Determining $L(2,1)$-Span in Polynomial Space

Konstanty Junosza-Szaniawski, Paweł Rzążewski
\{k.szaniawski, p.rzazewski\}@mini.pw.edu.pl
Warsaw University of Technology
Faculty of Mathematics and Information Science
Pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

A k - $L(2,1)$-labeling of a graph is a function from its vertex set into the set $\{0, \ldots, k\}$, such that the labels assigned to adjacent vertices differ by at least 2 , and labels assigned to vertices of distance 2 are different. It is known that finding the smallest k admitting the existence of a $k-L(2,1)$ labeling of any given graph is NP-Complete.

In this paper we present an algorithm for this problem, which works in time $O\left((9+\epsilon)^{n}\right)$ and polynomial memory, where ϵ is an arbitrarily small positive constant. This is the first exact algorithm for $L(2,1)$-labeling problem with time complexity $O\left(c^{n}\right)$ for some constant c and polynomial space complexity.

1 Introduction

A frequency assignment problem is the problem of assigning channels of frequency (represented by nonnegative integers) to each radio transmitter, so that no transmitters interfere with each other. Hale [12] formulated this problem in terms of so-called T-coloring of graphs.

According to [11, Roberts was the first who proposed a modification of this problem, which is called an $L(2,1)$-labeling problem. It asks for such a labeling with nonnegative integer labels, that no vertices in distance 2 in a graph have the same label and labels of adjacent vertices differ by at least 2 .

A k - $L(2,1)$-labeling problem is to determine if there exists an $L(2,1)$-labeling of a given graph with no label greater than k. By $\lambda(G)$ we denote an $L(2,1)$ span of G, which is the smallest value of k that guarantees the existence of a k - $L(2,1)$-labeling of G.

The problem of $L(2,1)$-labeling has been extensively studied (see [3, 7, 10 20] for some surveys on the problem and its generalizations). A considerable attention has been given to bounding the value of $\lambda(G)$ by some function of G.

Griggs and Yeh [11] proved that $\lambda(G) \leq \Delta^{2}+\Delta^{1}$ and conjectured, that

[^0]$\lambda(G) \leq \Delta^{2}$ for every graph G. There are several results supporting this conjecture, for example Gonçalves [9] proved that $\lambda(G) \leq \Delta^{2}+\Delta-2$ for graphs with $\Delta \geq 3$. Havet et al. [13] have settled the conjecture in affirmative for graphs with $\Delta \geq 10^{69}$. For graphs with smaller Δ, the conjecture still remains open. It is interesting to note that the Petersen and Hoffmann-Singleton graphs are the only two known graphs with maximum degree greater than 2 , for which this bound is tight.

The second main branch of research in $L(2,1)$-labeling was pointed to analyzing the problem from the complexity point of view. For $k \geq 4$, the $k-L(2,1)$ labeling problem was proven to be NP-complete by Fiala et al. 6] (for $k \leq 3$ the problem is polynomial). It remains NP-complete even for regular graphs (see Fiala and Kratochvíl [8]), planar graphs (see Eggeman et al. [4]) or series-parallel graphs (see Fiala et al. [5]).

An exact algorithm for the so called Channel Assignment Problem, presented by Král' [19], implies an $O^{*}\left(4^{n}\right) \square^{2}$ algorithm for the $L(2,1)$-labeling problem. Havet et al. 14 presented an algorithm for computing $L(2,1)(G)$, which works in time $O^{*}\left(15^{\frac{n}{2}}\right)=O^{*}\left(3.8730^{n}\right)$. This algorithm has been improved [17, 18, achieving a complexity bound $O^{*}\left(3.2361^{n}\right)$. Recently, a new algorithm for $L(2,1)$-labeling with a complexity bound $O^{*}\left(2.6488^{n}\right)$ has been presented [16].

All algorithms mentioned above are based on dynamic programming approach and use exponential memory. Havet et al. [14] presented a branching algorithm for k-L $(2,1)$-labeling problem with a time complexity $O^{*}\left((k-2.5)^{n}\right)$ and polynomial space complexity. Until now, no algorithm for $L(2,1)$-labeling with time complexity $O\left(c^{n}\right)$ for some constant c and polynomial space complexity has been presented. However, there are such algorithms for a related problem of classical graph coloring. The first one, with time complexity $O\left(5.283^{n}\right)$, was shown by Bodleander and Kratsch [2]. The best currently known algorithm for graph coloring with polynomial space complexity is by Björklund et al. [1], using the inclusion-exclusion principle. Its time complexity is $O\left(2.2461^{n}\right)$.

In this paper we present the first exact algorithm for the $L(2,1)$-labeling problem with polynomially bounded space complexity. The algorithm works in time $O\left((9+\epsilon)^{n}\right)$ (where ϵ is an arbitrarily small positive constant) and is based on a divide and conquer approach.

2 Preliminaries

Throughout the paper we consider finite undirected graphs without multiple edges or loops. The vertex set (edge set) of a graph G is denoted by $V(G)$ ($E(G)$, respectively).

Let $\operatorname{dist}_{G}(x, y)$ be the distance between vertices x and y in a graph G, which is the length of a shortest path joining x and y.

A set $X \subseteq V(G)$ is a 2-packing in G if and only if all its vertices are in distance at least 3 from each other $\left(\forall x, y \in X \operatorname{dist}_{G}(x, y)>2\right)$.

[^1]Let $N(v)=\{u \in V(G):(u, v) \in E(G)\}$ denote the set of neighbors (the neighborhood) of a vertex v. The set $N[v]=N(v) \cup\{v\}$ denotes the closed neighborhood of v. The neighborhood of a set X of vertices in G is denoted by $N(X)=\bigcup_{v \in X} N(v)$ and its closed neighborhood is denoted by $N[X]=$ $N(X) \cup X$.

For a subset $X \subseteq V(G)$, we denote the subgraph of G induced by the vertices in X by $G[X]$. A square of a graph $G=(V, E)$ is the graph $G^{2}=(V,\{u v \in$ $\left.\left.V^{2}: \operatorname{dist}_{G}(u, v) \leq 2\right\}\right)$.
Definition 1. For a graph G and sets $Y, Z, M \subseteq V(G)$, a $(k-1)-L_{Z}^{M}(Y)$ labeling of a graph G is a function $c: Y \rightarrow\{0,1, \ldots, k-1\}$, such that $c^{-1}(0) \cap$ $Z=c^{-1}(k-1) \cap M=\emptyset$, and for every $v, u \in Y$:

$$
\begin{aligned}
& |c(v)-c(u)| \geq 2 \text { if } \operatorname{dist}_{G}(u, v)=1 \\
& |c(v)-c(u)| \geq 1 \text { if } \operatorname{dist}_{G}(u, v)=2
\end{aligned}
$$

A function $c: Y \rightarrow \mathbb{N}$ is an $L_{Z}^{M}(Y)$-labeling of G if there exists $k \in \mathbb{N}$ such that c is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G
Definition 2. For $Y, Z, M \subseteq V(G)$ let $\Lambda_{Z}^{M}(Y, G)$ denote the smallest value of k admitting the existence of $(k-1)-L_{Z}^{M}(Y)$-labeling of G. We define $\Lambda_{Z}^{M}(\emptyset, G) \stackrel{\text { def. }}{=}$. 0 for all graphs G and sets $Z, M \subseteq V(G)$.

Any $(k-1)-L_{Z}^{M}(Y)$-labeling of G with $k=\Lambda_{Z}^{M}(Y, G)$ is called optimal.
We observe that even if c is an optimal $L_{Z}^{M}(Y)$-labeling of G, then any of the sets $c^{-1}(0)$ and $c^{-1}\left(\Lambda_{Z}^{M}(Y, G)-1\right)$ may be empty. In the extremal case, if $Z=M=Y$, then $c^{-1}(0)=c^{-1}(k-1)=\emptyset$ for all k and feasible $(k-1)-L_{Z}^{M}(Y)-$ labelings c of G.

Notice that $\Lambda_{\emptyset}^{\emptyset}(V(G), G)=\lambda(G)+1$ for every graph G.
Definition 3. For a graph G, a G-correct partition of a set $Y \subseteq V(G)$ is a triple (A, X, B), such that:

1. The sets $A, X, B \subseteq Y$ form a partition of Y
2. X is a nonempty 2-packing in G
3. $|A| \leq \frac{|Y|}{2}$ and $|B| \leq \frac{|Y|}{2}$

3 Algorithm

In this section we present a recursive algorithm for computing $\Lambda_{Z}^{M}(Y, G)$ for any graph G and sets $Y, Z, M \subseteq V(G)$. It is then used to find an $L(2,1)$-span a graph G.

The algorithm is based on the divide and conquer approach. First, the algorithm exhaustively check if $\Lambda_{Z}^{M}(Y, G) \leq 3$. If not, the set Y is partitioned into three sets A, X, B, which form a G-correct partition of Y. The sets A and B are then labeled recursively.

The labeling of the whole Y is constructed from the labelings found in the recursive calls. The sets of labels used on the sets A and B are separated from each other by the label used for the 2 -packing X. This allows to solve the subproblems for A and B independently from each other.

Iterating over all G-correct partitions of Y, the algorithm computes the minimum k admitting the existence of a $(k-1)-L_{Z}^{M}(Y)$-labeling of G, which is by definition $\Lambda_{Z}^{M}(Y, G)$.

```
Algorithm 1: Find-Lambda
    Input : Graph \(G\), Sets \(Y, Z, M \subseteq V(G)\)
    if \(Y=\emptyset\) then return 0
    foreach \(c: Y \rightarrow\{0,1,2\}\) do
        for \(k \leftarrow 1\) to 3 do
                if \(c\) is a \((k-1)-L_{Z}^{M}(Y)\)-labeling of \(G\) then return \(k\)
    \(k \leftarrow \infty\)
    foreach \(G\)-correct partition \((A, X, B)\) of \(Y\) do
        if \(A \neq \emptyset\) and \(B \neq \emptyset\) then \(k_{X} \leftarrow 1\)
        if \(A=\emptyset\) and \(X \cap Z=\emptyset\) then \(k_{X} \leftarrow 1\)
        if \(A=\emptyset\) and \(X \cap Z \neq \emptyset\) then \(k_{X} \leftarrow 2\)
        if \(B=\emptyset\) and \(X \cap M=\emptyset\) then \(k_{X} \leftarrow 1\)
        if \(B=\emptyset\) and \(X \cap M \neq \emptyset\) then \(k_{X} \leftarrow 2\)
        \(k_{A} \leftarrow\) Find-Lambda \((G, A, Z, N(X))\)
        \(k_{B} \leftarrow\) Find-Lambda \((G, B, N(X), M)\)
        \(k \leftarrow \min \left(k, k_{A}+k_{X}+k_{B}\right)\)
    return \(k\)
```

Lemma 1. For a graph G and sets $Y, Z, M \subseteq V(G)$, if Y is a 2-packing in G, then $\Lambda_{Z}^{M}(Y, G) \leq 3$.

Proof. The labeling $c: Y \rightarrow\{0,1,2\}$ such that $c(v)=1$ for every $v \in Y$ is a $2-L_{Z}^{M}(Y)$ labeling of G.

Theorem 1. For any graph G and sets $Y, Z, M \subseteq V(G)$, the algorithm call Find-Lambda (G, Y, Z, M) returns $\Lambda_{Z}^{M}(Y, G)$.

Proof. If $Y=\emptyset$, the correct result is given in the line (by the definition of $\left.\Lambda_{Z}^{M}(\emptyset, G)\right)$. If $\Lambda_{Z}^{M}(Y, G) \leq 3$, the result is found by the exhaustive search in the line 4. Notice that if $|Y| \leq 1$, then by Lemma $1 \Lambda_{Z}^{M}(Y, G) \leq 3$.

Assume that the statement is true for all graphs G^{\prime} and all sets $Y^{\prime}, Z^{\prime}, M^{\prime} \subseteq$ $V\left(G^{\prime}\right)$, such that $\left|Y^{\prime}\right|<n$, where $n \geq 1$.

Let G be a graph and Y, Z, M be subsets of $V(G)$ such that $|Y|=n$. We may assume that $\Lambda_{Z}^{M}(Y, G)>3$. Let k be the value returned by the algorithm call Find-Lambda (G, Y, Z, M).

First we prove that $k \geq \Lambda_{Z}^{M}(Y, G)$, i.e. there exists a $(k-1)-L_{Z}^{M}(Y)$-labeling of G. Let us consider the G-correct partition (A, X, B) of Y, for which the value of k was set in the line 14. Since each of the sets A and B has less than n
vertices, by the inductive assumption there exists a $\left(k_{A}-1\right)-L_{Z}^{N(X)}(A)$-labeling c_{A} of G and a $\left(k_{B}-1\right)-L_{N(X)}^{M}(B)$-labeling c_{B} of G.

One of the following cases occurs:

1. If $A \neq \emptyset$ and $B \neq \emptyset$, then in the line 7 the value of k_{X} is set to 1 and thus $k=k_{A}+k_{B}+1$. The labeling c of Y, defined as follows:

$$
c(v)= \begin{cases}c_{A}(v) & \text { if } v \in A \\ k_{A} & \text { if } v \in X \\ k_{A}+1+c_{B}(v) & \text { if } v \in B\end{cases}
$$

is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G.
2. If $A=\emptyset$ and $X \cap Z=\emptyset$, then in the line 8 the value of k_{X} is set to 1 and thus $k=k_{B}+1$. The labeling c of Y, defined as follows:

$$
c(v)= \begin{cases}0 & \text { if } v \in X \\ c_{B}(v)+1 & \text { if } v \in B\end{cases}
$$

is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G.
3. If $A=\emptyset$ and $X \cap Z \neq \emptyset$, then in the line 9 the value of k_{X} is set to 2 and thus $k=k_{B}+2$. The labeling c of Y, defined as follows:

$$
c(v)= \begin{cases}1 & \text { if } v \in X \\ c_{B}(v)+2 & \text { if } v \in B\end{cases}
$$

is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G.
4. If $B=\emptyset$ and $X \cap M=\emptyset$, then in the line 10 the value of k_{X} is set to 1 and thus $k=k_{A}+1$. The labeling c of Y, defined as follows:

$$
c(v)= \begin{cases}c_{A}(v) & \text { if } v \in A \\ k_{A} & \text { if } v \in X\end{cases}
$$

is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G.
5. If $B=\emptyset$ and $X \cap M \neq \emptyset$, then in line 11 the value of k_{X} is set to 2 and thus $k=k_{A}+2$. The labeling c of Y, defined as follows:

$$
c(v)= \begin{cases}c_{A}(v) & \text { if } v \in A \\ k_{A} & \text { if } v \in X\end{cases}
$$

is a $(k-1)-L_{Z}^{M}(Y)$-labeling of G (the label $k_{A}+1$ is counted as used, but no vertex is labeled with it).

The case when $X=\emptyset$ is not possible, since the partition (A, X, B) is G correct. The case when $A=B=\emptyset$ is not possible, since then $Y=X$ is a 2-packing in G and by the Lemma $1 \Lambda_{Z}^{N}(Y, G) \leq 3$, so the algorithm would finish in the line 4.

Now let us show that $k \leq \Lambda_{Z}^{M}(Y, G)$. Let c be an optimal $L_{Z}^{M}(Y)$-labeling of G. Let l be the smallest number, such that $\left|c^{-1}(0) \cup c^{-1}(1) \cup \cdots \cup c^{-1}(l)\right| \geq \frac{|Y|}{2}$.

Let $A=c^{-1}(0) \cup \cdots \cup c^{-1}(l-1), X=c^{-1}(l)$ and $B=c^{-1}(l+1) \cup \cdots \cup$ $c^{-1}\left(\Lambda_{Z}^{M}(Y, G)-1\right)$. Notice that X is a 2 -packing and $X \neq \emptyset$ by the choice of l. Hence we observe that the partition (A, X, B) is G-correct, so the algorithm considers it in one of the iterations of the main loop.

Let $c_{A}: A \rightarrow \mathbb{N}$ be a function such that $c_{A}(v)=c(v)$ for every $v \in A$ and $c_{B}: B \rightarrow \mathbb{N}$ be a function such that $c_{B}(v)=c(v)-(l+1)$ for every $v \in B$. Notice that c_{A} is an optimal $L_{Z}^{N(X)}(A)$-labeling of G and c_{B} is an optimal $L_{N(X)}^{M}(B)$-labeling of G, because otherwise c would not be an optimal.

Hence by the inductive assumption the call in the line 12 returns the number $k_{A} \leq \Lambda_{Z}^{N(X)}(A, G)$ and the call in the line 13 returns the number $k_{B} \leq$ $\Lambda_{N(X)}^{M}(B, G)$.

Let k^{\prime} be the value of $k_{A}+k_{X}+k_{B}$ in the iteration of the main loop when partition (A, X, B) is considered.

Let us consider the following cases:

1. $A, B \neq \emptyset$. In such a case the algorithm Find-Lambda sets $k_{X}=1$ in the line 7 and

$$
\Lambda_{Z}^{M}(Y, G)=\Lambda_{Z}^{N(X)}(A, G)+\underbrace{1}_{c^{-1}(l)=X}+\Lambda_{Z}^{N(X)}(B, G) \geq k_{A}+k_{X}+k_{B}=k^{\prime}
$$

2. $A=\emptyset$ and $l=0$. In such a case $k_{A}=0$ and $X \cap Z=\emptyset$ and the algorithm Find-Lambda sets $k_{X}=1$ in the line 8 and

$$
\Lambda_{Z}^{M}(Y, G)=\underbrace{\Lambda_{Z}^{N(X)}(A, G)}_{=0}+\underbrace{1}_{c^{-1}(0)=X}+\Lambda_{Z}^{N(X)}(B, G) \geq k_{A}+k_{X}+k_{B}=k^{\prime}
$$

3. $A=\emptyset$ and $l=1$. In such a case $k_{A}=0$ and $X \cap Z \neq \emptyset$. Otherwise c^{\prime} defined by $c^{\prime}(v)=c(v)-1$ for every $v \in Y$ would be a $L_{Z}^{M}(Y)$-labeling of G using less labels than the optimal $L_{Z}^{M}(Y)$-labeling c of G - contradiction. The algorithm Find-Lambda sets $k_{X}=2$ in the line 9 and $\Lambda_{Z}^{M}(Y, G)=\underbrace{\Lambda_{Z}^{N(X)}(A, G)}_{=0}+\underbrace{1}_{c^{-1}(0)=\emptyset}+\underbrace{1}_{c^{-1}(1)=X}+\Lambda_{Z}^{N(X)}(B, G) \geq k_{A}+k_{X}+$ $k_{B}=k^{\prime}$.
4. $B=\emptyset$ and $l=\Lambda_{Z}^{M}(Y, G)-1$. In such a case $k_{B}=0$ and $X \cap M=\emptyset$, and the algorithm Find-Lambda sets $k_{X}=1$ in the line 10 and
$\Lambda_{Z}^{M}(Y, G)=\Lambda_{Z}^{N(X)}(A, G)+\underbrace{1}_{c^{-1}\left(\Lambda_{M}^{N}(Y, G)-1\right)=X}+\underbrace{\Lambda_{Z}^{N(X)}(B, G)}_{=0} \geq k_{A}+k_{X}+$ $k_{B}=k^{\prime}$.
5. $B=\emptyset$ and $l=\Lambda_{Z}^{M}(Y, G)-2$. In such a case $k_{B}=0$ and $X \cap M \neq \emptyset$ and the algorithm Find-Lambda sets $k_{X}=2$ in the line 11 and
$\Lambda_{Z}^{M}(Y, G)=\Lambda_{Z}^{N(X)}(A, G)+\underbrace{1}_{c^{-1}\left(\Lambda_{M}^{N}(Y, G)-2\right)=X}+\underbrace{1}_{c^{-1}\left(\Lambda_{M}^{N}(Y, G)\right)=\emptyset}+\underbrace{\Lambda_{Z}^{N(X)}(B, G)}_{=0} \geq$
$k_{A}+k_{X}+k_{B}=k^{\prime}$.

Since those are all possible cases and k is the minimum over values of k^{\prime} for all correct partitions, clearly $k \leq \Lambda_{Z}^{M}(Y, G)$.

Observation 1. By the definition of $\Lambda_{Z}^{M}(Y, G)$, the algorithm call Find-Lambda $(G, V(G), \emptyset, \emptyset)$ returns $\lambda(G)+1$.

Lemma 2. Let G be a graph on n vertices, $Y, Z, M \subseteq V(G)$ and let $y=|Y|$. If G^{2} is computed in advance, the algorithm Find-Lambda finds $\Lambda_{Z}^{M}(Y, G)$ in the time $O\left(C^{\log y} y^{3 \log y} 9^{y}\right)$ and polynomial space, where C is a positive constant.

Proof. Having G^{2} computed, checking if any two vertices in $V(G)$ are in distance at most 2 from each other in G takes a constant time. Hence verifying if a given $X \subseteq Y$ is a 2-packing in G can be performed in the time $O\left(y^{2}\right)$. Moreover, we can check if a given function $c: Y \rightarrow \mathbb{N}$ is an $L_{Z}^{M}(Y)$-labeling of G in the time $O\left(y^{2}\right)$.

Let $y=|Y|$ be the measure of the size of the problem. Let $T(y)$ denote the running time of the algorithm Find-Lambda applied to a graph G and $Y, Z, M \subseteq V(G)$.

Ale algorithm Find-Lambda first checks in constant time if $Y=\emptyset$. Then it exhaustively checks if there exists a $(k-1)-L_{Z}^{M}(Y)$-labeling of G for $k \in\{1,2,3\}$. There are 3^{y} functions $c: Y \rightarrow\{0,1,2\}$, so this step is performed in the time $O\left(y^{2} \cdot 3^{y}\right)$.

Then for every G-correct partition of Y the algorithm is called recursively for two sets of size at most $\frac{y}{2}$. Notice that there are at most 3^{y} considered partitions. Checking if a partition of Y is G-correct can be performed in time $O\left(y^{2}\right)$. Hence we obtain the following inequality for the complexity $\left(C_{1}\right.$ and C_{2} are positive constants):

$$
T(y) \leq C_{1} y^{2} 4^{y}+C_{2} y^{3} 3^{y} 2 \cdot T\left(\frac{y}{2}\right)
$$

Let $C=\max \left(C_{1}, 2 C_{2}\right)$, then

$$
T(y) \leq C y^{2} 4^{y}+C y^{3} 3^{y} \cdot T\left(\frac{y}{2}\right)
$$

It is not difficult to verify that $T(y) \leq D \cdot C^{\log y} y^{3 \log y} 9^{y}=O\left(C^{\log y} y^{3 \log y} g^{y}\right)$, where D is a positive constant.

The space complexity of the algorithm is clearly polynomial.
Theorem 2. For a graph G on n vertices $\lambda(G)$ can be found in the time $O((9+$ $\epsilon)^{n}$) and polynomial space, where ϵ is an arbitrarily small positive constant.

Proof. The square of a graph G can be found in the time $O\left(n^{3}\right)$. By the Observation 1 and Lemma 2, the algorithm Find-Lambda applied to $G, Y=V(G)$ and $Z=M=\emptyset$ finds $\Lambda_{\emptyset}^{\emptyset}(V(G), G)=\lambda(G)-1$ in the time $O\left(C^{\log n} n^{3 \log n} 9^{n}\right)=$ $O\left((9+\epsilon)^{n}\right)$ and polynomial space.

Remark

We have just learned that results similar to those included in this paper were independently obtained (but not published) by Havet, Klazar, Kratochvíl, Kratsch and Liedloff [15].

References

[1] Björklund, A., Husfeldt, T., Koivisto, M.: Set Partitioning via Inclusion-Exclusion. SIAM J. Comput. 39 (2009), pp. 546-563
[2] Bodlaender, H.L., Kratsch D: An exact algorithm for graph coloring with polynomial memory. $U U-C S$ 2006-015 (2006)
[3] Calamoneri, T.: The $L(h, k)$-Labelling Problem: A Survey and Annotated Bibliography. Computer Journal 49 (2006), pp. 585-608
[4] Eggeman, N., Havet, F., Noble, S.: k - $L(2,1)$-Labelling for Planar Graphs is NP-Complete for $k \geq 4$. Discrete Applied Mathematics 158 (2010), pp. 1777-1788.
[5] Fiala, J., Golovach, P., Kratochvíl, J.: Distance Constrained Labelings of Graphs of Bounded Treewidth. Proceedings of ICALP 2005, LNCS 3580 (2005), pp. 360-372.
[6] Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of入-labelings. Discrete Applied Mathematics 113 (2001), pp. 59-72.
[7] Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms structure, complexity, and applications. Computer Science Review 2 (2008), pp. 97-111.
[8] Fiala, J., Kratochvíl, J.: On the Computational Complexity of the $L(2,1)$-Labeling Problem for Regular Graphs Proceedings of ICTCS 2005, LNCS 3703 (2005), pp. 228-236
[9] Gonçalves, D. : On the L(p; 1)-labelling of graphs. Discrete Mathematics 308 (2008), pp. 1405-1414
[10] Griggs, J. R., KráL, D.: Graph labellings with variable weights, a survey. Discrete Applied Mathematics 157 (2009), pp. 2646-2658.
[11] Griggs, J. R., Yeh, R. K.: Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5 (1992), pp. 586-595.
[12] Hale, W.K.: Frequency assignemnt: Theory and applications. Proc. IEEE 68 (1980), pp. 1497-1514
[13] Havet, F., Reed, B., Sereni, J.-S.: L(2, 1)-labellings of graphs. Proceedings of SODA 2008 (2008), pp. 621-630.
[14] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for $L(2,1)$-labeling of graphs. Algorithmica 59 (2011), pp. 169-194.
[15] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: private communication
[16] Junosza-Szaniawski K., Kratochvíl J., Liedloff M., Rossmanith P., Rzążewski P.: Fast Exact Algorithm for L(2,1)-Labeling of Graphs. Proceedings of TAMC 2011, LNCS 6648 (to appear)
[17] Junosza-Szaniawski K., Rzążewski P.: On Improved Exact Algorithms for $L(2,1)$-Labeling of Graphs. Proceedings of IWOCA 2010, LNCS 6460 (2011), pp. 34-37
[18] Junosza-Szaniawski K., RzążEwski P.: On the Complexity of Exact Algorithm for $L(2,1)$-labeling of Graphs. Information Processing Letters (to appear). Preliminary version in KAM-DIMATIA Preprint Series 2010992
[19] D. KRÁL': Channel assignment problem with variable weights. SIAM Journal on Discrete Mathematics 20 (2006), pp. 690-704.
[20] Yeh, R.: A survey on labeling graphs with a condition at distance two. Discrete Mathematics 306(2006), pp. 1217-1231.

[^0]: ${ }^{1} \Delta$ denotes the largest vertex degree in a graph

[^1]: ${ }^{2}$ In the O^{*} notation we omit polynomially bounded terms.

