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Abstract

A k-L(2,1)-labeling of a graph is a function from its vertex set into the
set {0,...,k}, such that the labels assigned to adjacent vertices differ by
at least 2, and labels assigned to vertices of distance 2 are different. It is
known that finding the smallest k£ admitting the existence of a k-L(2,1)-
labeling of any given graph is NP-Complete.

In this paper we present an algorithm for this problem, which works in
time O((9 + €)™) and polynomial memory, where € is an arbitrarily small
positive constant. This is the first exact algorithm for L(2,1)-labeling
problem with time complexity O(c™) for some constant ¢ and polynomial
space complexity.

1 Introduction

A frequency assignment problem is the problem of assigning channels of fre-
quency (represented by nonnegative integers) to each radio transmitter, so that
no transmitters interfere with each other. Hale [12] formulated this problem in
terms of so-called T-coloring of graphs.

According to [I1], Roberts was the first who proposed a modification of this
problem, which is called an L(2,1)-labeling problem. It asks for such a labeling
with nonnegative integer labels, that no vertices in distance 2 in a graph have
the same label and labels of adjacent vertices differ by at least 2.

A k-L(2,1)-labeling problem is to determine if there exists an L(2, 1)-labeling
of a given graph with no label greater than k. By A(G) we denote an L(2,1)-
span of GG, which is the smallest value of k that guarantees the existence of a
k-L(2,1)-labeling of G.

The problem of L(2,1)-labeling has been extensively studied (see [3] [7, [10]
20] for some surveys on the problem and its generalizations). A considerable
attention has been given to bounding the value of A(G) by some function of G.

Griggs and Yeh [I1I] proved that A(G) < A? + A [ and conjectured, that

LA denotes the largest vertex degree in a graph
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A(G) < A? for every graph G. There are several results supporting this conjec-
ture, for example Gongalves [9] proved that A\(G) < A2 + A — 2 for graphs with
A > 3. Havet et al. [I3] have settled the conjecture in affirmative for graphs
with A > 10%°. For graphs with smaller A, the conjecture still remains open.
It is interesting to note that the Petersen and Hoffmann-Singleton graphs are
the only two known graphs with maximum degree greater than 2, for which this
bound is tight.

The second main branch of research in L(2,1)-labeling was pointed to ana-
lyzing the problem from the complexity point of view. For k > 4, the k-L(2,1)-
labeling problem was proven to be NP-complete by Fiala et al. [6] (for k < 3 the
problem is polynomial). It remains NP-complete even for regular graphs (see Fi-
ala and Kratochvil [§]), planar graphs (see Eggeman et al. [4]) or series-parallel
graphs (see Fiala et al. [0]).

An exact algorithm for the so called Channel Assignment Problem, pre-
sented by Kral’ [19], implies an O*(4™) [ algorithm for the L(2,1)-labeling
problem. Havet et al. [14] presented an algorithm for computing L(2,1)(G),
which works in time O*(157) = O*(3.8730"). This algorithm has been im-
proved [I7, [18], achieving a complexity bound O*(3.2361™). Recently, a new
algorithm for L(2,1)-labeling with a complexity bound O*(2.6488") has been
presented [16].

All algorithms mentioned above are based on dynamic programming ap-
proach and use exponential memory. Havet et al. [14] presented a branching
algorithm for k-L(2, 1)-labeling problem with a time complexity O*((k — 2.5)™)
and polynomial space complexity. Until now, no algorithm for L(2, 1)-labeling
with time complexity O(c™) for some constant ¢ and polynomial space complex-
ity has been presented. However, there are such algorithms for a related problem
of classical graph coloring. The first one, with time complexity O(5.283™), was
shown by Bodleander and Kratsch [2]. The best currently known algorithm
for graph coloring with polynomial space complexity is by Bjorklund et al. [I],
using the inclusion-exclusion principle. Its time complexity is O(2.2461™).

In this paper we present the first exact algorithm for the L(2,1)-labeling
problem with polynomially bounded space complexity. The algorithm works in
time O((9+€)™) (where € is an arbitrarily small positive constant) and is based
on a divide and conquer approach.

2 Preliminaries

Throughout the paper we consider finite undirected graphs without multiple
edges or loops. The vertex set (edge set) of a graph G is denoted by V(G)
(E(G), respectively).

Let distg(z,y) be the distance between vertices  and y in a graph G, which
is the length of a shortest path joining x and y.

A set X C V(G) is a 2-packing in G if and only if all its vertices are in
distance at least 3 from each other (Va,y € X distg(x,y) > 2).

2In the O* notation we omit polynomially bounded terms.



Let N(v) = {u € V(G): (u,v) € E(G)} denote the set of neighbors (the
neighborhood) of a vertex v. The set N[v] = N(v) U {v} denotes the closed
neighborhood of v. The neighborhood of a set X of vertices in G is denoted
by N(X) = Uyex N(v) and its closed neighborhood is denoted by N[X] =
N(X)UX.

For a subset X C V(G), we denote the subgraph of G induced by the vertices
in X by G[X]. A square of a graph G = (V, E) is the graph G* = (V, {uv €
V2: distg(u,v) < 2}).

Definition 1. For a graph G and sets Y, Z,M C V(Q), a (k — 1)-LY¥(Y)-
labeling of a graph G is a function c: Y — {0,1,...,k — 1}, such that c=(0) N
Z=cYk—-1)NM =0, and for every v,u € Y:

le(v) = e(u)] > 2 if distg(u,v) =1

le(v) — c(u)| > 1 if dista(u,v) = 2.

A function c: Y — N is an LY (Y)-labeling of G if there exists k € N such that
cis a (k—1)-LY¥(Y)-labeling of G

Definition 2. ForY,Z, M C V(G) let A¥(Y,G) denote the smallest value of k

admitting the existence of (k—1)-LY (Y)-labeling of G. We define AY (0, G) =

0 for all graphs G and sets Z, M C V(Q).

Any (k — 1)-LY (Y)-labeling of G with k = AY (Y, G) is called optimal.

We observe that even if ¢ is an optimal LY (Y)-labeling of G, then any of
the sets ¢1(0) and ¢ 1(A¥ (Y, G) — 1) may be empty. In the extremal case, if
Z =M =Y, then ¢ }(0) = ¢ }(k—1) = 0 for all k and feasible (k —1)-L¥(Y)-
labelings c of G.

Notice that A%(V(G), G) = M(G) + 1 for every graph G.

Definition 3. For a graph G, a G-correct partition of a set Y C V(G) is a
triple (A, X, B), such that:

1. The sets A, X, B CY form a partition of Y
2. X is a nonempty 2-packing in G

3. 1Al < Bl and |B] < X1

3 Algorithm

In this section we present a recursive algorithm for computing AY (Y, G) for
any graph G and sets Y, Z, M C V(G). It is then used to find an L(2,1)-span a
graph G.

The algorithm is based on the divide and conquer approach. First, the
algorithm exhaustively check if AY (Y, G) < 3. If not, the set Y is partitioned
into three sets A, X, B, which form a G-correct partition of Y. The sets A and
B are then labeled recursively.



The labeling of the whole Y is constructed from the labelings found in the
recursive calls. The sets of labels used on the sets A and B are separated from
each other by the label used for the 2-packing X. This allows to solve the
subproblems for A and B independently from each other.

Iterating over all G-correct partitions of Y, the algorithm computes the
minimum k admitting the existence of a (k — 1)-LY (Y)-labeling of G, which is
by definition AY (Y, G).

Algorithm 1: Find-Lambda
Input : Graph G, Sets Y, Z, M C V(G)
if Y = () then return 0
foreach c¢: Y — {0,1,2} do
for k< 1 to 3 do
L if ¢ is a (k — 1)-LY¥(Y)-labeling of G then return k

B W ON =

k + o0

foreach G-correct partition (A, X, B) of Y do
if A#0( and B+# () then kx + 1

if A=0 and XNZ =0 then kx «+ 1

if A=0 and X NZ # () then kx < 2

10 if B=0and XNM =0 then kx <1
11 if B=0 and XN M # () then kx + 2
12 ks < Find-Lambda(G, A, Z, N(X))

15 | kp « Find-Lambda(G, B, N(X), M)

14 k< min(k,ka + kx + kB)

© W N O wm

15 return k

Lemma 1. For a graph G and sets Y, Z, M C V(G), if Y is a 2-packing in G,
then A (Y,G) < 3.

Proof. The labeling ¢: Y — {0, 1,2} such that c(v) =1 for every v € Y is a
2-LY (V) labeling of G. O O

Theorem 1. For any graph G and sets Y, Z, M C V(G), the algorithm call
Find-Lambda(G,Y, Z, M ) returns A (Y,G).

Proof. If Y = (), the correct result is given in the line [ (by the definition of
AY(0,G)). Tt AY(Y,G) < 3, the result is found by the exhaustive search in the
line @ Notice that if |Y| < 1, then by Lemma [l A¥ (Y, G) < 3.

Assume that the statement is true for all graphs G’ and all sets Y, Z', M’ C
V(G), such that |Y'| < n, where n > 1.

Let G be a graph and Y, Z, M be subsets of V(G) such that |Y| = n. We
may assume that AY (Y, G) > 3. Let k be the value returned by the algorithm
call Find-Lambda(G,Y, Z, M).

First we prove that k > AY (Y, G), i.e. there exists a (k—1)-LY (Y)-labeling
of G. Let us consider the G-correct partition (A, X, B) of Y, for which the
value of k was set in the line[I4l Since each of the sets A and B has less than n



vertices, by the inductive assumption there exists a (k4 — 1)-Lg(x)(A)—labeling
ca of Gand a (kp — 1)—L%(X)(B)—labeling cp of G.
One of the following cases occurs:

1. If A # 0 and B # (), then in the line [7 the value of kx is set to 1 and thus
k=ka+kp+ 1. The labeling c of Y, defined as follows:

ca(v) ifveA
c(v)=<¢ ka ifveX
ka+14cp(v) ifveB

is a (k — 1)-LY¥(Y)-labeling of G.

2. If A=0 and X NZ = 0, then in the line [§ the value of kx is set to 1 and
thus k = kg + 1. The labeling c of Y, defined as follows:

o(v) = 0 ifveX
| eB(v)+1 ifveB

is a (k — 1)-LY¥(Y)-labeling of G.

3. If A=0 and X NZ # (), then in the line [ the value of kx is set to 2 and
thus k = kg + 2. The labeling c of Y, defined as follows:

c(v) 1 ifreX
| eB(v)+2 ifveB

is a (k — 1)-LY¥(Y)-labeling of G.

4. If B= (0 and X N M = §, then in the line [I0 the value of kx is set to 1
and thus k = k4 + 1. The labeling ¢ of Y, defined as follows:

_f calv) fveA
C(U)_{kA ifveX

is a (k—1)-LY¥(Y)-labeling of G.

5 If B=( and X N M # 0, then in line [[1 the value of kx is set to 2 and
thus k = k4 + 2. The labeling ¢ of Y, defined as follows:

_f calv) fveA
C(U)_{kA ifveX

is a (k—1)-LY (Y)-labeling of G (the label k4 + 1 is counted as used, but
no vertex is labeled with it).

The case when X = () is not possible, since the partition (4, X, B) is G-
correct. The case when A = B = () is not possible, since then ¥ = X is a
2-packing in G and by the Lemma [ A} (Y,G) < 3, so the algorithm would
finish in the line @



Now let us show that k < AY (Y, G). Let ¢ be an optimal LY (Y)-labeling of
G. Let [ be the smallest number, such that [¢c"1(0)Uc™ (1)U---Uc™ ()| > %

Let A=c}(0)U---Uct(l-1), X =ct()and B=ct(l+1)U---U
Y AY(Y,G) — 1). Notice that X is a 2-packing and X # @) by the choice of
[. Hence we observe that the partition (A, X, B) is G-correct, so the algorithm
considers it in one of the iterations of the main loop.

Let ca: A — N be a function such that c4(v) = ¢(v) for every v € A and
¢g: B — N be a function such that cg(v) = ¢(v) — (I + 1) for every v € B.
Notice that c4 is an optimal Lg(x)(A)—labeling of G and cp is an optimal
L%[( X)(B)-labeling of G, because otherwise ¢ would not be an optimal.

Hence by the inductive assumption the call in the line 2] returns the num-
ber k4 < Ag(x)(A,G) and the call in the line [[3] returns the number kp <
AANl(X) (Bv G)

Let k' be the value of k4 + kx + kp in the iteration of the main loop when
partition (A, X, B) is considered.

Let us consider the following cases:

1. A, B # (. In such a case the algorithm Find-Lambda sets kx = 1 in the
line [ and
A Y,6) =AY U,6)+ 1 +AYNBG) > ha+hyx+hp =K.
c1(l)=X

2. A=(and [ =0. In such a case k4 =0 and X NZ = () and the algorithm
Find-Lambda sets kx = 1 in the line [§l and
AT, 6) =AY Ua,6)+ 1 +AYIB.G) > katkx+kp =K.
i = 1(0)=X

3. A= and [l =1. In such a case k4 =0 and X N Z # (). Otherwise ¢’ de-
fined by ¢/(v) = c¢(v) — 1 for every v € Y would be a LY (Y)-labeling of G
using less labels than the optimal LY (Y)-labeling ¢ of G — contradiction.
The algorithm Find-Lambda sets kx = 2 in the line [0l and
A, G) =AY a0+ 1+ 1 +AYYB,G) > katkx+

N L=~ ~~
=0 c1(0)=0 c1(1)=X
kg =K.

4. B=0and I = A¥(Y,G)—1. In such a case kg =0 and X N M = (), and
the algorithm Find-Lambda sets kx = 1 in the line [0 and
AY(Y,6) = A (4,6) + 1 +AYYNB,G) > ka+kx+
—~ —_———
LAY, (Y,G)—1)=X -0
kg =K.

5. B=0and l = AY(Y,G) — 2. In such a case kg = 0 and X N M # () and
the algorithm Find-Lambda sets kx = 2 in the line [IT] and

AM(Y,G) =AY 4, 6)+ L + L + AV B,G) >

AN (Y,G)-2)=X  e~1(AY,(Y,G))=0 -0
ka+kx +kp=Fk.



Since those are all possible cases and k is the minimum over values of k’ for all
correct partitions, clearly k < AY (Y, G). O O

Observation 1. By the definition of AY (Y, G), the algorithm call Find-Lambda(G,V (G),0,0)
returns A(G) + 1.

Lemma 2. Let G be a graph on n vertices, Y, Z, M C V(G) and let y = |Y|. If
G? is computed in advance, the algorithm Find-Lambda finds A% (Y, G) in the
time O(C'°8Yy31°8Y9Y) and polynomial space, where C is a positive constant.

Proof. Having G? computed, checking if any two vertices in V (G) are in distance
at most 2 from each other in G takes a constant time. Hence verifying if a given
X CY is a 2-packing in G can be performed in the time O(y?). Moreover, we
can check if a given function ¢: ¥ — N is an LY (Y)-labeling of G in the time
O(y?).

Let y = |Y| be the measure of the size of the problem. Let T(y) denote
the running time of the algorithm Find-Lambda applied to a graph G and
Y, Z,M CV(G).

Ale algorithm Find-Lambda first checks in constant time if Y = (). Then it
exhaustively checks if there exists a (k—1)-L¥ (Y)-labeling of G for k € {1,2,3}.
There are 3Y functions ¢: Y — {0, 1,2}, so this step is performed in the time
O(y? - 3Y).

Then for every G-correct partition of Y the algorithm is called recursively
for two sets of size at most 4. Notice that there are at most 3¥ considered
partitions. Checking if a partition of Y is G-correct can be performed in time
O(y?). Hence we obtain the following inequality for the complexity (C; and Cy
are positive constants):

T(y) < Chy?4Y + Coy®392 - T (g)

Let C' = max(C1,2C3), then

T(y) < Cy*4¥ + Cy®3Y - T (%)

It is not difficult to verify that T'(y) < D - C08¥y3lo8v9gy — O((Cloevy3losygy),
where D is a positive constant.
The space complexity of the algorithm is clearly polynomial. O O

Theorem 2. For a graph G on n vertices \(G) can be found in the time O((9+
€)") and polynomial space, where € is an arbitrarily small positive constant.

Proof. The square of a graph G can be found in the time O(n?). By the Obser-
vation [Tl and Lemma [2] the algorithm Find-Lambda applied to G, Y = V(G)
and Z = M = () finds AS(V(G), G) = MG) — 1 in the time O(C'8"p3loengn) =
O((9 + €)™) and polynomial space. O O



Remark

We have just learned that results similar to those included in this paper were in-
dependently obtained (but not published) by Havet, Klazar, Kratochvil, Kratsch
and Liedloff [15].
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