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a b s t r a c t

The stable roommates problem with payments has as input a graph G = (V , E) with an
edge weighting w : E → R≥0 and the problem is to find a stable solution. A solution is
a matching M with a vector p ∈ RV

≥0 that satisfies pu + pv = w(uv) for all uv ∈ M and
pu = 0 for all u unmatched inM . A solution is stable if it prevents blocking pairs, i.e., pairs of
adjacent vertices u and v with pu+ pv < w(uv), or equivalently, if the total blocking value

uv∈E max{0, w(uv)− (pu+pv)} = 0. By pinpointing a relationship to the accessibility of
the coalition structure core of matching games, we give a constructive proof for showing
that every yes-instance of the stable roommates problem with payments allows a path of
linear length that starts in an arbitrary unstable solution and that ends in a stable solution.
This generalizes a result of Chen, Fujishige and Yang (2011) [4] for bipartite instances to
general instances. We also show that the problems Blocking Pairs and Blocking Value,
which are to find a solution with a minimum number of blocking pairs or a minimum
total blocking value, respectively, areNP-hard. Finally, we prove that the variant of the first
problem, in which the number of blocking pairs must be minimized with respect to some
fixedmatching, isNP-hard, whereas this variant of the second problem is polynomial-time
solvable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a group of tennis players participating in a doubles tennis tournament. Each two players estimate the expected
prize money they could win together by forming a pair in the tournament. Moreover, each player can negotiate his share of
the prize money with his chosen partner in order to maximize his own prize money. Can the players be matched together
such that no two players have an incentive to leave the matching in order to form a pair together? This example has been
given by Eriksson and Karlander [6] to introduce the stable roommates problem with payments.

The stable roommates problem with payments generalizes the stable marriage problem with payments [14] and can be
modeled by a weighted graph G = (V , E), i.e., that has an edge weighting w : E → R≥0. A vector p ∈ RV with pu ≥ 0 for all
u ∈ V is said to be amatching payoff if there exists a matchingM in G, such that pu+ pv = w(uv) for all uv ∈ M , and pu = 0

✩ An extended abstract of this paper appeared in the proceedings of the 38th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2012).
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for each u that is not incident to an edge in M . We then say that p is a payoff with respect to M , and we call the pair (M, p)
a matching with payoffs. A pair of adjacent vertices {u, v}, i.e., with an edge between them, is a blocking pair of p ∈ RV

≥0 if
pu + pv < w(uv), and their blocking value with respect to p is defined as w(uv) − (pu + pv). The latter value expresses to
which extent {u, v} is a blocking pair. We define the set of blocking pairs of a vector p ∈ RV

≥0 as

B(p) = {{u, v} | uv ∈ E and pu + pv < w(uv)},

and we define the total blocking value of p as

b(p) =

uv∈E

max{0, w(uv)− (pu + pv)}.

The problem Stable Roommates with Payments is that of testing whether a weighted graph allows a stable solution, i.e., a
matching with payoffs (M, p) such that B(p) = ∅, or equivalently, b(p) = 0. This problem is well known to be polynomial-
time solvable (cf. [6]); recently, an O(nm+ n2 log n) time algorithm for weighted graphs on n vertices andm edges has been
given [3].

We consider two natural questions in our paper:

1. Can we gradually transform an unstable solution into a stable solution assuming that a stable solution exists?
2. Can we efficiently find solutions for no-instances that are ‘‘as stable as possible’’?

Question 1 is of structural importance, as it will give us some insight into the coalition formation process. A sequence of
solutions starting fromanunstable one and ending in a stable one is called a path to stability;we give a precise definition later.
Question 2 is of algorithmic nature and is relevant when we consider no-instances of Stable Roommates with Payments. In
order to answer it, we generalize this problem in two different ways leading to the following two decision problems. Given
a weighted graph G and an integer k ≥ 0, the Blocking Pairs problem is to test whether G allows a matching payoff pwith
|B(p)| ≤ k, and the Blocking Value problem is to test whether G allows a matching payoff p with b(p) ≤ k.

Questions 1 and 2 have been studied in two closely related settings that are well known and formed a motivation for
our study. The first related setting is similar to ours except that payments are not allowed. Instead, each vertex u in an
(unweighted) graph G(V , E) has a linear order on its neighbors expressing a certain preference. Then two adjacent vertices
u and v form a blocking pair relative to a matching M if either u is not matched in M or else u prefers v to its partner in M ,
and simultaneously, the same holds for v. This leads to the widely studied problem Stable Roommates introduced by Gale
and Shapley [7]. In this setting, the results are as follows. Answering a question by Knuth [12], Roth and Vande Vate [13]
showed the existence of a path to stability for any yes-instance provided that the instance is bipartite. Later, their result
was generalized by Diamantoudi et al. [5] to be valid for general instances. Abraham, Biró and Manlove [1] showed that the
problem of finding a matching with a minimum number of blocking pairs is NP-complete; note that the problem Blocking
Value cannot be translated to this setting, due to the absence of cardinal utilities.

The second related setting originates from cooperative game theory. A cooperative game with transferable utilities (TU-
game) is a pair (N, v), where N is a set of n players and a value function v : 2N

→ R≥0 with v(∅) = 0 defined for every
coalition S, which is a subset of N . In a matching game (N, v), the set N of players is the vertex set of weighted graph G, and
the value of a coalition S is v(S) =


e∈M w(e), where M is a maximum weight matching in the subgraph of G induced by

S. The strong relationship between the two settings stems from the fact that finding a core allocation, i.e., a vector x ∈ RN

with


u∈N xu = v(N) and


u∈S xu ≥ v(S) for all S ⊆ N is equivalent to solving the Stable Roommates with Payments
(cf. [6]). The algorithms of Béal et al. [2] and Yang [15] applied to an n-player matching game with a nonempty core (i.e.
that have at least one core allocation) find a path to stability with lengths at most (n2

+ 4n)/4 and 2n− 1, respectively. For
matching games, the problems Blocking Pairs and Blocking Value are formulated as the problems that are to test whether
a matching game (N, E) allows an allocation x with |B(x)| ≤ k, or b(x) ≤ k, respectively, for some given integer k. Biró,
Kern and Paulusma [3] showed that the first problem is NP-complete and that the second is polynomial-time solvable by
formulating it as a linear program.
Our Results. In Section 2, we prove a structural result that provides an affirmative answer to Question 1. We show that
any unstable solution for a weighted n-vertex graph G that is a yes-instance of Stable Roommates with Payments allows
a path to stability of length at most 2n. This generalizes a structural result of Chen, Fujishige and Yang [4], who show the
existence of a path to stability for the aforementioned stable marriage problem with payments, which corresponds to the
case when G is bipartite. In Section 3 we prove a number of computational complexity results. We first answer Question
2 by proving that Blocking Pairs and Blocking Value are NP-complete. The latter result is somewhat surprising, as the
corresponding problem is polynomial-time solvable for matching games; we refer to Table 1 for a survey. In addition, we
show that Blocking Value does become polynomial-time solvable if the desired matching payoff is to be with respect to
some specified matchingM that is part of the input, whereas this variant of Blocking Pairs turns out to be NP-complete.

2. Paths to stability

We first give a useful lemma, which immediately follows from the aforementioned fact that finding a core allocation in
a matching game (N, v) defined on a weighted graph G = (N, E) is equivalent to finding a stable solution for G.
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Table 1
A comparison of the results for the existence of a path to stability and
the problems Blocking Pairs and Blocking Value in the three different
settings of stable roommates (SR), stable roommates with payments
(SRwP) and matching games (MG). The three results marked by a ∗ are
the new results shown in this paper.

SR SRwP MG

Path to Stability Yes Yes∗ Yes
Blocking Pairs NP-complete NP-complete∗ NP-complete
Blocking Value n/a NP-complete∗ P

Lemma 1 ([6]). Let G be a weighted graph that forms a yes-instance of Stable Roommates with Payments. Then G allows a
stable solution (M∗, p∗) where M∗ is a maximum weight matching of G.

LetM be a matching in a graph G = (V , E). Let {u, v} be a blocking pair for some payoff pwith respect to somematching
M; note that uv /∈ M by definition. Let p′ be a payoff with respect to a matching M ′. We say that (M ′, p′) is obtained from
(M, p) by satisfying blocking pair {u, v} if the following two conditions hold:

(i) M ′ = (M \ {xy ∈ M | x = u or x = v}) ∪ {uv};
(ii) p′u ≥ pu and p′v ≥ pv , whereas p′z = pz if z is neither in {u, v} nor matched to u nor to v in M (in the latter two cases

z /∈ M ′ and hence p′z = 0).

That is, the players of a blocking pair become matched to each other in M ′ by leaving their former partners in M (if these
existed) unmatched (and hence with no payoff values) inM ′, and they share the extra utility coming from their cooperation
in such a way that neither of them gets worse off. Note that at least one of them strictly improves, i.e., we have p′u > pu or
p′v > pv . This is due to the following two arguments. First, by the definition of a blocking pair, pu + pv < w(uv). Second,
p′u + p′v = w(uv), because p′ is a payoff with respect to M ′ and uv ∈ M ′ by condition (i).

Let G be a weighted graph that forms a yes-instance of Stable Roommates with Payments. A path to stability for G is a
sequence of matchings with payoffs

(M0, p0), (M1, p1), . . . , (Mk, pk),

where (M0, p0), . . . , (Mk−1, pk−1) are unstable solutions and (Mk, pk) is a stable solution, such that (Mi+1, pi+1) is obtained
from (Mi, pi) for i = 0, . . . , k− 1 by satisfying some blocking pair.

A known proof technique for finding a path to stability is to make use of a so-called reference solution (see e.g. [5,2,11,
15]). In our setting, this comes down to the following.We say that (M ′, p′) is obtained from (M, p) by satisfying blocking pair
{u, v}with respect to a payoff p∗ of some stable solution (M∗, p∗) that is called a reference solution, if in addition to conditions
(i)–(ii) also the following condition is satisfied:

(iii) if pu ≤ p∗u then p′u ≤ p∗u , and if pv ≤ p∗v then p′v ≤ p∗v .

We define S∗(p) = {u ∈ V (G) : pu > p∗u} to be the set of overpaid vertices in (M, p) with respect to (M∗, p∗). We note
that when (M ′, p′) is obtained from (M, p) by satisfying a blocking pair with respect to p∗ then S∗(p′) ⊆ S∗(p). In order to
prove the existence of a path to stability for some graph G that is a yes-instance of Stable Roommates with Payments, it
may be easier to find a path to stability (M0, p0), (M1, p1), . . . , (Mk, pk), where (Mi+1, pi+1) is obtained from (Mi, pi) for
i = 1, . . . , k by satisfying some blocking pair with respect to p∗, in such a way that S∗(pi+1) ⊆ S∗(pi) for i = 0, . . . , k− 1,
with strict inclusion occurring after a certain number of steps; the latter property is then to guarantee that an algorithm for
solving this problem will eventually terminate in a stable solution.

Wewill use the approach described above in order to show that anyweighted n-vertex graph G that forms a yes-instance
of Stable Roommates with Payments allows a path to stability of length 2n that starts in an arbitrary unstable solution.
Before we give the proof, we first explain inmore detail how our result is connected to results from the literature. Our result
is based on the work of Kóczy and Lauwers [11] on the so-called accessibility of the coalition structure core. Their result
implies the existence of a path to stability for any TU-game with a nonempty core. In this setting, a path to stability is a
sequence of gradual changes that transform a non-core allocation to a core allocation. Recently, Béal et al. [2] and Yang [15]
built on thework of Kóczy and Lauwers [11] in order to show the accessibility of the coalition structure core in quadratic time.
In particular, Yang [15] obtained a linear upper bound on the length of a path to stability for all TU-games with a nonempty
core, which include thematching gameswith a nonempty core.We can use their proof techniques [2,15] for our setting. Our
arguments are slightly different though, because formatching games (N, v) every coalition S ⊆ N maybe blocking instead of
only pairs {u, v} as in our setting. As a consequence, formatching games several blocking pairsmay be satisfied in one step by
choosing the affected vertices to form a blocking coalition. Moreover, even if the starting solution is a matching with payoffs
and the final solution is a stable matching with payoffs, the intermediate solutions in a path to stability for matching games
are not necessarily such allocations that can be realized as matchings with payoffs. Therefore, the arguments of Yang [15]
for restricting the path length cannot be translated to obtain our linear upper bound. By pinpointing the connection to the
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Input: a matching with payoffs (M0, p0) in a weighted stable graph G
Output: a stable solution
Set i := 0.
Phase 1:while there is a blocking pair {u, v} for (Mi, pi) such that uv ∈ M∗ do

satisfy {u, v}with respect to p∗, (Mi+1, pi+1)← (Mi, pi); set i := i+ 1.
Phase 2: if there is a blocking pair {u, v} for (Mi, pi) then

satisfy {u, v}with respect to p∗, (Mi+1, pi+1)← (Mi, pi); set i := i+ 1, and
return to Phase 1.

Return (Mi, pi).

Fig. 1. The algorithm for finding a path to stability. Contrary to the algorithms of Béal et al. [2] and Yang [15], we do not have to specify the payoff pi+1; any
vector pi+1 that is a payoff with respect toMi+1 and satisfies conditions (ii)–(iii) may be chosen.

setting of cooperative games, we are not only able to generalize the corresponding result of Chen, Fujishige and Yang [4]
for the existence of a path to stability for bipartite instances (which are always yes-instances) to general yes-instances, but
we could also give a simpler proof of this result with a linear upper bound on the number of blocking pairs that need to be
satisfied.

Theorem 1. Let G be a weighted n-vertex graph that forms a yes-instance of Stable Roommates with Payments. Let (M0, p0)
be a matching with payoffs. Then there exists a path to stability of length at most 2n that starts in (M0, p0).

Proof. Let G be a weighed n-vertex graph that forms a yes-instance of Stable Roommates with Payments; we also call such
a graph G stable. Let (M0, p0) be amatching with payoffs. We fix a stable reference solution (M∗, p∗), where wemay assume
thatM∗ is amaximumweightmatching due to Lemma 1. Note that |M∗| ≤ n

2 and |M0
| ≤

n
2 . Moreover, |S∗(p0)| ≤ n

2 , because
the vertices u and v of a pair uv ∈ M0 cannot both belong to S∗(p0), as otherwise p0u > p∗u , p

0
v > p∗v and w(uv) = p0u + p0v

would imply that {u, v} is a blocking pair for (M∗, p∗).
To obtain a path of stability we run the algorithm displayed in Fig. 1. Recall that S∗(pi+1) ⊆ S∗(pi) for any solution

(Mi, pi) for which the algorithm performs Phase 1 or 2. Now we will prove that whenever we satisfy a blocking pair {u, v}
with uv /∈ M∗ in Phase 2 the above relation is strict. More precisely, let (Mi, pi) be a solution after a termination of Phase
1 (so, there is no {u, v} with uv ∈ M∗ that is a blocking pair for (Mi, pi)) and let (Mi+1, pi+1) be the solution obtained after
satisfying a blocking pair {ui, vi}with uivi /∈ M∗ for (Mi, pi). Then we will show that S∗(pi+1) ⊂ S∗(pi). We first show three
claims, where we write w(M) =


uv∈M w(uv) for a matching M .

Claim 1. p∗u + p∗v = piu + piv for all uv ∈ M∗, and Mi has maximum weight.

We prove Claim 1 as follows. Because there is no pair of vertices {u, v}with uv ∈ M∗ that is a blocking pair for (Mi, pi), we
have p∗u + p∗v = w(uv) ≤ piu + piv for all uv ∈ M∗. This implies that

w(M∗) =


uv∈M∗
p∗u + p∗v ≤


uv∈M∗

piu + piv ≤ w(Mi).

However, becauseM∗ is a maximumweight matching, we have equality everywhere, i.e., we have p∗u + p∗v = piu + piv for all
uv ∈ M∗, and w(Mi) = w(M∗). The latter equality implies that Mi is a maximum weight matching as well.

Claim 2. piu + piv = p∗u + p∗v for all uv ∈ Mi.

We prove Claim 2 as follows. The stability of (M∗, p∗) implies that piu+ piv = w(uv) ≤ p∗u+ p∗v for all uv ∈ Mi. This leads to

w(Mi) =

uv∈Mi

piu + piv ≤

uv∈Mi

p∗u + p∗v ≤ w(M∗).

Together with the maximality of Mi that follows from Claim 1, this means that we have equality everywhere again, so
piu + piv = p∗u + p∗v for all uv ∈ Mi.

Claim 3. If a vertex t is unmatched in Mi or M∗, then pit = p∗t = 0.

We prove Claim 3 as follows. Suppose that t is unmatched in Mi. Then pit = 0 by definition. We use Claim 2 and the fact
that M∗ and Mi are maximum weight matchings to obtain w(M∗) = w(Mi) =


uv∈Mi(piu + piv) =


uv∈Mi(p∗u + p∗v). By

definition, w(M∗) =


u∈V p∗u . Due to these two equalities, p∗t = 0. The case when t is unmatched in M∗ can be proven by
similar arguments. This completes the proof of Claim 3.
We now consider the pair {ui, vi} andwrite u = ui and v = vi. Because {u, v} is a blocking pair for (Mi, pi), whereas (M∗, p∗)
is a stable solution, we deduce that piu + piv < w(uv) ≤ p∗u + p∗v; note that this means that w(uv) > 0. If u and v are both
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Fig. 2. The graph G∗ and an example of a matchingMV1 . The edges within the subgraph G of G∗ have not been drawn.

unmatched in Mi, then p∗u = p∗v = 0 by Claim 3. Then w(uv) ≤ 0, which is not possible. Hence, we are left to analyze two
cases.

First suppose that one of u, v, say u, is unmatched inMi, whereas v ismatched byMi, say vy ∈ Mi. Because u is unmatched,
piu = p∗u = 0 by Claim 3. Because we already deduced that piu + piv < p∗u + p∗v , this means that piv < p∗v . The inequality
piv < p∗v and the equality piv + piy = p∗v + p∗y from Claim 2 imply that piy > p∗y , i.e., y ∈ S∗(pi). Because y becomes unmatched
after satisfying uv by definition, we find that pi+1(y) = 0. Hence, S∗(pi+1) ⊂ S∗(pi).

Now suppose that both u and v are matched in Mi. Let xu ∈ Mi and vy ∈ Mi. The equalities pix + piu = p∗x + p∗u and
piv+piy = p∗v+p∗y from Claim 2, together with the aforementioned inequality piu+piv < p∗u+p∗v , imply that pix+piy > p∗x+p∗y .
Hence, pix > p∗x or piy > p∗y . This means that x or y is in S∗(pi). We may assume without loss of generality that x ∈ S∗(pi).
Because x becomes unmatched after satisfying uv by definition, we find that pi+1(x) = 0. Hence, S∗(pi+1) ⊂ S∗(pi) also in
this case.

Because the number of overpaid vertices decreases after each execution of Phase 2, the algorithm terminates and the
returned solution (Mℓ, pℓ) is stable. Consequently, we have shown the existence of a path to stability.

Now we set the linear upper bound for the number of steps ℓ required to reach a stable solution. Each time we satisfy
a blocking pair not in M∗ in Phase 2, the number of overpaid vertices decreases. Hence, we cannot satisfy more than
|S∗(p0)| ≤ n

2 of them. Regarding the pairs of M∗, after the first time we satisfy a pair uv ∈ M∗ we may need to satisfy
it again only if u or v is involved in a blocking pair {x, u} or {u, y}, respectively, that is not in M∗ and that is satisfied in
Phase 2. Hence, the satisfaction of a pair xu not inM∗ may result that at most two pairs inM∗, involving either x or u, can be
subsequently satisfied in Phase 1, but all the other pairs ofM∗ satisfied in this execution of Phase 1 must be satisfied for the
first time. Therefore we have the following upper bounds.

• We satisfy at most n
2 pairs not in M∗.

• We satisfy at most n
2 pairs of M∗ for the first time.

• We satisfy pairs ofM∗ not for the first time at most 2 · n2 = n times.

Thus we satisfy at most ℓ = n
2 +

n
2 + n = 2n pairs. This completes our proof. �

Remark.Our proof of Theorem1 is constructive. The algorithm of Fig. 1 constructs a path to stability starting in any unstable
solution. Due to the linear upper bound stated in Theorem1, its running time isO(n2) time forweighted graphs on n vertices,
given a stable reference solution (M∗, p∗)which, if necessary, we can compute in O(nm+n2 log n) [3]. We like to emphasize
though that the main purpose of Theorem 1 is to show the existence of a path to stability of length at most 2n starting from
an arbitrary solution (M0, p0). Moreover, the final (stable) solution on this path is not necessarily the same as the stable
reference solution (M∗, p∗).

3. Blocking Pairs and Blocking Value

We start this section by showing that Blocking Pairs and Blocking Value are NP-complete. We prove the hardness of
these two problems by a reduction from Independent Set, in a similar way as was done for the Blocking Pairs problem
in the setting of matching games [3]. However, the latter setting and our setting are quite different in nature; in particular,
we recall that the Blocking Value problem is polynomial-time solvable in the setting of matching games [3]. Hence, our
hardness proof uses a number of different arguments than the hardness proof for Blocking Pairs in the setting of matching
games [3].

Theorem 2. Blocking Pairs and Blocking Value are NP-complete.

Proof. Clearly, both problems are inNP. In order to proveNP-completeness, we reduce from the Independent Set problem.
This problem takes as input a graph G with an integer k and is to test whether G contains an independent set of size at least
k, i.e., a set S with |S| ≥ k such that there is no edge in G between any two vertices of S. Garey, Johnson and Stockmeyer [9]
show that Independent Set is already NP-complete for the class of 3-regular graphs, i.e., graphs in which all vertices are of
degree three. So we may assume that G is 3-regular. We also assume that k ≥ 2. Let n = |V | and let V = {v1, . . . , vn}.

From Gwe construct a weighted graph G∗ = (V ∗, E∗) on 2n+ k(4k+ 3) vertices. First, we add a set V ′ of n new vertices
v′1, . . . , v

′
n, where we add an edge between vi and v′i for i = 1, . . . , n. So, every v′i has a unique neighbor in the resulting

graph, namely vi. Now let K be a complete graph on r = 4k+3 vertices; note that r is odd.We add kmutually vertex-disjoint
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copiesK 1, . . . , Kk ofK to the graph constructed so far. In each copyK i we specify a vertex ui leading to a setU = {u1, . . . , uk}.
We then finish our construction of G∗ by adding an edge uhvi for all 1 ≤ h ≤ k and all 1 ≤ i ≤ n; see Fig. 2. It remains to
define an edge weighting w on G∗. We let w(uhvi) =

1
2 for all 1 ≤ h ≤ k and all 1 ≤ i ≤ n, whereas we assign all other

edges e of G∗ weight w(e) = 1.
We make the following observation that is important for the remainder of the proof. By our construction, there exists a

matchingMV1 for each subset V1 ⊆ V of size k that can be decomposed asMV1 = M1 ∪ · · · ∪Mk ∪MUV1 ∪MV2V ′2
, whereMh

is a perfect matching of Kh
− uh for h = 1, . . . , k, MUV1 is a perfect matching of G∗[U ∪ V1] and MV2V ′2

is a perfect matching
of G∗[V2 ∪ V ′2] for V2 = V \ V1 and its set of neighbors V ′2 in V ′. We call a matching MV1 as defined above a V1-matching.
Note that V1 has more than one V1-matching, because we can pick different perfect matchings for the decomposition ofMV1
(except for the perfect matching MV2V ′2

of G[V2, V ′2], which is unique).
For our two NP-hardness reductions, it suffices to show that the following three statements are equivalent.

(i) G has an independent set S of size at least k.
(ii) |B(p)| ≤ k for some matching payoff p of G∗.
(iii) b(p) ≤ k for some matching payoff p of G∗.

‘‘(i)⇒ (ii)’’ Suppose that G has an independent set S of size |S| ≥ k. Then we may assume without loss of generality that
|S| = k, as otherwise we could just remove some vertices from S. We pick an arbitrary S-matching MS and define a payoff
p with respect to MS as follows. We let p ≡ 1

2 on K 1
∪ · · · ∪ Kk, whereas we let p ≡ 1 on V \ S and p ≡ 0 on S ∪ V ′.

Because S is an independent set and p ≡ 1 on V \ S, no pair {vi, vj} is a blocking pair. This and the definition of p ensure that
B(p) = {{vi, v

′

i} | vi ∈ S}, which has size k.
‘‘(ii)⇒ (iii)’’ Suppose that |B(p)| ≤ k for some matching payoff p of G∗. Then b(p) ≤ k, because each blocking pair in B(p)
can contribute at most a value of 1 to the total blocking value b(p) as the maximum value of w is 1.
‘‘(iii)⇒ (i)’’ Suppose that b(p) ≤ k for some matching payoff p of G∗. Assume that b(p) is minimum over all matching
payoffs. Let M be the associated matching. We first show three useful claims.

Claim 1. For all 1 ≤ h ≤ k, every z ∈ VKh \ {uh} is matched by M .

We prove Claim 1 as follows. Suppose that there exists some complete graph Kh that contains a nonempty subset D ⊆
VKh \ {uh} of vertices that are unmatched inM . Assume that D contains all such vertices of VKh \ {uh}. Let A = VKh \ {uh ∪D}.
Then, by definition, A contains exactly those vertices of VKh \ {uh} that are matched in M . We write α = |A| and δ = |D|.
By our construction, the vertices in A can only be matched by M via edges with both end-vertices in Kh

[A]. By definition,
pz + pz′ = 1 for all zz ′ ∈ M with z, z ′ ∈ A. This means that


z∈A pz =

1
2α. Moreover, p ≡ 0 on D by definition, and δ ≥ 1 by

our assumption. We let E1 be the set of edges with one end-vertex in A and the other one in D. We let E2 be the set of edges
with both end-vertices in D. By using the properties of A and D, we find that

k ≥ b(p) ≥

zz′∈E1

(1− pz − pz′)+

zz′∈E2

(1− pz − pz′)

= δ

z∈A

(1− pz)+

zz′∈E2

1

= αδ −
1
2
αδ +

1
2
δ(δ − 1)

=
1
2
αδ +

1
2
δ(δ − 1).

Recall that δ ≥ 1. We distinguish three cases. If δ = 1, then α = r − δ − 1 = r − 2. Then our deduction implies that
k ≥ 1

2α =
1
2 (r − 2), which is equivalent to r ≤ 2k+ 2. If δ = 2, then α = r − 3, and we find that k ≥ α+ 1 = r − 2, which

is equivalent to r ≤ k+ 2. If δ ≥ 3, then we find that k ≥ 3
2α+ δ ≥ α+ δ = r − 1, which is equivalent to r ≤ k+ 1. Hence,

in all three cases, we find that r ≤ 2k + 2. This is not possible, because r = 4k + 3 > 2k + 2. We conclude that D = ∅.
Hence, we have proven Claim 1.

Claim 2. There exists a subset V1 ⊆ V such that the restriction of M to the edges of G∗[V1 ∪ U] is a perfect matching.

We prove Claim 2 as follows. First suppose that there exists some uh that is unmatched inM . Then puh = 0 by definition. Let
A = VKh \ {uh}. Note that |A| = r − 1 is even, because r is odd. Claim 1 tells us that the vertices of A are matched by edges of
M . By construction, these matching edges must have both end-vertices in A. Because pz + pz′ = 1 for all zz ′ ∈ M and p ≥ 0,
this means that there are at least 1

2 (r − 1) vertices in A, whose payoff is at most 1
2 . We consider the edges between v and

those vertices and deduce that k ≥ b(p) ≥ 1
2 (r − 1)(1 − 1

2 − 0), which is equivalent to r ≤ 4k + 1. This is not possible,
because r = 4k+ 3. Hence, every uh is matched byM .

Now suppose that uh forms a matching edge of M together with some other vertex z of Kh. Then M cannot cover all
vertices of Kh, because r is odd. This is not possible due to Claim 1. Hence, every uh forms a matching edge of M with some
vertex vi from V . This gives us the set V1, and we have proven Claim 2.

Claim 3. p(u) = 1
2 for all u ∈ U .
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We prove Claim 3 as follows. Suppose that puh ≠
1
2 for some 1 ≤ h ≤ k. By Claim 2, uh forms a matching edge of

M with some vertex vi. Then puh + pvi = w(uhvi) =
1
2 . This means that puh < 1

2 and pvi = ϵ > 0. We modify
p into a new payoff p′ with respect to M by increasing the payoff to uh with ϵ and decreasing the payoff of vi to zero.
Because G is 3-regular, vi has 3 neighbors in G. As in the proof of Claim 2, there are at least 1

2 (r − 1) vertices in Kh
− uh,

whose payoff is at most 1
2 . Hence, taking into account the other neighbors of vi in G∗ as well, our modification of p

decreases the total blocking value by at most (k + 4)ϵ but at the same time increases it by at least 1
2 (r − 1)ϵ. Hence,

b(p′) ≥ b(p)− (k+ 4)ϵ + 1
2 (r − 1)ϵ = b(p)+ ( 1

2 (r − 1)− (k+ 4))ϵ > b(p), where the latter inequality follows from the
fact that r ≥ 4k+ 2 ≥ 2k+ 5, as we assume that k ≥ 2. However, b(p′) > b(p) contradicts the minimality of b(p). Hence,
we have proven Claim 3.

We are now ready to argue how to find an independent set of size at least k in G. Let V1 be the set from Claim 2. By Claim
3 and the fact that the weights w(e) of every edge e between U and V is set to 1

2 , we find that p ≡ 0 on V1. Due to Claim 2,
no vertex v′i with vi ∈ V1 can be matched byM . Hence, pv′i

= 0 for every vi ∈ V1. Because |U| = k, we find that |V1| = k. Let
E ′1 denote the set of edges viv

′

i with vi ∈ V1. Because |V1| = k, we obtain |E ′1| = k. Suppose that V1 contains two adjacent
vertices vi and vj. Then b(p) ≥


zz′∈E′1

(1− pz − pz′)+ (1− pvi − pvj) = k+1. This is not possible, because b(p) ≤ k. Hence,
no two vertices in V1 are adjacent. In other words, V1 is an independent set of size |V1| = k, as desired. This completes the
proof of Theorem 2. �

The problems Restricted Blocking Pairs and Restricted Blocking Value take as input a graph G, an integer k, and a
matchingM of G, and are to decide whether G has a payoff pwith respect toM such that |B(p)| ≤ k or b(p) ≤ k, respectively.

Theorem 3. The Restricted Blocking Value problem is polynomial-time solvable, whereas the Restricted Blocking Pairs
problem is NP-complete even for graphs with unit edge weights.

Proof. We first consider the Restricted Blocking Value problem. Let G = (V , E) be a graph with an edge weighting w. Let
M be a given matching of G. We let VM denote the set of vertices of Gmatched byM . Then we can formulate the Restricted
Blocking Value problem as the linear program

(RBV) min


uv∈E\M

zuv

s.t. pu + pv = w(uv) (uv ∈ M)
pu + pv + zuv ≥ w(uv) (uv ∈ E \M)
pu ≥ 0 (u ∈ VM)
pu = 0 (u ∈ V \ VM)
zuv ≥ 0 (uv ∈ E \M).

Consequently, Restricted Blocking Value can be solved in polynomial time by the ellipsoid method [10].
We now consider the Restricted Blocking Pairs problem. Clearly, this problem is inNP. In order to proveNP-completeness,
we reduce from the 3-Satisfiability problem, which is NP-complete (cf. [8]).

Given an instance of 3-Satisfiability with Boolean variables x1, . . . , xn and clauses C1, . . . , Cm, we construct a graph G
as follows (see Fig. 3).

• For i = 1, . . . , n, construct adjacent vertices xi, xi that correspond to the literals over xi.
• For j = 1, . . . ,m, construct pairwise adjacent vertices u(1)

j , u(2)
j , u(3)

j and pairwise adjacent vertices v
(1)
j , v

(2)
j , v

(3)
j , then

add the edges u(1)
j v

(1)
j , u(2)

j v
(2)
j , u(3)

j v
(3)
j .

• For j = 1, . . . ,m, let Cj = z1 ∨ z2 ∨ z3. Join u(1)
j , u(2)

j , u(3)
j with the vertices that correspond to the literals z1, z2, z3 by

edges respectively.
• Constructm+1 verticesw0, . . . , wm; for s = 0, . . . ,m and i = 1, . . . , n, add the edgeswsxi andwsxi, and for s = 0, . . . ,m

and j = 1, . . . ,m add the edges wsu
(1)
j , wsu

(2)
j , wsu

(3)
j , wsv

(1)
j , wsv

(2)
j , wsv

(3)
j .

Finally, we define

M = {xixi | 1 ≤ i ≤ n} ∪ {u(r)
j v

(r)
j | 1 ≤ i ≤ n, 1 ≤ r ≤ 3},

and k = (n+ 3m)(m+ 1)+m. We prove that the formula φ = C1 ∧ · · · ∧ Cm can be satisfied if and only if there is a payoff
p for G with respect toM with |B(p)| ≤ k.

First suppose that φ can be satisfied, i.e., that the variables x1, . . . , xn are assigned values such that φ = true. We define
a vector p as follows.

• For s = 0, . . . ,m, we set pws = 0.
• For i = 1, . . . , n, we set pxi = 1, pxi = 0 if xi = true, and pxi = 0, pxi = 1 otherwise.
• For j = 1, . . . ,m, ifCj = z1∨z2∨z3, thenwe choose a literal zr = true for some r ∈ {1, 2, 3}, andwe set pu(r)

j
= 0, p

v
(r)
j
= 1

and pu(h)
j
= 1, p

v
(h)
j
= 0 for h ∈ {1, 2, 3} \ {r}.
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Fig. 3. The construction of G. For clarity, only one clause has been displayed, which in this example is the clause Cj = {x1, xi, xn}, and moreover, the edges
incident to wi for i ≠ s have not been drawn. The edges that belong to M are shown by thick lines.

It is straightforward to check that p is a payoff with respect to M . Observe that for all s ∈ {0, . . . ,m} and all ab ∈ M , ex-
actly one of the pairs {ws, a}, {ws, b} is a blocking pair. We also have for all 1 ≤ j ≤ m that {v(h)

j , v
(h′)
j } ∈ B(p) for {h, h′} =

{1, 2, 3}\{r}. Moreover, all other pairs of adjacent vertices are not blocking pairs. Hence, |B(p)| = (n+3m)(m+1)+m = k.
Now suppose that p is a payoff forGwith respect toM such that |B(p)| ≤ k. By definition, pws = 0 for s = 0, . . . ,m. Hence,

for each ab ∈ M , we have at least one of {ws, a}, {ws, b} is in B(p), and if pa < 1 and pb < 1, then both {ws, a} and {ws, b}
are in B(p). This observation together with the inequality |B(p)| ≤ (n+ 3m)(m+ 1)+m yields that for each ab ∈ M , either
pa = 1, pb = 0 or pa = 0, pb = 1. As a consequence, exactly (n+3m)(m+1) blocking pairs include the verticesw0, . . . , wm.

Consider an index j ∈ {1, . . . ,m}. If pu(1)
j
= pu(2)

j
= pu(3)

j
= 1, then p

v
(1)
j
= p

v
(2)
j
= p

v
(3)
j
= 0 and {v(h)

j , v
(h′)
j } ∈ B(p)

for all 1 ≤ h < h′ ≤ 3. Similarly, if pu(1)
j
= pu(2)

j
= pu(3)

j
= 0 and p

v
(1)
j
= p

v
(2)
j
= p

v
(3)
j
= 1, then {u(h)

j , u(h′)
j } ∈ B(p) for all

1 ≤ h < h′ ≤ 3. If there exist indices h, h′ ∈ {1, 2, 3}with h ≠ h′ such that pu(h)
j
= 0 and p

v
(h′)
j
= 0, then exactly one of the

pairs from the set
{u(1)

j , u(2)
j }, {u

(2)
j , u(3)

j }, {u
(1)
j , u(3)

j }, {v
(1)
j , v

(2)
j }, {v

(2)
j , v

(3)
j }, {v

(1)
j , v

(3)
j }


is a blocking pair. Since G can have only k − (n + 3m)(m + 1) = m blocking pairs of this type, we conclude that for all
j ∈ {1, . . . ,m}, there is an index h ∈ {1, 2, 3} such that pu(h)

j
= 0, and moreover, if xi or xi is adjacent to u(h)

j , then {xi, u
(h)
j }

or {xi, u
(h)
j }, respectively, is not a blocking pair.

Now for i = 1, . . . , n, we set the variable xi = true if pxi = 1, and xi = false otherwise. Consider a clause Cj = z1∨ z2∨ z3.
There is an index h ∈ {1, 2, 3} such that pu(h)

j
= 0. First suppose that zh = xi for some 1 ≤ i ≤ n. Then vertex u(h)

j is adjacent

to the vertex xi, and {xi, u
(h)
j } /∈ B(p). Then pxi = 1 and the variable xi = true. Now suppose that zh = xi for some 1 ≤ i ≤ n.

Then vertex u(h)
j is adjacent to the vertex xi and pxi = 1, i.e., the variable xi = false. In both cases Cj contains a literal with

the value true. It follows that φ = true. This completes the proof of Theorem 3. �

4. Future work

Very recently, Bock, Köneman, Peis and Sanità (personal communication, August 2012) announced that Blocking Pairs
isNP-complete even for graphs with unit edge weights. TheirNP-hardness reduction does not work for the Blocking Value
problem. Hence, we finish our paper by stating the following open problem. What is the computational complexity of
Blocking Value restricted to input graphs with unit edge weights?
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