Skip to main content

Infinite Networks of Hubs, Spirals, and Zig-Zag Patterns in Self-sustained Oscillations of a Tunnel Diode and of an Erbium-doped Fiber-ring Laser

  • Chapter
Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 459))

  • 1113 Accesses

Abstract

A remarkably regular organization of spirals converging to a focal point in control parameter space was recently predicted and then observed in a nonlinear circuit containing two diodes. Such spiral organizations are relatively hard to observe experimentally because they usually emerge very compressed. Here we show that a circuit with a tunnel diode displays not one but two large spiral cascades. We show such cascades to exist over wide parameter ranges and, therefore, we expect them to be easier to observe experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonatto, C., Garreau, J.C., Gallas, J.A.C.: Phys. Rev. Lett. 95, 143905 (2005)

    Article  Google Scholar 

  2. Bonatto, C., Gallas, J.A.C.: Phys. Rev. Lett. 101, 054101 (2008); Phil. Trans. Royal Soc. London, Series A 366, 505 (2008)

    Google Scholar 

  3. Ramírez-Ávila, G.M., Gallas, J.A.C.: Revista Boliviana de Física 14, 1–9 (2008)

    Google Scholar 

  4. Ramírez-Ávila, G.M., Gallas, J.A.C.: Phys. Lett. A 375, 143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freire, J.G., Field, R.J., Gallas, J.A.C.: J. Chem. Phys. 131, 044105 (2009)

    Google Scholar 

  6. Kovanis, V., Gavrielides, A., Gallas, J.A.C.: Eur. Phys. J. D 58, 181 (2010)

    Google Scholar 

  7. Freire, J.G., Gallas, J.A.C.: Phys. Rev. E 82, 037202 (2010)

    Google Scholar 

  8. Gallas, J.A.C.: Int. J. Bif. Chaos 20, 197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vitolo, R., Glendinning, P., Gallas, J.A.C.: Phys. Rev. E 84, 016216 (2011)

    Google Scholar 

  10. Barrio, R., Blesa, F., Serrano, S., Shilnikov, A.: Phys. Rev. E 84, 035201(R) (2011)

    Google Scholar 

  11. Bragard, J., Pleiner, H., Suarez, O.J., Vargas, P., Gallas, J.A.C., Laroze, D.: Phys. Rev. E 84, 037202 (2011)

    Google Scholar 

  12. Castro, V., Monti, M., Pardo, W.B., Walkenstein, J.A., Rosa Jr., E.: Int. J. Bif. Chaos 17, 956 (2007)

    MathSciNet  Google Scholar 

  13. Zou, Y., Thiel, M., Romano, M.V., Kurths, J., Bi, Q.: Int. J. Bif. Chaos 16, 3567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Phys. Lett. A 372, 4793 (2008)

    Article  MATH  Google Scholar 

  15. Celestino, A., Manchein, C., Albuquerque, H.A., Beims, M.W.: Phys. Rev. Lett. 106, 234101 (2011)

    Article  Google Scholar 

  16. Oliveira, D.F.M., Robnik, M., Leonel, E.D.: Chaos 21, 043122 (2011)

    Google Scholar 

  17. Oliveira, D.F.M., Leonel, E.D.: New J. Phys. 13, 123012 (2011)

    Article  Google Scholar 

  18. Stegemann, C., Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Chaos 21, 033105 (2011)

    Google Scholar 

  19. Stegemann, C., Albuquerque, H.A., Rech, P.C.: Chaos 20, 023103 (2010)

    Google Scholar 

  20. Viana, E.V., Rubinger, R.M., Albuquerque, H.A., de Oliveira, A.G., Ribeiro, G.M.: Chaos 20, 023110 (2010)

    Google Scholar 

  21. Cardoso, J.C.D., Albuquerque, H.A., Rubinger, R.M.: Phys. Lett. A 373, 2050 (2009)

    Article  MATH  Google Scholar 

  22. Stoop, R., Benner, P., Uwate, Y.: Phys. Rev. Lett. 105, 074102 (2010)

    Google Scholar 

  23. Pikovsky, A.S., Rabinovich, M.: Sov. Phys. Dokl. 23, 183 (1978); Dokl. Akad. Nauk SSSR 239, 301–304 (1978)

    Google Scholar 

  24. Rabinovich, M.: Sov. Phys. Usp. 21, 443–469 (1978); Usp. Fiz. Nauk 125, 123–168 (1978)

    Google Scholar 

  25. Pikovsky, A.S., Rabinovich, M.: Physica D 2, 8 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gollub, J.P., Brunner, T.O., Daly, B.G.: Science 200, 48 (1978)

    Article  Google Scholar 

  27. Gollub, J.P., Romer, E.J., Socolar, J.E.: J. Stat. Phys. 23, 321 (1980)

    Article  MathSciNet  Google Scholar 

  28. Linsay, P.S.: Phys. Rev. Lett. 47, 1349 (1981)

    Article  Google Scholar 

  29. Testa, J., Perez, J., Jeffries, C.: Phys. Rev. Lett. 48, 714 (1982)

    Article  MathSciNet  Google Scholar 

  30. Octavio, M., DaCosta, A., Aponte, J.: Phys. Rev. A 34, 1512 (1986)

    Article  Google Scholar 

  31. Su, Z., Rollins, R.W., Hunt, E.R.: Phys. Rev. A 40, 2698 (1990)

    Article  Google Scholar 

  32. Carcasses, J.P., Mira, C.: In: Mira, C., Netzer, N., Simo, C., Targonski, G. (eds.) Proc. Int. Conf. on Iteration Theory: ECIT 1989, Batschuns, World Scientific, Singapore (1991)

    Google Scholar 

  33. Jones, C.K.R.T., Khibnik, A.I.: Multiple-Time-Scale Dynamical Systems, Mathematics and its Applications, vol. 122. Springer, NY (2000)

    Google Scholar 

  34. Grasman, J.: Asymptotic methods for relaxation oscillations and applications, Applied Mathematical Sciences, vol. 63. Springer, NY (1987)

    Book  Google Scholar 

  35. “Shrimps” refer to wide-reaching structures in parameter space formed by a regular set of adjacent windows centered around a main pair of usually intersecting ’superstable’ parabolic arcs (see discussion of Fig. 9.6). Thus, a shrimp is a doubly-infinite mosaic of periodicity domains composed by an innermost main domain plus all the adjacent periodicity domains arising from two symmetrically located period-doubling cascades together with their corresponding domains of chaos [36]. Shrimps should not be confused with their innermost main domain of periodicity or with superstable loci. For details see Refs. [36, 37]

    Google Scholar 

  36. Gallas, J.A.C.: Phys. Rev. Lett. 70, 2714 (1993); Physica A 202, 196(1994); Appl. Phys. B 60, S203 (1995), special supplement issue: Festschrift Herbert Walther; Hunt, B.R., Gallas, J.A.C., Grebogi, C., Yorke, J.A., Koçak,H.: Physica D 129, 35(1999)

    Google Scholar 

  37. Lorenz, E.N.: Physica D 237, 1689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, L., Tee, T.J., Chu, P.L.: J. Opt. Soc. Am. B 15, 972 (1998)

    Article  Google Scholar 

  39. Senlin, Y.: Chaos 17, 013106 (2007)

    Google Scholar 

  40. Zhang, S., Shen, K.: Chin. Phys. 12, 149 (2003)

    Article  Google Scholar 

  41. Pöschel, T., Gallas, J.A.C.: The distribution of self-pulsing and chaos in control space of an erbium-doped fiber-ring laser, preprint

    Google Scholar 

  42. Endler, A., Gallas, J.A.C.: Comptes Rendus Mathem (Paris) 342, 681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gallas, J.A.C.: Shrimps and the eigenvalue structure of the Hénon map, preprint

    Google Scholar 

  44. Al-Naimee, K., Marino, F., Ciszak, M., Abdalah, S.F., Meucci, R., Arecchi, F.T.: Eur. Phys. J. D 58, 187 (2010); New J. Phys. 11, 073022 (2009)

    Google Scholar 

  45. Marino, F., Ciszak, M., Abdalah, S.F., Al-Naimee, K., Meucci, R., Arecchi, F.T.: Phys. Rev. E 84, 047201 (2011)

    Google Scholar 

  46. Marino, F., Marin, F., Balle, S., Piro, O.: Phys. Rev. Lett. 98, 074104 (2007)

    Google Scholar 

  47. For a quite early and very nice review of the role of critical points as originally used by Schröder, Fatou and Julia, see H. Cremer, Jahresber. Deutsche Math. Ver. 33,185 (1924)

    Google Scholar 

  48. Freire, J.G., Gallas, J.A.C.: Phys. Lett. A 375, 1097 (2011)

    Article  MATH  Google Scholar 

  49. Freire, J.G., Gallas, J.A.C.: Phys. Chem. Chem. Phys. 13, 12191 (2011)

    Article  Google Scholar 

  50. Freire, J.G., Pöschel, T., Gallas, J.A.C.: Stern-Brocot tree: A unifying organization of oscillations for a broad class of phenomena, submitted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. Francke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francke, R.E., Pöschel, T., Gallas, J.A.C. (2013). Infinite Networks of Hubs, Spirals, and Zig-Zag Patterns in Self-sustained Oscillations of a Tunnel Diode and of an Erbium-doped Fiber-ring Laser. In: Kyamakya, K., Halang, W., Mathis, W., Chedjou, J., Li, Z. (eds) Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering. Studies in Computational Intelligence, vol 459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34560-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34560-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34559-3

  • Online ISBN: 978-3-642-34560-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics