Skip to main content

Approximating Infeasible 2VPI-Systems

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Included in the following conference series:

  • 931 Accesses

Abstract

It is a folklore result that testing whether a given system of equations with two variables per inequality (a 2VPI system) of the form x i  − x j  = c ij is solvable, can be done efficiently not only by Gaussian elimination but also by shortest-path computation on an associated constraint graph. However, when the system is infeasible and one wishes to delete a minimum weight set of inequalities to obtain feasibility (MinFs2 =), this task becomes NP-complete.

Our main result is a 2-approximation for the problem MinFs2 = for the case when the constraint graph is planar using a primal-dual approach. We also give an α-approximation for the related maximization problem MaxFs2 = where the goal is to maximize the weight of feasible inequalities. Here, α denotes the arboricity of the constraint graph. Our results extend to obtain constant factor approximations for the case when the domains of the variables are further restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaldi, E., Bruglieri, M., Casale, G.: A two-phase relaxation-based heuristic for the maximum feasible subsystem problem. Computers and Operations Research 35, 1465–1482 (2008)

    Article  MATH  Google Scholar 

  2. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147(1-2), 181–210 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chinneck, J.: Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing 13(3), 211–223 (2001)

    Article  MathSciNet  Google Scholar 

  4. Elbassioni, K., Raman, R., Ray, S., Sitters, R.A.: On the approximability of the maximum feasible subsystem problem with 0/1-coefficients. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1210–1219 (2009)

    Google Scholar 

  5. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(1), 465–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics, 826–834 (1977)

    Google Scholar 

  7. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. SIAM Journal on Computing 25, 235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: [11], pp. 144–191. PWS Publishing Company (1997)

    Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feedback problems in planar graphs. Combinatorica 18(1), 37–59 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greer, R.: Trees and hills: Methodology for maximizing functions of systems of linear relations. Annals of Discrete Mathematics 22 (1984)

    Google Scholar 

  11. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Company, 20 Park Plaza, Boston, MA 02116–4324 (1997)

    Google Scholar 

  12. Nash-Williams, C.: Decomposition of finite graphs into forests. Journal of the London Mathematical Society 1(1), 12 (1964)

    Article  Google Scholar 

  13. Pfetsch, M.: Branch-and-cut for the maximum feasible subsystem problem. SIAM Journal on Optimization 19(1), 21–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leithäuser, N., Krumke, S.O., Merkert, M. (2012). Approximating Infeasible 2VPI-Systems. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics