Skip to main content

Bisections above Tight Lower Bounds

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Abstract

A bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most one, and the size of the bisection is the number of edges which go across the two parts.

Every graph with m edges has a bisection of size at least ⌈m/2 ⌉, and this bound is sharp for infinitely many graphs. Therefore, Gutin and Yeo considered the parameterized complexity of deciding whether an input graph with m edges has a bisection of size at least ⌈m/2 ⌉ + k, where k is the parameter. They showed fixed-parameter tractability of this problem, and gave a kernel with O(k 2) vertices.

Here, we improve the kernel size to O(k) vertices. Under the Exponential Time Hypothesis, this result is best possible up to constant factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gutin, G., Yeo, A.: Note on maximal bisection above tight lower bound. Information Processing Letters 110, 966–969 (2010)

    Article  MathSciNet  Google Scholar 

  2. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science (1999)

    Google Scholar 

  3. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62, 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67, 789–807 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edwards, C.S.: Some extremal properties of bipartite subgraphs. Canadian Journal of Mathematics 25, 475–485 (1973)

    Article  MATH  Google Scholar 

  6. Edwards, C.S.: An improved lower bound for the number of edges in a largest bipartite subgraph. In: Recent Advances in Graph Theory (Proceedings of Second Czechoslovak Symposium, Prague, 1974), Prague, pp. 167–181 (1975)

    Google Scholar 

  7. Lee, C., Loh, P.S., Sudakov, B.: Bisections of graphs (2011), http://arxiv.org/abs/1109.3180/v3

  8. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61, 638–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo, A.: Simultaneously Satisfying Linear Equations Over \(\mathbb F_2\): MaxLin2 and Max-r-Lin2 Parameterized Above Average. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), vol. 13, pp. 229–240 (2011)

    Google Scholar 

  10. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables. Journal of Computer and System Sciences 78, 151–163 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crowston, R., Jones, M., Mnich, M.: Max-Cut Parameterized above the Edwards-Erdős Bound. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, part I. LNCS, vol. 7391, pp. 242–253. Springer, Heidelberg (2012)

    Google Scholar 

  12. Gutin, G., Yeo, A.: Constraint Satisfaction Problems Parameterized above or below Tight Bounds: A Survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer (2003)

    Google Scholar 

  14. Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the maximum cut problem and its variants. IEEE Transactions on Computing 40, 110–113 (1991)

    Article  MathSciNet  Google Scholar 

  15. Ries, B., Zenklusen, R.: A 2-approximation for the maximum satisfying bisection problem. European Journal of Operational Research 210, 169–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mnich, M., Zenklusen, R. (2012). Bisections above Tight Lower Bounds. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics