

Mining Top-K Non-Redundant Association Rules

Philippe Fournier-Viger
1
 and Vincent S. Tseng

2

1Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Computer Science and Info. Engineering, National Cheng Kung University, Taiwan

philippe.fournier-viger@umoncton.ca, tsengsm@mail.ncku.edu.tw

Abstract. Association rule mining is a fundamental data mining task. However,

depending on the choice of the thresholds, current algorithms can become very

slow and generate an extremely large amount of results or generate too few

results, omitting valuable information. Furthermore, it is well-known that a

large proportion of association rules generated are redundant. In previous

works, these two problems have been addressed separately. In this paper, we

address both of them at the same time by proposing an approximate algorithm

named TNR for mining top-k non redundant association rules.

Keywords: association rules, top-k, non-redundant rules, algorithm

1. Introduction

Association rule mining [1] consists of discovering associations between sets of items

in transactions. It is one of the most important data mining tasks. It has been integrated

in many commercial data mining software and has numerous applications [2].

The problem of association rule mining is stated as follows. Let I = {a1, a2, …an}

be a finite set of items. A transaction database is a set of transactions T={t1,t2…tm}

where each transaction tj ⊆ I (1≤ j ≤ m) represents a set of items purchased by a

customer at a given time. An itemset is a set of items X ⊆ I. The support of an itemset

X is denoted as sup(X) and is defined as the number of transactions that contain X. An

association rule X→Y is a relationship between two itemsets X, Y such that X, Y ⊆ I

and X∩Y=Ø. The support of a rule X→Y is defined as sup(X→Y) = sup(X∪Y) / |T|. The

confidence of a rule X→Y is defined as conf(X→Y) = sup(X∪Y) / sup(X). The problem

of mining association rules [1] is to find all association rules in a database having a

support no less than a user-defined threshold minsup and a confidence no less than a

user-defined threshold minconf. For instance, Figure 1 shows a transaction database

(left) and some association rules found for minsup = 0.5 and minconf = 0.5 (right).

Despite that much research has been done on association rule mining, an important

issue that has been overlooked is how users should choose the minsup and minconf

thresholds to generate a desired amount of rules [3, 4, 5, 6]. This is an important

problem because in practice users have limited resources (time and storage space) for

analyzing the results and thus are often only interested in discovering a certain amount

of rules, and fine tuning the parameters is time-consuming. Depending on the choice of

the thresholds, current algorithms can become very slow and generate an extremely

large amount of results or generate none or too few results, omitting valuable

information. To address this problem, it was proposed to replace the task of association

rule mining with the task of top-k association rules mining, where k is the number of

association rules to be found, and is set by the user [3, 4, 5, 6]. Several top-k rule

mining algorithms were proposed [3, 4, 5, 6]. However, a major problem remains with

these algorithms. It is that top-k association rules often contain a large proportion of

redundant rules. i.e. rules that provide information that is redundant to the user. This

problem has been confirmed in our experimental study (cf. section 4). We found that

up to 83 % of top-k association rules are redundant for datasets commonly used in the

association rule mining literature. This means that the user has to analyze a large

proportion of redundant rules.

ID Transactions ID Rules Support Confidence

t1 {a, b, c, e, f, g} r1 {a}→ {e, f} 0.75 1

t2 {a, b, c, d, e, f} r2 {a}→ {c, e, f} 0.5 0.6

t3 {a, b, e, f} r3 {a, b}→ {e, f} 0.75 1

t4 {b, f, g} r4 {a}→ {c, f} 0.5 0.6

Fig. 1. (a) A transaction database and (b) some association rules found

The problem of redundancy in association rule mining has been studied extensively

and various definitions of redundancy have been proposed [7, 8, 9, 10]. However, it

remains an open challenge to combine the idea of mining a set of non-redundant rules

with the idea of top-k association rule mining, to propose an efficient algorithm to mine

top-k non-redundant association rules. The benefit of such an algorithm would be to

present a small set of k non-redundant rules to the user. However, devising an

algorithm to mine these rules is difficult. The reason is that eliminating redundancy

cannot be performed as a post-processing step after mining the top-k association rules,

because it would result in less than k rules. The process of eliminating redundancy has

therefore to be integrated in the mining process.

In this paper, we undertake this challenge by proposing an approximate algorithm

for mining the top-k non redundant association rules that we name TNR (Top-k Non-

redundant Rules). It is based on a recently proposed approach for generating

association rules that is named “rule expansions”, and adds strategies to avoid

generating redundant rules. An evaluation of the algorithm with datasets commonly

used in the literature shows that TNR has excellent performance and scalability.

The rest of the paper is organized as follows. Section 2 reviews related work and

presents the problem definition. Section 3 presents TNR. Section 4 presents an

experimental evaluation. Section 5 presents the conclusion.

2. Related Work and Problem Definition

Top-k association rule mining. Several algorithms have been proposed for top-k

association rule mining [3, 4, 5]. However, most of them do not use the standard

definition of an association rule. For instance, KORD [3, 4] finds rules with a single

item in the consequent, whereas the algorithm of You et al. [5] mines association rules

from a stream instead of a transaction database. To the best of our knowledge, only

TopKRules [5] discovers top-k association rules based on the standard definition of an

association rule (with multiple items, in a transaction database). TopKRules takes as

parameters k and minconf, and it returns the k rules with the highest support that meet

the minconf threshold. The reason why this algorithm defines the task of mining the

top k rules on the support instead of the confidence is that minsup is much more

difficult to set than minconf because minsup depends on database characteristics that

are unknown to most users, whereas minconf represents the minimal confidence that

users want in rules and is therefore generally easy to determine. TopKRules defines the

problem of top-k association rule mining as follows [5]. The problem of top-k

association rule mining is to discover a set L containing k rules in T such that for each

rule r L | conf(r) ≥ minconf, there does not exist a rule s L | conf(s) ≥ minconf ∧

sup(s) > sup(r).

Discovering Non-Redundant Association Rules. The problem of redundancy has

been extensively studied in association rule mining [7, 8, 9, 10]. Researchers have

proposed to mine several sets of non-redundant association rules such as the Generic

Basis [7], the Informative Basis [7], the Informative and Generic Basis [8], the

Minimal Generic Basis [9] and Minimum Condition Maximum Consequent Rules [10].

These rule sets can be compared based on several criteria such as their compactness,

the possibility of recovering redundant rules with their properties (support and

confidence), and their meaningfulness to users (see [10] for a detailed comparison). In

this paper, we choose to base our work on Minimum Condition Maximum Consequent

Rules (MCMR). The reason is that the most important criteria in top-k association rule

mining is the meaningfulness of rules for users. MCMR meet this goal because it

defines non-redundant rules as rules with a minimum antecedent and a maximum

consequent [10]. In other words, MCMR are the rules that allow deriving the

maximum amount of information based on the minimum amount of information. It is

argued that these rules are the most meaningful for several tasks [10]. In the context of

top-k association rule mining, other criteria such as the compactness and recoverability

of redundant rules are not relevant because the goal of a top-k algorithm is to present a

small set of k meaningful rules to the user. MCMR are defined based on the following

definition of redundancy [10]. An association rule ra : X → Y is redundant with respect

to another rule rb : X1 → Y1 if and only if conf(ra)= conf(rb) ∧ sup(ra) = sup(rb) ∧ X1 ⊆

X ∧ Y ⊆ Y1. Example. Consider the association rules presented in the right part of

Figure 1. The rule {a}→{c, f} is redundant with respect to {a}→{c, e, f}. Moreover,

the rule {a, b}→ {e, f} is redundant with respect to {a}→ {e, f}.

Problem Definition. Based on the previous definition of redundancy and the

definition of top-k association rule mining, we define the problem of top-k non

redundant association mining as follows. The problem of mining top-k non-redundant

association rules is to discover a set L containing k association rules in a transaction

database. For each rule ra L | conf(ra) ≥ minconf, there does not exist a rule rb L |

conf(rb) ≥ minconf ∧ sup(rb) > sup(ra), otherwise rb is redundant with respect to ra.

Moreover, rc, rd L such that rc is redundant with respect to rd.

3. The TNR Algorithm

To address the problem of top-k non-redundant rule mining, we propose an algorithm

named TNR. It is based on the same depth-first search procedure as TopKRules. The

difference between TNR and TopKRules lies in how to avoid generating redundant

rules. The next subsection briefly explains the search procedure of TopKRules.

3.1 The search procedure

To explain the search procedure, we introduce a few definitions. A rule X→Y is of size

p*q if |X| = p and |Y| = q. For example, the size of {a} → {e, f} is 1*2. Moreover, we

say that a rule of size p*q is larger than a rule of size r*s if p > r and q ≥ s, or if p ≥ r

and q > s. An association rule r is valid if sup(r) ≥ minsup and conf(r) ≥ minconf.

The search procedure takes as parameter a transaction database, an integer k and the

minconf threshold. The search procedure first sets an internal minsup variable to 0 to

ensure that all the top-k rules are found. Then, the procedure starts searching for rules.

As soon as a rule is found, it is added to a list of rules L ordered by the support. The list

is used to maintain the top-k rules found until now and all the rules that have the same

support. Once k valid rules are found in L, the internal minsup variable is raised to the

support of the rule with the lowest support in L. Raising the minsup value is used to

prune the search space when searching for more rules. Thereafter, each time that a

valid rule is found, the rule is inserted in L, the rules in L not respecting minsup

anymore are removed from L, and minsup is raised to the support of the rule with the

lowest support in L. The algorithm continues searching for more rules until no rule are

found. This means that it has found the top-k rules in L. The top-k rules are the k rules

with the highest support in L.

To search for rules, the search procedure first scans the database to identify single

items that appear in at least minsup transactions. It uses these items to generate rules of

size 1*1 (containing a single item in the antecedent and a single item in the

consequent). Then, each rule is recursively grown by adding items to its antecedent or

consequent (a depth-first search). To determine the items that should be added to a

rule, the search procedure scans the transactions containing the rule to find single items

that could expand its antecedent or consequent. The two processes for expanding rules

are named left expansion and right expansion. These processes are applied recursively

to explore the search space of association rules. Left and right expansions are formally

defined as follows. A left expansion is the process of adding an item i to the left side of

a rule X→Y to obtain a larger rule X∪{i}→Y. A right expansion is the process of

adding an item i to the right side of a rule X→Y to obtain a larger rule X→Y∪{i}.

The search procedure described above is correct and complete for mining top-k

association rules [5]. It is very efficient because the internal minsup variable is raised

during the search. This allows pruning large part of the search space instead of

generating all association rules. This pruning is possible because the support is

monotonic with respect to left and right expansions (see [5] for details).

3.2 Adapting the search procedure to find top-k non-redundant rules

We now explain how we have adapted the search procedure to design an efficient top-

k non-redundant rule mining algorithm. These modifications are based on the

following observation.

Property 3. During the search, if only non-redundant rules are added to L, then L

will contain the top-k non-redundant rules when the search procedure terminates.

Rationale. The search procedure is correct and complete for mining the top-k

association rules [5]. If only non-redundant rules are added to L instead of both

redundant and non-redundant rules, it follows that the result will be the top-k non-

redundant rules instead of the top-k association rules.

Based on this observation, we have aimed at modifying the search procedure to

ensure that only non-redundant rules are added to L. This means that we need to make

sure that every generated rule ra is added to L only if sup(ra) ≥ minsup and ra is not

redundant with respect to another rule. To determine if ra is redundant with respect to

another rule, there are two cases to consider.

The first case is that ra is redundant with respect to a rule rb that was generated

before ra. By the definition of redundancy (cf. Definition 2), if ra is redundant with

respect to rb, then sup(rb) = sup(ra). Because sup(ra) ≥ minsup, it follows that sup(rb) ≥

minsup, and that rb L. Therefore, the first case can be detected by implementing the

following strategy.

Strategy 1. For each rule ra that is generated such that sup(ra) ≥ minsup, if rb L |

sup(rb) = sup(ra) and ra is redundant with respect to rb, then ra is not added to L.

Otherwise, ra is added to L.

The second case is that ra is redundant with respect to a rule rb that has not yet been

generated. There are two ways that we could try to detect this case. The first way is to

postpone the decision of adding ra to L until rb is generated. However, this would not

work because it is not known beforehand if a rule rb will make ra redundant and rb

could appear much later after ra. The second way is to scan transactions to determine if

item(s) could be added to ra to generate a rule rb such tat ra redundant is redundant with

respect to rb. However, this approach would also be inefficient because the confidence

is non-monotonic with respect to left/right expansions [5]. This mean that it is possible

that rb may contain several more items than ra.. For this reason, it would be too costly

to test all the possibilities of adding items to ra to detect the second case.

Because the second case cannot be checked efficiently, our solution is to propose an

approximate approach that is efficient and to prove that this approach can generate

exact results if certain conditions are met. The idea of this approach is the following.

Each rule ra that satisfy the requirements of Strategy 1 is added to L without checking

the second case. Then, eventually, if a rule rb is generated such that the rule ra is still in

L and that ra is redundant with respect to rb, then ra is removed from L. This idea is

formalized as the following strategy.

Strategy 2. For each rule rb that is generated such that sup(rb) ≥ minsup, if ra L |

sup(rb) = sup(ra) and ra is redundant with respect to rb, then ra is removed from L.

By incorporating Strategy 2, the algorithm becomes approximate. The reason is

that each rule ra that is removed by Strategy 2 previously occupied a place in the set

L. By its presence in L, the rule ra may have forced raising the internal minsup

variable. If that happened, then the algorithm may have missed some rules that have a

support lower than ra but are non-redundant.

Given that the algorithm is approximate, it would be desirable to modify it to be

able to increase the likelihood that the result is exact. To achieve this, we propose to

add a parameter that we name Δ that increase by Δ the number of rules k that is

necessary to raise the internal minsup variable. For example, if the user sets k = 1000

and Δ = 100, it will now be required to have k + Δ = 1100 rules in L to raise the

internal minsup variable instead of just k=1000. This means that up to 100 redundant

rules can be at the same time in L and the result will still be exact. This latter

observation is formalized by the following property.

 Property 4. If the number of redundant rules in L is never more than Δ rules, then

the algorithm result is exact and the k rules in L having the highest support will be the

top-k non redundant rules. Rationale. As previously explained, the danger is that too

many redundant rules are in L such that they would force to raise minsup and prune

part of the search space containing top-k non-redundant rules. If there is no more than

Δ redundant rules at the same time in L and that k + Δ are needed to raise minsup, then

redundant rules cannot force to raise minsup.

The previous property proposes a condition under which Strategy 2 is guaranteed to

generate an exact result. Based on this property, an important question is “Would it be

efficient to integrate a check for this condition in the algorithm?”. The answer is that it

would be too costly to verify that no groups of more than Δ redundant rules are present

at the same time in L. The reason is that rules are only known to be redundant when

they are removed by Strategy 2. Therefore, checking Property 4 would be very

expensive to perform. For this reason, we choose to utilize the following weaker

version of Property 4 in our implementation.

Property 5. If the number of redundant rules removed by Strategy 2 during the

execution of the algorithm is less or equal to Δ, then the final result is exact and the

first k rules of L will be the top-k non redundant rules. Rationale. It can be easily seen

that if Property 5 is met, Property 4 is also met.

Property 5 can be easily incorporated in the algorithm. To implement this

functionality, we have added a counter that is incremented by 1 after every rule

removal from L by Strategy 2. Then, when the algorithm terminates, the counter is

compared with Δ. If the counter value is lower or equal to Δ, the user is informed that

the result is guaranteed to be exact. Otherwise, the user is informed that the result may

not be exact. In this case, the user has the option to rerun the algorithm with a higher Δ

value. In the experimental study presented in section 4 of this paper, we will address

the question of how to select Δ.

The previous paragraphs have presented the main idea of the TNR algorithm. Due

to space limitation, we do not provide the pseudo-code of TNR. But the Java source

code of our implementation can be downloaded freely from http://www.philippe-

fournier-viger.com/spmf/.

Note that in our implementation, we have added a few optimizations that are used in

TopKRules [5] and that are compatible with TNR. The first optimization is to try to

generate the most promising rules first when exploring the search space of association

rules. This is because if rules with high support are found earlier, the algorithm can

raise its internal minsup variable faster to prune the search space. To perform this, an

internal variable R is added to store all the rules that can be expanded to have a chance

of finding more valid rules. This set is then used to determine the rules that are the

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

most likely to produce valid rules with a high support to raise minsup more quickly and

prune a larger part of the search space [5]. The second optimization is to use bit vectors

as data structure for representing the set of transactions that contains each rule (tidsets)

[11]. The third optimization is to implement L and R with data structures supporting

efficient insertion, deletion and finding the smallest element and maximum element. In

our implementation, we used a Red-black tree for L and R.

4. Experimental Evaluation

We have carried several experiments to assess the performance of TNR and to

compare its performance with TopKRules under different scenarios. For these

experiments, we have implemented TNR in Java. For TopKrules, we have obtained the

Java implementation from their authors. All experiments were performed on a

computer with a Core i5 processor running Windows 7 and 2 GB of free RAM.

Experiments were carried on four real-life datasets commonly used in the association

rule mining literature, namely Chess, Connect, Mushrooms and Pumsb (available at:

http://fimi.ua.ac.be/data/). The datasets’ characteristics are summarized in Table 1.

Experiment 1: What is the percentage of redundant rules? The goal of the first

experiment was to assess the percentage of rules returned by TopKRules that are

redundant to determine how important the problem of redundancy is. For this

experiment, we ran TopKRules on the four datasets with minconf = 0.8 and k = 2000,

and then examined the rules returned by the algorithm. We chose minconf = 0.8 and k

= 2000 because these values are plausible values that a user could choose. The results

for Chess, Connect, Mushrooms and Pumsb are that respectively, 13.8 %, 25.9 %, 82.6

% and 24.4 % of the rules returned by TopKRules are redundant. These results indicate

that eliminating redundancy in top-k association rule mining is a major problem.

Table 1. Datasets’ Characteristics

Datasets
Number of

transactions

Number of

distinct items

Average

transaction size

Chess 3,196 75 37

Connect 67,557 129 43

Mushrooms 8,416 128 23

Pumsb 49,046 7,116 74

Experiment 2: How many rules are discarded by Strategy 1 and Strategy 2 for

Δ = 0? The second experiment’s goal was to determine how many rules were discarded

by Strategy 1 and Strategy 2 for each dataset. To perform this study, we set minconf =

0.8, k = 2000 and Δ = 0. We then recorded the number of rules discarded. Results are

shown in Table 2. From this experiment, we can see that the number of discarded rules

is high for all datasets and that it is especially high for dense datasets (e.g. Mushrooms)

because they contains more redundant rules compared to sparse datasets (e.g. Pumsb).

Experiment 3: What if we use the Δ parameter? The next experiment consisted

of using the Δ parameter to see if an exact result could be guaranteed by using Property

5. For this experiment, we used k = 2000 and minconf = 0.8. We then set Δ to values

slightly larger than the number of rules discarded by Strategy 2 in Experiment 2.

For example, for the Pumsb dataset, we set Δ = 4000. The total runtime was 501 s

and the maximum memory usage was around 1.3 GB. The number of rules eliminated

by Strategy 1 and Strategy 2 was respectively 3454 and 16,066. Because these values

are larger than Δ, the result could not be guaranteed to be exact. Moreover, the

execution time and memory requirement significantly increased when setting Δ = 4000

(with Δ = 0, the runtime is 125 s and the maximum memory usage is 576 MB).

Furthermore, we tried to continue raising Δ and still got similar results.

We did similar experiments with Chess, Connect, Mushrooms and observed the

same phenomena. Our conclusion from this experiment is that in practice using the Δ

parameter does not help to guarantee an exact result. This means that although the

algorithm is guaranteed to find k rules that are non-redundant, there rules are not

guaranteed to be the top-k non-redundant rules.

Table 2. Rules discarded by each strategy for minconf = 0.8, k=2000 and Δ = 0

Dataset # rules discarded by Strategy 1 # rules discarded by Strategy 2

Chess 961 10454

Connect 2732 15275

Mushrooms 39848 38627

Pumsb 803 3629

Experiment 4: Performance comparison with TopKRules. The next experiment

consisted of comparing the performance of TNR with TopKRules. The parameter

minconf and k were set to 0.8 and 2000 respectively. The execution times and

maximum memory usage of both algorithms are shown in Table 3. The results show

that there is a significant additional cost for using TNR. The reason is that checking

Strategy 1 and Strategy 2 is costly. Moreover, because a large amount of rules are

discarded as shown in the second experiment, the algorithm needs to generate much

more rules before it can terminate.

Table 3. Performance comparison

Datasets
Runtime (s) Maximum Memory Usage (MB)

TNR TopKRules TNR TopKRules

Chess 8 1.49 269 72.12

Connect 283 25.51 699 403.38

Mushrooms 105 3.46 684 255

Pumsb 125 46.39 576 535

Experiment 5: Influence of the number of transactions. Next, we ran TNR on

the datasets while varying the number of transactions in each dataset. We used k=500,

minconf=0.8. We varied the database size by using 70%, 85 % and 100 % of the

transactions in each dataset. Results are shown in Figure 2. Globally we found that for

all datasets, the execution time and memory usage increased more or less linearly for

TNR. This shows that TNR has good scalability.

Fig. 2. Influence of the number of transactions

Discussion. Our conclusion from these experiments is that TNR is more costly than

TopKRules. But it provides the benefit of eliminating redundancy.

5. Conclusion

Two important problems with classical association rule mining algorithm are that (1) it

is usually difficult and time-consuming to select the parameters to generate a desired

amount of rules and (2) there can a large amount of redundancy in the results.

Previously, these two problems have been addressed separately. In this paper, we have

addressed them together by proposing an approximate algorithm named TNR for

mining the top-k non-redundant association rules. The algorithm is said to be

approximate because it is guaranteed to find non-redundant rules. But the rules found

may not be the top-k non redundant rules. We have compared the performance of TNR

with TopKRules and found that TNR is more costly than TopKRules. However, it

provides the benefit of eliminating a great deal of redundancy. Source code of TNR

and TopKRules can be downloaded at http://www.philippe-fournier-viger.com/spmf/

as part of the SPMF data mining platform.

References

[1] R. Agrawal, T. Imielminski and A. Swami, “Mining Association Rules Between Sets of
Items in Large Databases,” Proc. ACM Intern. Conf. on Management of Data, ACM Press,
June 1993, pp. 207-216.

[2] J. Han, and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed., San
Francisco:Morgan Kaufmann Publ., 2006.

[3] Fournier-Viger, P., Wu, C.-W., Tseng, V. S. “Mining Top-K Association Rules,” Proc.
25th Canadian Conf. on Artificial Intelligence (AI 2012), Springer, 2012, pp. 61-73.

[4] G. I. Webb and S. Zhang, “k-Optimal-Rule-Discovery,” Data Mining and Knowledge
Discovery, vol. 10, no. 1, 2005, pp. 39-79.

[5] G. I. Webb, “Filtered top-k association discovery,” WIREs Data Mining and Knowledge
Discovery, vol.1, 2011, pp. 183-192.

[6] Y. You, J. Zhang, Z. Yang and G. Liu, “Mining Top-k Fault Tolerant Association Rules
by Redundant Pattern Disambiguation in Data Streams,” Proc. 2010 Intern. Conf.
Intelligent Computing and Cognitive Informatics, March 2010, IEEE Press, pp. 470-473.

0

10

20

30

40

70% 85% 100%

R
u

n
ti

m
e

 (
s)

Database size

0

200

400

600

70% 85% 100%

M
e

m
. (

m
b

)

Database size

Pumsb

Connect

Mushrooms

Pumsb

http://www.philippe-fournier-viger.com/spmf/

[7] Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L. and Stumme, G., “Mining minimal non-
redundant association rules using frequent closed itemsets,” Proc. of the Intern. Conf.
DOOD’2000, 2000, Springer, pp. 972-986.

[8] G. Gasmi, S. BenYahia, E. M. Nguifo and Y. Slimani, “A new informative generic base of
association rules,” Proc. Of PAKDD-05, 2005, Springer, pp. 81-90.

[9] C. L. Cherif, W. Bellegua, S. Ben Yahia and G. Guesmi, “VIE_MGB: A Visual
Interactive Exploration of Minimal Generic Basis of Association Rules,” Proc. of the
Intern. Conf. on Concept Lattices and Application (CLA 2005), 2005, pp. 179-196.

[10] Kryszkiewicz, M., “Representative Association Rules and Minimum Condition Maximum
Consequence Association Rules,”

[11] C. Lucchese, S. Orlando and R. Perego, “Fast and Memory Efficient Mining of Frequent
Closed Itemsets,” IEEE Trans. Knowl. and Data Eng., vol. 18, no. 1, 2006, pp. 21-36.

