
ar
X

iv
:1

10
4.

45
06

v1
 [

cs
.D

M
]

 2
2

A
pr

 2
01

1

Determining L(2, 1)-Span in Polynomial Space

Konstanty Junosza-Szaniawski, Paweł Rzążewski

{k.szaniawski, p.rzazewski}@mini.pw.edu.pl

Warsaw University of Technology

Faculty of Mathematics and Information Science

Pl. Politechniki 1 , 00-661 Warsaw, Poland

Abstract

A k-L(2, 1)-labeling of a graph is a function from its vertex set into the

set {0, . . . , k}, such that the labels assigned to adjacent vertices differ by

at least 2, and labels assigned to vertices of distance 2 are different. It is

known that finding the smallest k admitting the existence of a k-L(2, 1)-
labeling of any given graph is NP-Complete.

In this paper we present an algorithm for this problem, which works in

time O((9 + ǫ)n) and polynomial memory, where ǫ is an arbitrarily small

positive constant. This is the first exact algorithm for L(2, 1)-labeling

problem with time complexity O(cn) for some constant c and polynomial

space complexity.

1 Introduction

A frequency assignment problem is the problem of assigning channels of fre-
quency (represented by nonnegative integers) to each radio transmitter, so that
no transmitters interfere with each other. Hale [12] formulated this problem in
terms of so-called T -coloring of graphs.

According to [11], Roberts was the first who proposed a modification of this
problem, which is called an L(2, 1)-labeling problem. It asks for such a labeling
with nonnegative integer labels, that no vertices in distance 2 in a graph have
the same label and labels of adjacent vertices differ by at least 2.

A k-L(2, 1)-labeling problem is to determine if there exists an L(2, 1)-labeling
of a given graph with no label greater than k. By λ(G) we denote an L(2, 1)-
span of G, which is the smallest value of k that guarantees the existence of a
k-L(2, 1)-labeling of G.

The problem of L(2, 1)-labeling has been extensively studied (see [3, 7, 10,
20] for some surveys on the problem and its generalizations). A considerable
attention has been given to bounding the value of λ(G) by some function of G.

Griggs and Yeh [11] proved that λ(G) ≤ ∆2 + ∆ 1 and conjectured, that

1∆ denotes the largest vertex degree in a graph

1

http://arxiv.org/abs/1104.4506v1

λ(G) ≤ ∆2 for every graph G. There are several results supporting this conjec-
ture, for example Gonçalves [9] proved that λ(G) ≤ ∆2 +∆− 2 for graphs with
∆ ≥ 3. Havet et al. [13] have settled the conjecture in affirmative for graphs
with ∆ ≥ 1069. For graphs with smaller ∆, the conjecture still remains open.
It is interesting to note that the Petersen and Hoffmann-Singleton graphs are
the only two known graphs with maximum degree greater than 2, for which this
bound is tight.

The second main branch of research in L(2, 1)-labeling was pointed to ana-
lyzing the problem from the complexity point of view. For k ≥ 4, the k-L(2, 1)-
labeling problem was proven to be NP-complete by Fiala et al. [6] (for k ≤ 3 the
problem is polynomial). It remains NP-complete even for regular graphs (see Fi-
ala and Kratochvíl [8]), planar graphs (see Eggeman et al. [4]) or series-parallel
graphs (see Fiala et al. [5]).

An exact algorithm for the so called Channel Assignment Problem, pre-
sented by Král’ [19], implies an O∗(4n) 2 algorithm for the L(2, 1)-labeling
problem. Havet et al. [14] presented an algorithm for computing L(2, 1)(G),
which works in time O∗(15

n

2) = O∗(3.8730n). This algorithm has been im-
proved [17, 18], achieving a complexity bound O∗(3.2361n). Recently, a new
algorithm for L(2, 1)-labeling with a complexity bound O∗(2.6488n) has been
presented [16].

All algorithms mentioned above are based on dynamic programming ap-
proach and use exponential memory. Havet et al. [14] presented a branching
algorithm for k-L(2, 1)-labeling problem with a time complexity O∗((k− 2.5)n)
and polynomial space complexity. Until now, no algorithm for L(2, 1)-labeling
with time complexity O(cn) for some constant c and polynomial space complex-
ity has been presented. However, there are such algorithms for a related problem
of classical graph coloring. The first one, with time complexity O(5.283n), was
shown by Bodleander and Kratsch [2]. The best currently known algorithm
for graph coloring with polynomial space complexity is by Björklund et al. [1],
using the inclusion-exclusion principle. Its time complexity is O(2.2461n).

In this paper we present the first exact algorithm for the L(2, 1)-labeling
problem with polynomially bounded space complexity. The algorithm works in
time O((9+ ǫ)n) (where ǫ is an arbitrarily small positive constant) and is based
on a divide and conquer approach.

2 Preliminaries

Throughout the paper we consider finite undirected graphs without multiple
edges or loops. The vertex set (edge set) of a graph G is denoted by V (G)
(E(G), respectively).

Let distG(x, y) be the distance between vertices x and y in a graph G, which
is the length of a shortest path joining x and y.

A set X ⊆ V (G) is a 2-packing in G if and only if all its vertices are in
distance at least 3 from each other (∀x, y ∈ X distG(x, y) > 2).

2In the O∗ notation we omit polynomially bounded terms.

2

Let N(v) = {u ∈ V (G) : (u, v) ∈ E(G)} denote the set of neighbors (the
neighborhood) of a vertex v. The set N [v] = N(v) ∪ {v} denotes the closed
neighborhood of v. The neighborhood of a set X of vertices in G is denoted
by N(X) =

⋃

v∈X N(v) and its closed neighborhood is denoted by N [X] =
N(X) ∪X .

For a subset X ⊆ V (G), we denote the subgraph of G induced by the vertices
in X by G[X]. A square of a graph G = (V,E) is the graph G2 = (V, {uv ∈
V 2 : distG(u, v) ≤ 2}).

Definition 1. For a graph G and sets Y, Z,M ⊆ V (G), a (k − 1)-LM
Z (Y)-

labeling of a graph G is a function c : Y → {0, 1, . . . , k − 1}, such that c−1(0) ∩
Z = c−1(k − 1) ∩M = ∅, and for every v, u ∈ Y :

|c(v) − c(u)| ≥ 2 if distG(u, v) = 1

|c(v)− c(u)| ≥ 1 if distG(u, v) = 2.

A function c : Y → N is an LM
Z (Y)-labeling of G if there exists k ∈ N such that

c is a (k − 1)-LM
Z (Y)-labeling of G

Definition 2. For Y, Z,M ⊆ V (G) let ΛM
Z (Y,G) denote the smallest value of k

admitting the existence of (k−1)-LM
Z (Y)-labeling of G. We define ΛM

Z (∅, G)
def.
=

0 for all graphs G and sets Z,M ⊆ V (G).

Any (k − 1)-LM
Z (Y)-labeling of G with k = ΛM

Z (Y,G) is called optimal.
We observe that even if c is an optimal LM

Z (Y)-labeling of G, then any of
the sets c−1(0) and c−1(ΛM

Z (Y,G)− 1) may be empty. In the extremal case, if
Z = M = Y , then c−1(0) = c−1(k−1) = ∅ for all k and feasible (k−1)-LM

Z (Y)-
labelings c of G.

Notice that Λ∅
∅(V (G), G) = λ(G) + 1 for every graph G.

Definition 3. For a graph G, a G-correct partition of a set Y ⊆ V (G) is a
triple (A,X,B), such that:

1. The sets A,X,B ⊆ Y form a partition of Y

2. X is a nonempty 2-packing in G

3. |A| ≤ |Y |
2 and |B| ≤ |Y |

2

3 Algorithm

In this section we present a recursive algorithm for computing ΛM
Z (Y,G) for

any graph G and sets Y, Z,M ⊆ V (G). It is then used to find an L(2, 1)-span a
graph G.

The algorithm is based on the divide and conquer approach. First, the
algorithm exhaustively check if ΛM

Z (Y,G) ≤ 3. If not, the set Y is partitioned
into three sets A,X,B, which form a G-correct partition of Y . The sets A and
B are then labeled recursively.

3

The labeling of the whole Y is constructed from the labelings found in the
recursive calls. The sets of labels used on the sets A and B are separated from
each other by the label used for the 2-packing X . This allows to solve the
subproblems for A and B independently from each other.

Iterating over all G-correct partitions of Y , the algorithm computes the
minimum k admitting the existence of a (k − 1)-LM

Z (Y)-labeling of G, which is
by definition ΛM

Z (Y,G).

Algorithm 1: Find-Lambda

Input : Graph G, Sets Y, Z,M ⊆ V (G)
1 if Y = ∅ then return 0
2 foreach c : Y → {0, 1, 2} do
3 for k ← 1 to 3 do
4 if c is a (k − 1)-LM

Z (Y)-labeling of G then return k

5 k ←∞
6 foreach G-correct partition (A,X,B) of Y do
7 if A 6= ∅ and B 6= ∅ then kX ← 1
8 if A = ∅ and X ∩ Z = ∅ then kX ← 1
9 if A = ∅ and X ∩ Z 6= ∅ then kX ← 2

10 if B = ∅ and X ∩M = ∅ then kX ← 1
11 if B = ∅ and X ∩M 6= ∅ then kX ← 2
12 kA ← Find-Lambda(G,A,Z,N(X))
13 kB ← Find-Lambda(G,B,N(X),M)
14 k ← min(k, kA + kX + kB)

15 return k

Lemma 1. For a graph G and sets Y, Z,M ⊆ V (G), if Y is a 2-packing in G,
then ΛM

Z (Y,G) ≤ 3.

Proof. The labeling c : Y → {0, 1, 2} such that c(v) = 1 for every v ∈ Y is a
2-LM

Z (Y) labeling of G.

Theorem 1. For any graph G and sets Y, Z,M ⊆ V (G), the algorithm call
Find-Lambda(G, Y, Z,M) returns ΛM

Z (Y,G).

Proof. If Y = ∅, the correct result is given in the line 1 (by the definition of
ΛM
Z (∅, G)). If ΛM

Z (Y,G) ≤ 3, the result is found by the exhaustive search in the
line 4. Notice that if |Y | ≤ 1, then by Lemma 1 ΛM

Z (Y,G) ≤ 3.
Assume that the statement is true for all graphs G′ and all sets Y ′, Z ′,M ′ ⊆

V (G′), such that |Y ′| < n, where n ≥ 1.
Let G be a graph and Y, Z,M be subsets of V (G) such that |Y | = n. We

may assume that ΛM
Z (Y,G) > 3. Let k be the value returned by the algorithm

call Find-Lambda(G, Y, Z,M).
First we prove that k ≥ ΛM

Z (Y,G), i.e. there exists a (k−1)-LM
Z (Y)-labeling

of G. Let us consider the G-correct partition (A,X,B) of Y , for which the
value of k was set in the line 14. Since each of the sets A and B has less than n

4

vertices, by the inductive assumption there exists a (kA− 1)-L
N(X)
Z (A)-labeling

cA of G and a (kB − 1)-LM
N(X)(B)-labeling cB of G.

One of the following cases occurs:

1. If A 6= ∅ and B 6= ∅, then in the line 7 the value of kX is set to 1 and thus
k = kA + kB + 1. The labeling c of Y , defined as follows:

c(v) =







cA(v) if v ∈ A

kA if v ∈ X

kA + 1 + cB(v) if v ∈ B

is a (k − 1)-LM
Z (Y)-labeling of G.

2. If A = ∅ and X ∩Z = ∅, then in the line 8 the value of kX is set to 1 and
thus k = kB + 1. The labeling c of Y , defined as follows:

c(v) =

{
0 if v ∈ X

cB(v) + 1 if v ∈ B

is a (k − 1)-LM
Z (Y)-labeling of G.

3. If A = ∅ and X ∩Z 6= ∅, then in the line 9 the value of kX is set to 2 and
thus k = kB + 2. The labeling c of Y , defined as follows:

c(v) =

{
1 if v ∈ X

cB(v) + 2 if v ∈ B

is a (k − 1)-LM
Z (Y)-labeling of G.

4. If B = ∅ and X ∩M = ∅, then in the line 10 the value of kX is set to 1
and thus k = kA + 1. The labeling c of Y , defined as follows:

c(v) =

{
cA(v) if v ∈ A

kA if v ∈ X

is a (k − 1)-LM
Z (Y)-labeling of G.

5. If B = ∅ and X ∩M 6= ∅, then in line 11 the value of kX is set to 2 and
thus k = kA + 2. The labeling c of Y , defined as follows:

c(v) =

{
cA(v) if v ∈ A

kA if v ∈ X

is a (k− 1)-LM
Z (Y)-labeling of G (the label kA +1 is counted as used, but

no vertex is labeled with it).

The case when X = ∅ is not possible, since the partition (A,X,B) is G-
correct. The case when A = B = ∅ is not possible, since then Y = X is a
2-packing in G and by the Lemma 1 ΛN

Z (Y,G) ≤ 3, so the algorithm would
finish in the line 4.

5

Now let us show that k ≤ ΛM
Z (Y,G). Let c be an optimal LM

Z (Y)-labeling of

G. Let l be the smallest number, such that |c−1(0)∪c−1(1)∪· · ·∪c−1(l)| ≥ |Y |
2 .

Let A = c−1(0) ∪ · · · ∪ c−1(l − 1), X = c−1(l) and B = c−1(l + 1) ∪ · · · ∪
c−1(ΛM

Z (Y,G) − 1). Notice that X is a 2-packing and X 6= ∅ by the choice of
l. Hence we observe that the partition (A,X,B) is G-correct, so the algorithm
considers it in one of the iterations of the main loop.

Let cA : A → N be a function such that cA(v) = c(v) for every v ∈ A and
cB : B → N be a function such that cB(v) = c(v) − (l + 1) for every v ∈ B.

Notice that cA is an optimal L
N(X)
Z (A)-labeling of G and cB is an optimal

LM
N(X)(B)-labeling of G, because otherwise c would not be an optimal.

Hence by the inductive assumption the call in the line 12 returns the num-

ber kA ≤ Λ
N(X)
Z (A,G) and the call in the line 13 returns the number kB ≤

ΛM
N(X)(B,G).

Let k′ be the value of kA + kX + kB in the iteration of the main loop when
partition (A,X,B) is considered.

Let us consider the following cases:

1. A,B 6= ∅. In such a case the algorithm Find-Lambda sets kX = 1 in the
line 7 and
ΛM
Z (Y,G) = Λ

N(X)
Z (A,G) + 1

︸︷︷︸

c−1(l)=X

+Λ
N(X)
Z (B,G) ≥ kA + kX + kB = k′.

2. A = ∅ and l = 0. In such a case kA = 0 and X ∩Z = ∅ and the algorithm
Find-Lambda sets kX = 1 in the line 8 and
ΛM
Z (Y,G) = Λ

N(X)
Z (A,G)

︸ ︷︷ ︸

=0

+ 1
︸︷︷︸

c−1(0)=X

+Λ
N(X)
Z (B,G) ≥ kA+kX +kB = k′.

3. A = ∅ and l = 1. In such a case kA = 0 and X ∩ Z 6= ∅. Otherwise c′ de-
fined by c′(v) = c(v)− 1 for every v ∈ Y would be a LM

Z (Y)-labeling of G
using less labels than the optimal LM

Z (Y)-labeling c of G – contradiction.
The algorithm Find-Lambda sets kX = 2 in the line 9 and

ΛM
Z (Y,G) = Λ

N(X)
Z (A,G)

︸ ︷︷ ︸

=0

+ 1
︸︷︷︸

c−1(0)=∅

+ 1
︸︷︷︸

c−1(1)=X

+Λ
N(X)
Z (B,G) ≥ kA+kX+

kB = k′.

4. B = ∅ and l = ΛM
Z (Y,G)− 1. In such a case kB = 0 and X ∩M = ∅, and

the algorithm Find-Lambda sets kX = 1 in the line 10 and

ΛM
Z (Y,G) = Λ

N(X)
Z (A,G)+ 1

︸︷︷︸

c−1(ΛN

M
(Y,G)−1)=X

+Λ
N(X)
Z (B,G)

︸ ︷︷ ︸

=0

≥ kA+kX+

kB = k′.

5. B = ∅ and l = ΛM
Z (Y,G)− 2. In such a case kB = 0 and X ∩M 6= ∅ and

the algorithm Find-Lambda sets kX = 2 in the line 11 and

ΛM
Z (Y,G) = Λ

N(X)
Z (A,G)+ 1

︸︷︷︸

c−1(ΛN

M
(Y,G)−2)=X

+ 1
︸︷︷︸

c−1(ΛN

M
(Y,G))=∅

+Λ
N(X)
Z (B,G)

︸ ︷︷ ︸

=0

≥

kA + kX + kB = k′.

6

Since those are all possible cases and k is the minimum over values of k′ for all
correct partitions, clearly k ≤ ΛM

Z (Y,G).

Observation 1. By the definition of ΛM
Z (Y,G), the algorithm call Find-Lambda(G, V (G), ∅, ∅)

returns λ(G) + 1.

Lemma 2. Let G be a graph on n vertices, Y, Z,M ⊆ V (G) and let y = |Y |. If
G2 is computed in advance, the algorithm Find-Lambda finds ΛM

Z (Y,G) in the
time O(C log yy3 log y9y) and polynomial space, where C is a positive constant.

Proof. Having G2 computed, checking if any two vertices in V (G) are in distance
at most 2 from each other in G takes a constant time. Hence verifying if a given
X ⊆ Y is a 2-packing in G can be performed in the time O(y2). Moreover, we
can check if a given function c : Y → N is an LM

Z (Y)-labeling of G in the time
O(y2).

Let y = |Y | be the measure of the size of the problem. Let T (y) denote
the running time of the algorithm Find-Lambda applied to a graph G and
Y, Z,M ⊆ V (G).

Ale algorithm Find-Lambda first checks in constant time if Y = ∅. Then it
exhaustively checks if there exists a (k−1)-LM

Z (Y)-labeling of G for k ∈ {1, 2, 3}.
There are 3y functions c : Y → {0, 1, 2}, so this step is performed in the time
O(y2 · 3y).

Then for every G-correct partition of Y the algorithm is called recursively
for two sets of size at most y

2 . Notice that there are at most 3y considered
partitions. Checking if a partition of Y is G-correct can be performed in time
O(y2). Hence we obtain the following inequality for the complexity (C1 and C2

are positive constants):

T (y) ≤ C1y
24y + C2y

33y2 · T
(y

2

)

Let C = max(C1, 2C2), then

T (y) ≤ Cy24y + Cy33y · T
(y

2

)

It is not difficult to verify that T (y) ≤ D · C log yy3 log y9y = O(C log yy3 log y9y),
where D is a positive constant.

The space complexity of the algorithm is clearly polynomial.

Theorem 2. For a graph G on n vertices λ(G) can be found in the time O((9+
ǫ)n) and polynomial space, where ǫ is an arbitrarily small positive constant.

Proof. The square of a graph G can be found in the time O(n3). By the Obser-
vation 1 and Lemma 2, the algorithm Find-Lambda applied to G, Y = V (G)
and Z = M = ∅ finds Λ∅

∅(V (G), G) = λ(G)− 1 in the time O(C log nn3 logn9n) =
O((9 + ǫ)n) and polynomial space.

7

Remark

We have just learned that results similar to those included in this paper were in-
dependently obtained (but not published) by Havet, Klazar, Kratochvíl, Kratsch
and Liedloff [15].

References

[1] Björklund, A., Husfeldt, T., Koivisto, M.: Set Partitioning via
Inclusion-Exclusion. SIAM J. Comput. 39 (2009), pp. 546–563

[2] Bodlaender, H.L., Kratsch D: An exact algorithm for graph coloring
with polynomial memory. UU-CS 2006-015 (2006)

[3] Calamoneri, T.: The L(h, k)-Labelling Problem: A Survey and Anno-
tated Bibliography. Computer Journal 49 (2006), pp. 585–608

[4] Eggeman, N., Havet, F., Noble, S.: k-L(2, 1)-Labelling for Planar
Graphs is NP-Complete for k ≥ 4. Discrete Applied Mathematics 158
(2010), pp. 1777–1788.

[5] Fiala, J., Golovach, P., Kratochvíl, J.: Distance Constrained Label-
ings of Graphs of Bounded Treewidth. Proceedings of ICALP 2005, LNCS
3580 (2005), pp. 360–372.

[6] Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of
λ-labelings. Discrete Applied Mathematics 113 (2001), pp. 59–72.

[7] Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms -
structure, complexity, and applications. Computer Science Review 2 (2008),
pp. 97–111.

[8] Fiala, J., Kratochvíl, J.: On the Computational Complexity of the
L(2, 1)-Labeling Problem for Regular Graphs Proceedings of ICTCS 2005,
LNCS 3703 (2005), pp. 228–236

[9] Gonçalves, D. : On the L(p; 1)-labelling of graphs. Discrete Mathematics
308 (2008), pp. 1405–1414

[10] Griggs, J. R., Král, D.: Graph labellings with variable weights, a sur-
vey. Discrete Applied Mathematics 157 (2009), pp. 2646–2658.

[11] Griggs, J. R., Yeh, R. K.: Labelling graphs with a condition at distance
2. SIAM Journal of Discrete Mathematics 5 (1992), pp. 586–595.

[12] Hale, W.K.: Frequency assignemnt: Theory and applications. Proc. IEEE
68 (1980), pp. 1497–1514

[13] Havet, F., Reed, B., Sereni, J.-S.: L(2, 1)-labellings of graphs. Pro-
ceedings of SODA 2008 (2008), pp. 621–630.

8

[14] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff,

M.: Exact algorithms for L(2, 1)-labeling of graphs. Algorithmica 59 (2011),
pp. 169–194.

[15] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff,

M.: private communication

[16] Junosza-Szaniawski K., Kratochvíl J., Liedloff M., Rossmanith

P., Rzążewski P.: Fast Exact Algorithm for L(2,1)-Labeling of Graphs.
Proceedings of TAMC 2011, LNCS 6648 (to appear)

[17] Junosza-Szaniawski K., Rzążewski P.: On Improved Exact Algo-
rithms for L(2, 1)-Labeling of Graphs. Proceedings of IWOCA 2010, LNCS
6460 (2011), pp. 34–37

[18] Junosza-Szaniawski K., Rzążewski P.: On the Complexity of Exact
Algorithm for L(2, 1)-labeling of Graphs. Information Processing Letters
(to appear). Preliminary version in KAM-DIMATIA Preprint Series 2010-
992

[19] D. Král’: Channel assignment problem with variable weights. SIAM
Journal on Discrete Mathematics 20 (2006), pp. 690–704.

[20] Yeh, R.: A survey on labeling graphs with a condition at distance two.
Discrete Mathematics 306(2006), pp. 1217–1231.

9

	1 Introduction
	2 Preliminaries
	3 Algorithm

