Almost all of benchmark test problems in previous literature are deterministic
by parameters. However, it is usually more difficult for algorithms to deal with
stochastic functions. In Yang’s work [2], a stochastic parameter is introduced in
Rosenbrock’s function such that this well-known benchmark test problem can
be proposed as

(P) : min

{
P (X) =

n−1∑
i=1

[
(xi − 1)2 + 100ϵi(xi+1 − x2

i )
2
]
| X ∈ X

}
, (1)

whereX = {xi} ∈ X = Rn is a real unknown vector, and the random parameters
{ϵi} are drawn from a uniform distribution in [0, 1]. For stochastic functions,
most deterministic algorithms such as hill climbing and Nelder-Mead downhill
simplex method would simply fail.

2 Canonical dual approach

Following the standard procedures in the canonical dual transformation (see
Gao, 2009), we first introduce the so-called geometrical operator ξ = Λ(X) :
X → Ea ⊂ Rn−1

ξ = {ξk} = ϵ
1
2

k (x
2
k − xk+1), (2)



2

and a canonical function V (ξ) = 100
∑n−1

k=1 ξ
2
k such that the duality relation

ς = {ςk} =

{
∂V (ξk)

∂ξk

}
= {200ξk} (3)

is invertible. Thus, we have

ξk =
1

200
ςk ∀k = 1, . . . , n− 1, (4)

and the conjugate function of V (ξk) can be obtained uniquely by the Legendre
transformation

V ∗(ς) =
n−1∑
k=1

ξkςk − V (ξ)

=
n−1∑
k=1

{ξkςk − 100ξ2k} =
n−1∑
k=1

1

400
ς2k . (5)

Then, the total complementary function can be defined as

Ξ(X, ς) =
n−1∑
k=1

(xk − 1)2 + Λ(X)T ς − V ∗(ς)

=
n−1∑
k=1

[
(xk − 1)2 + ϵ

1
2

k (x
2
k − xk+1)ςk − 1

400
ς2k

]
. (6)

For a fixed ς in the canonical dual feasible space Sa ⊂ IRn−1 defined by

Sa =
{
ς ∈ S | ϵ

1
2

k ςk + 1 ̸= 0, ∀k = 1, ..., n− 2, ςn−1 = 0
}
,

the criticality condition ∇XΞ(X, ς) = 0 leads to the following analytical solution

X = {xk} =

ϵ
1
2

k−1ςk−1 + 2

2(ϵ
1
2

k ςk + 1)

 . (7)

Substituting this result into the total complementary function Ξ(X, ς), the
canonical dual problem can be finally formulated as

(Pd) : P d(ς) = max

n− 1−
n−1∑
k=1

 (ϵ
1
2

k−1ςk−1 + 2)2

4(ϵ
1
2

k ςk + 1)
+

1

400
ς2k

 ∣∣ ς ∈ S+
a

 ,

(8)

where
S+
a = {ς ∈ Sa | ϵ

1
2

k ςk + 1 > 0, ∀k = 1, ..., n− 2}. (9)
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By introducing G(ς),F (ς) and S+
a such that

G(ς) =


ϵ

1
2
1 ς1 + 1

2(ϵ
1
2
2 ς2 + 1)

...

2(ϵ
1
2
n−2ςn−2 + 1)

2

 (10)

F (ς) =


1

ϵ
1
2
1 ς1 + 2
...

ϵ
1
2
n−3ςn−3 + 2

ϵ
1
2
n−2ςn−2 + 2

 . (11)

We have the following theorem (see Gao, 2009)

Theorem 1. If ς̄ is a critical point of (Pd), then the vector

X̄ = G−1(ς̄)F (ς̄) (12)

is a critical point of (P) and

P (X̄) = P d(ς̄). (13)

If ς̄ ∈ S+
a , then ς̄ is the global maximizer of the canonical dual problem (Pd) on

Sa+ . The vector X̄ is a global minimal to the primal problem, and

P (X̄) = min
X∈X

P (X) = max
ς∈S+

a

P d(ς) = P d(ς̄). (14)

The proof of this Theorem can be intuitively derived from the paper by Gao
(2003).

3 An Alternative Transformation

In this section, we choose an alternative canonical dual transformation for stochas-
tic function, which shows analytically that the stochastic perturbation of this
problem would never change the global minimal elements.
Let ξ = {ξk} = {x2

k − xk+1} ∈ Rn−1. The canonical function V (ξ) has the form
of

V (ξ) = 100
n−1∑
k=1

ϵkξ
2
k. (15)
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Thus, the associated canonical dual variable ς = {ςk} = ∇V (ξ) = {200ϵkξk} and

V ∗(ς) =

n−1∑
k=1

1

400ϵk
ς2k . (16)

Correspondingly, the total complementary function can be written as

Ξ(X, ς) =
n−1∑
k=1

[
(xk − 1)2 + (x2

k − xk+1)ςk − 1

400ϵk
ς2k

]
. (17)

By which, the second type of the canonical dual problem can be formulated as

(Pd) : P d(ς) = max

{
{n− 1− 1

2
F (ς)TG−1(ς)F (ς)− 1

400ϵ
ςT ς | ς ∈ S+

a

}
(18)

where

G(ς) =


ς1 + 1

2(ς2 + 1)
...

2(ςn−2 + 1)
2

 (19)

F (ς) =


1

ς1 + 2
...

ςn−3 + 2
ςn−2 + 2

 (20)

S+
a = {ς ∈ Rn−1 | ςk > −1, ∀k = 1, ..., n− 2, ςn−1 = 0}. (21)

Theorem 1 still holds for this second canonical dual problem. However, by nu-
merical experiments we can see that the stochastic perturbation does not have
any impact on the global optimal solution.

4 Illustration

In this section we list some numerical examples with different dimensions, which
are more general than normal Rosenbrock function.
Example 1. Consider

(P) : min

{
P (X) =

3∑
i=1

[
(xi − 1)2 + 100ϵi(xi+1 − x2

i )
2
]
| X ∈ X

}
. (22)

This problem has the global minimum of all ones and a local minimum near
(x1,x2,x3,x4)=(-1, 1 , 1, 1). Correspondingly, the canonical dual problem is

max

 P d(ς) = 3−
3∑

k=1

 (ϵ
1
2

k−1ςk−1 + 2)2

4(ϵ
1
2

k ςk + 1)
+

1

400
ς2k

 ∣∣ ς ∈ S+
a

 (23)
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where S+
a is defined by (9).

And an alternative canonical dual problem is

max

{
P d(ς) = 3−

3∑
k=1

[
(ςk−1 + 2)2

4(ςk + 1)
+

1

400ϵk
ς2k

] ∣∣ ς ∈ S+
a

}
(24)

where S+
a is defined by (21). Obviously, it is easy to find results by Matlab

optimization tools FMINCON. Note that ς3 = 0, the contour of dual prob-
lem can be obtained directly(see Fig. 1). Thus, the global maximum of dual
problem is (ς1,ς2,ς3)=(0, 0, 0) and the global minimum of primal problem is
(x1,x2,x3,x4)=(1, 1 , 1, 1).
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Fig. 1. (a) Dual problem n=3 determined by (24) ; (b) Dual problem n=3 determined
by (25)

Example 2. Consider N= 1000, 3000, 5000, 10000, 20000. The global minimum
is inside a long, narrow, banana shaped flat valley. In this case, it is difficult
to solve exactly the primal problem (P) by gradient methods. Fortunately, the
canonical dual problem is concave maximization over a cone, which can be solved
easily, fast and exactly by gradient method.
For (22) and (23), the initial points are chosen randomly from -5 to 5 with
the constraints (9) and (21), respectively. With these numerical computation
settings, L-BFGS method can quickly solve all these test problems and accu-
rately converge to the global maximizer ς = (0, 0, ..., 0) with the optimal value
P d(ς) = 0(10−8).

All of numerical experiments have been carried out in Intel(R)Core i5-2430M
@2.40GHz Windows 7 Home Basic personal notebook computer.

5 Conclusion

This paper illustrates that the well-known benchmark test problem of Rosen-
brock function with stochastic parameters can be easily solved by the canonical
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duality theory. Numerical examples show that even though the nonconvex pri-
mal problem has been disturbed by stochastic parameters, the canonical duality
theory can avoid defective influence to achieve global optimal solution stably.
The canonical duality theory can be used for solving some more challenging
problems in global optimization and complex network systems.
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