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Abstract. Association rule mining is a fundamental data mining task. However, 

depending on the choice of the thresholds, current algorithms can become very 

slow and generate an extremely large amount of results or generate too few 

results, omitting valuable information. Furthermore, it is well-known that a 

large proportion of association rules generated are redundant. In previous 

works, these two problems have been addressed separately. In this paper, we 

address both of them at the same time by proposing an approximate algorithm 

named TNR for mining top-k non redundant association rules.  

 

Keywords: association rules, top-k, non-redundant rules, algorithm 

1. Introduction  

Association rule mining [1] consists of discovering associations between sets of items 

in transactions. It is one of the most important data mining tasks. It has been integrated 

in many commercial data mining software and has numerous applications [2]. 

The problem of association rule mining is stated as follows. Let I = {a1, a2, …an} 

be a finite set of items. A transaction database is a set of transactions T={t1,t2…tm} 

where each transaction tj ⊆ I (1≤ j ≤ m) represents a set of items purchased by a 

customer at a given time. An itemset is a set of items X ⊆ I. The support of an itemset 

X is denoted as sup(X) and is defined as the number of transactions that contain X. An 

association rule X→Y is a relationship between two itemsets X, Y such that X, Y ⊆ I 

and X∩Y=Ø. The support of a rule X→Y is defined as sup(X→Y) = sup(X∪Y) / |T|. The 

confidence of a rule X→Y is defined as conf(X→Y) = sup(X∪Y) / sup(X). The problem 

of mining association rules [1] is to find all association rules in a database having a 

support no less than a user-defined threshold minsup and a confidence no less than a 

user-defined threshold minconf. For instance, Figure 1 shows a transaction database 

(left) and some association rules found for minsup = 0.5 and minconf = 0.5 (right).  

Despite that much research has been done on association rule mining, an important 

issue that has been overlooked is how users should choose the minsup and minconf 

thresholds to generate a desired amount of rules [3, 4, 5, 6]. This is an important 

problem because in practice users have limited resources (time and storage space) for 

analyzing the results and thus are often only interested in discovering a certain amount 

of rules, and fine tuning the parameters is time-consuming. Depending on the choice of 

the thresholds, current algorithms can become very slow and generate an extremely 

large amount of results or generate none or too few results, omitting valuable 

information. To address this problem, it was proposed to replace the task of association 

rule mining with the task of top-k association rules mining, where k is the number of 

association rules to be found, and is set by the user [3, 4, 5, 6]. Several top-k rule 



 

 

mining algorithms were proposed [3, 4, 5, 6]. However, a major problem remains with 

these algorithms. It is that top-k association rules often contain a large proportion of 

redundant rules. i.e. rules that provide information that is redundant to the user. This 

problem has been confirmed in our experimental study (cf. section 4). We found that 

up to 83 % of top-k association rules are redundant for datasets commonly used in the 

association rule mining literature. This means that the user has to analyze a large 

proportion of redundant rules.  

 
ID Transactions  ID Rules Support Confidence 

t1 {a, b, c, e, f, g}  r1 {a}→ {e, f} 0.75 1 

t2 {a, b, c, d, e, f}  r2 {a}→ {c, e, f} 0.5 0.6 

t3 {a, b, e, f}  r3 {a, b}→ {e, f} 0.75 1 

t4 {b, f, g}  r4 {a}→ {c, f} 0.5 0.6 

Fig. 1. (a) A transaction database and (b) some association rules found 

 

The problem of redundancy in association rule mining has been studied extensively 

and various definitions of redundancy have been proposed [7, 8, 9, 10]. However, it 

remains an open challenge to combine the idea of mining a set of non-redundant rules 

with the idea of top-k association rule mining, to propose an efficient algorithm to mine 

top-k non-redundant association rules. The benefit of such an algorithm would be to 

present a small set of k non-redundant rules to the user. However, devising an 

algorithm to mine these rules is difficult. The reason is that eliminating redundancy 

cannot be performed as a post-processing step after mining the top-k association rules, 

because it would result in less than k rules. The process of eliminating redundancy has 

therefore to be integrated in the mining process. 

In this paper, we undertake this challenge by proposing an approximate algorithm 

for mining the top-k non redundant association rules that we name TNR (Top-k Non-

redundant Rules). It is based on a recently proposed approach for generating 

association rules that is named “rule expansions”, and adds strategies to avoid 

generating redundant rules. An evaluation of the algorithm with datasets commonly 

used in the literature shows that TNR has excellent performance and scalability.  

The rest of the paper is organized as follows. Section 2 reviews related work and 

presents the problem definition. Section 3 presents TNR. Section 4 presents an 

experimental evaluation. Section 5 presents the conclusion. 

2. Related Work and Problem Definition  

Top-k association rule mining. Several algorithms have been proposed for top-k 

association rule mining [3, 4, 5]. However, most of them do not use the standard 

definition of an association rule. For instance, KORD [3, 4] finds rules with a single 

item in the consequent, whereas the algorithm of You et al. [5] mines association rules 

from a stream instead of a transaction database. To the best of our knowledge, only 

TopKRules [5] discovers top-k association rules based on the standard definition of an 

association rule (with multiple items, in a transaction database). TopKRules takes as 

parameters k and minconf, and it returns the k rules with the highest support that meet 

the minconf threshold. The reason why this algorithm defines the task of mining the 



 

 

top k rules on the support instead of the confidence is that minsup is much more 

difficult to set than minconf because minsup depends on database characteristics that 

are unknown to most users, whereas minconf represents the minimal confidence that 

users want in rules and is therefore generally easy to determine. TopKRules defines the 

problem of top-k association rule mining as follows [5]. The problem of top-k 

association rule mining is to discover a set L containing k rules in T such that for each 

rule r  L | conf(r) ≥ minconf, there does not exist a rule s L | conf(s) ≥ minconf ∧ 

sup(s) > sup(r). 

Discovering Non-Redundant Association Rules. The problem of redundancy has 

been extensively studied in association rule mining [7, 8, 9, 10]. Researchers have 

proposed to mine several sets of non-redundant association rules such as the Generic 

Basis [7], the Informative Basis [7], the Informative and Generic Basis [8], the 

Minimal Generic Basis [9] and Minimum Condition Maximum Consequent Rules [10]. 

These rule sets can be compared based on several criteria such as their compactness, 

the possibility of recovering redundant rules with their properties (support and 

confidence), and their meaningfulness to users (see [10] for a detailed comparison). In 

this paper, we choose to base our work on Minimum Condition Maximum Consequent 

Rules (MCMR). The reason is that the most important criteria in top-k association rule 

mining is the meaningfulness of rules for users. MCMR meet this goal because it 

defines non-redundant rules as rules with a minimum antecedent and a maximum 

consequent [10]. In other words, MCMR are the rules that allow deriving the 

maximum amount of information based on the minimum amount of information. It is 

argued that these rules are the most meaningful for several tasks [10]. In the context of 

top-k association rule mining, other criteria such as the compactness and recoverability 

of redundant rules are not relevant because the goal of a top-k algorithm is to present a 

small set of k meaningful rules to the user. MCMR are defined based on the following 

definition of redundancy [10]. An association rule ra : X → Y is redundant with respect 

to another rule rb : X1 → Y1 if and only if conf(ra)= conf(rb) ∧ sup(ra) = sup(rb) ∧ X1 ⊆ 

X ∧ Y ⊆ Y1. Example. Consider the association rules presented in the right part of 

Figure 1. The rule {a}→{c, f} is redundant with respect to {a}→{c, e, f}. Moreover, 

the rule {a, b}→ {e, f} is redundant with respect to {a}→ {e, f}. 

Problem Definition. Based on the previous definition of redundancy and the 

definition of top-k association rule mining, we define the problem of top-k non 

redundant association mining as follows. The problem of mining top-k non-redundant 

association rules is to discover a set L containing k association rules in a transaction 

database. For each rule ra  L | conf(ra) ≥ minconf, there does not exist a rule rb  L | 

conf(rb) ≥ minconf ∧ sup(rb) > sup(ra), otherwise rb is redundant with respect to ra. 

Moreover,  rc, rd  L such that rc is redundant with respect to rd. 

3. The TNR Algorithm 

To address the problem of top-k non-redundant rule mining, we propose an algorithm 

named TNR. It is based on the same depth-first search procedure as TopKRules. The 

difference between TNR and TopKRules lies in how to avoid generating redundant 

rules. The next subsection briefly explains the search procedure of TopKRules.  



 

 

 

3.1 The search procedure 

To explain the search procedure, we introduce a few definitions. A rule X→Y is of size 

p*q if |X| = p and |Y| = q. For example, the size of {a} → {e, f} is 1*2. Moreover, we 

say that a rule of size p*q is larger than a rule of size r*s if p > r and q ≥ s, or if p ≥ r 

and q > s. An association rule r is valid if sup(r) ≥ minsup and conf(r) ≥ minconf. 

The search procedure takes as parameter a transaction database, an integer k and the 

minconf threshold. The search procedure first sets an internal minsup variable to 0 to 

ensure that all the top-k rules are found. Then, the procedure starts searching for rules. 

As soon as a rule is found, it is added to a list of rules L ordered by the support. The list 

is used to maintain the top-k rules found until now and all the rules that have the same 

support. Once k valid rules are found in L, the internal minsup variable is raised to the 

support of the rule with the lowest support in L. Raising the minsup value is used to 

prune the search space when searching for more rules. Thereafter, each time that a 

valid rule is found, the rule is inserted in L, the rules in L not respecting minsup 

anymore are removed from L, and minsup is raised to the support of the rule with the 

lowest support in L. The algorithm continues searching for more rules until no rule are 

found. This means that it has found the top-k rules in L. The top-k rules are the k rules 

with the highest support in L. 

To search for rules, the search procedure first scans the database to identify single 

items that appear in at least minsup transactions. It uses these items to generate rules of 

size 1*1 (containing a single item in the antecedent and a single item in the 

consequent). Then, each rule is recursively grown by adding items to its antecedent or 

consequent (a depth-first search). To determine the items that should be added to a 

rule, the search procedure scans the transactions containing the rule to find single items 

that could expand its antecedent or consequent. The two processes for expanding rules 

are named left expansion and right expansion. These processes are applied recursively 

to explore the search space of association rules. Left and right expansions are formally 

defined as follows. A left expansion is the process of adding an item i to the left side of 

a rule X→Y to obtain a larger rule X∪{i}→Y. A right expansion is the process of 

adding an item i to the right side of a rule X→Y to obtain a larger rule X→Y∪{i}. 

The search procedure described above is correct and complete for mining top-k 

association rules [5]. It is very efficient because the internal minsup variable is raised 

during the search. This allows pruning large part of the search space instead of 

generating all association rules. This pruning is possible because the support is 

monotonic with respect to left and right expansions (see [5] for details).  

 

3.2 Adapting the search procedure to find top-k non-redundant rules 

We now explain how we have adapted the search procedure to design an efficient top-

k non-redundant rule mining algorithm. These modifications are based on the 

following observation. 

 

Property 3. During the search, if only non-redundant rules are added to L, then L 

will contain the top-k non-redundant rules when the search procedure terminates. 

Rationale. The search procedure is correct and complete for mining the top-k 

association rules [5]. If only non-redundant rules are added to L instead of both 



 

 

redundant and non-redundant rules, it follows that the result will be the top-k non-

redundant rules instead of the top-k association rules. 

Based on this observation, we have aimed at modifying the search procedure to 

ensure that only non-redundant rules are added to L. This means that we need to make 

sure that every generated rule ra is added to L only if sup(ra) ≥ minsup and ra is not 

redundant with respect to another rule. To determine if ra is redundant with respect to 

another rule, there are two cases to consider.  

The first case is that ra is redundant with respect to a rule rb that was generated 

before ra. By the definition of redundancy (cf. Definition 2), if ra is redundant with 

respect to rb, then sup(rb) = sup(ra). Because sup(ra) ≥ minsup, it follows that sup(rb) ≥ 

minsup, and that rb   L. Therefore, the first case can be detected by implementing the 

following strategy. 

 

Strategy 1. For each rule ra that is generated such that sup(ra) ≥ minsup, if   rb   L | 

sup(rb) = sup(ra) and ra is redundant with respect to rb, then ra is not added to L. 

Otherwise, ra is added to L. 

 

The second case is that ra is redundant with respect to a rule rb that has not yet been 

generated. There are two ways that we could try to detect this case. The first way is to 

postpone the decision of adding ra to L until rb is generated. However, this would not 

work because it is not known beforehand if a rule rb will make ra redundant and rb 

could appear much later after ra. The second way is to scan transactions to determine if 

item(s) could be added to ra to generate a rule rb such tat ra redundant is redundant with 

respect to rb. However, this approach would also be inefficient because the confidence 

is non-monotonic with respect to left/right expansions [5]. This mean that it is possible 

that rb may contain several more items than ra.. For this reason, it would be too costly 

to test all the possibilities of adding items to ra to detect the second case. 

Because the second case cannot be checked efficiently, our solution is to propose an 

approximate approach that is efficient and to prove that this approach can generate 

exact results if certain conditions are met. The idea of this approach is the following. 

Each rule ra that satisfy the requirements of Strategy 1 is added to L without checking 

the second case. Then, eventually, if a rule rb is generated such that the rule ra is still in 

L and that ra is redundant with respect to rb, then ra is removed from L. This idea is 

formalized as the following strategy. 

 

Strategy 2. For each rule rb that is generated such that sup(rb) ≥ minsup, if   ra   L | 

sup(rb) = sup(ra) and ra is redundant with respect to rb, then ra is removed from L.  

 

By incorporating Strategy 2, the algorithm becomes approximate. The reason is 

that each rule ra that is removed by Strategy 2 previously occupied a place in the set 

L. By its presence in L, the rule ra may have forced raising the internal minsup 

variable. If that happened, then the algorithm may have missed some rules that have a 

support lower than ra but are non-redundant. 

Given that the algorithm is approximate, it would be desirable to modify it to be 

able to increase the likelihood that the result is exact. To achieve this, we propose to 

add a parameter that we name Δ that increase by Δ the number of rules k that is 



 

 

necessary to raise the internal minsup variable. For example, if the user sets k = 1000 

and Δ = 100, it will now be required to have k + Δ = 1100 rules in L to raise the 

internal minsup variable instead of just k=1000. This means that up to 100 redundant 

rules can be at the same time in L and the result will still be exact. This latter 

observation is formalized by the following property. 

 

 Property 4. If the number of redundant rules in L is never more than Δ rules, then 

the algorithm result is exact and the k rules in L having the highest support will be the 

top-k non redundant rules. Rationale. As previously explained, the danger is that too 

many redundant rules are in L such that they would force to raise minsup and prune 

part of the search space containing top-k non-redundant rules. If there is no more than 

Δ redundant rules at the same time in L and that k + Δ are needed to raise minsup, then 

redundant rules cannot force to raise minsup. 

 

The previous property proposes a condition under which Strategy 2 is guaranteed to 

generate an exact result. Based on this property, an important question is “Would it be 

efficient to integrate a check for this condition in the algorithm?”. The answer is that it 

would be too costly to verify that no groups of more than Δ redundant rules are present 

at the same time in L. The reason is that rules are only known to be redundant when 

they are removed by Strategy 2. Therefore, checking Property 4 would be very 

expensive to perform. For this reason, we choose to utilize the following weaker 

version of Property 4 in our implementation. 

 

Property 5. If the number of redundant rules removed by Strategy 2 during the 

execution of the algorithm is less or equal to Δ, then the final result is exact and the 

first k rules of L will be the top-k non redundant rules. Rationale. It can be easily seen 

that if Property 5 is met, Property 4 is also met. 

 

Property 5 can be easily incorporated in the algorithm. To implement this 

functionality, we have added a counter that is incremented by 1 after every rule 

removal from L by Strategy 2. Then, when the algorithm terminates, the counter is 

compared with Δ. If the counter value is lower or equal to Δ, the user is informed that 

the result is guaranteed to be exact. Otherwise, the user is informed that the result may 

not be exact. In this case, the user has the option to rerun the algorithm with a higher Δ 

value. In the experimental study presented in section 4 of this paper, we will address 

the question of how to select Δ.  

The previous paragraphs have presented the main idea of the TNR algorithm. Due 

to space limitation, we do not provide the pseudo-code of TNR. But the Java source 

code of our implementation can be downloaded freely from http://www.philippe-

fournier-viger.com/spmf/. 

Note that in our implementation, we have added a few optimizations that are used in 

TopKRules [5] and that are compatible with TNR. The first optimization is to try to 

generate the most promising rules first when exploring the search space of association 

rules. This is because if rules with high support are found earlier, the algorithm can 

raise its internal minsup variable faster to prune the search space. To perform this, an 

internal variable R is added to store all the rules that can be expanded to have a chance 

of finding more valid rules. This set is then used to determine the rules that are the 

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/


 

 

most likely to produce valid rules with a high support to raise minsup more quickly and 

prune a larger part of the search space [5]. The second optimization is to use bit vectors 

as data structure for representing the set of transactions that contains each rule (tidsets) 

[11]. The third optimization is to implement L and R with data structures supporting 

efficient insertion, deletion and finding the smallest element and maximum element. In 

our implementation, we used a Red-black tree for L and R.  

4. Experimental Evaluation 

We have carried several experiments to assess the performance of TNR and to 

compare its performance with TopKRules under different scenarios. For these 

experiments, we have implemented TNR in Java. For TopKrules, we have obtained the 

Java implementation from their authors. All experiments were performed on a 

computer with a Core i5 processor running Windows 7 and 2 GB of free RAM. 

Experiments were carried on four real-life datasets commonly used in the association 

rule mining literature, namely Chess, Connect, Mushrooms and Pumsb (available at: 

http://fimi.ua.ac.be/data/). The datasets’ characteristics are summarized in Table 1.  

Experiment 1: What is the percentage of redundant rules? The goal of the first 

experiment was to assess the percentage of rules returned by TopKRules that are 

redundant to determine how important the problem of redundancy is. For this 

experiment, we ran TopKRules on the four datasets with minconf = 0.8 and k = 2000, 

and then examined the rules returned by the algorithm. We chose minconf = 0.8 and k 

= 2000 because these values are plausible values that a user could choose. The results 

for Chess, Connect, Mushrooms and Pumsb are that respectively, 13.8 %, 25.9 %, 82.6 

% and 24.4 % of the rules returned by TopKRules are redundant. These results indicate 

that eliminating redundancy in top-k association rule mining is a major problem.  

Table 1. Datasets’ Characteristics 

Datasets 
Number of 

transactions 

Number of  

distinct items 

Average  

transaction size 

Chess 3,196 75 37 

Connect 67,557 129 43 

Mushrooms 8,416 128 23 

Pumsb 49,046 7,116 74 

 

Experiment 2: How many rules are discarded by Strategy 1 and Strategy 2 for 

Δ = 0? The second experiment’s goal was to determine how many rules were discarded 

by Strategy 1 and Strategy 2 for each dataset. To perform this study, we set minconf = 

0.8, k =  2000 and Δ = 0. We then recorded the number of rules discarded. Results are 

shown in Table 2. From this experiment, we can see that the number of discarded rules 

is high for all datasets and that it is especially high for dense datasets (e.g. Mushrooms) 

because they contains more redundant rules compared to sparse datasets (e.g. Pumsb). 

Experiment 3: What if we use the Δ parameter? The next experiment consisted 

of using the Δ parameter to see if an exact result could be guaranteed by using Property 



 

 

5.  For this experiment, we used k = 2000 and minconf = 0.8. We then set Δ to values 

slightly larger than the number of rules discarded by Strategy 2 in Experiment 2.  

For example, for the Pumsb dataset, we set Δ = 4000. The total runtime was 501 s 

and the maximum memory usage was around 1.3 GB. The number of rules eliminated 

by Strategy 1 and Strategy 2 was respectively 3454 and 16,066. Because these values 

are larger than Δ, the result could not be guaranteed to be exact. Moreover, the 

execution time and memory requirement significantly increased when setting Δ = 4000 

(with Δ = 0, the runtime is 125 s and the maximum memory usage is 576 MB). 

Furthermore, we tried to continue raising Δ and still got similar results. 

We did similar experiments with Chess, Connect, Mushrooms and observed the 

same phenomena. Our conclusion from this experiment is that in practice using the Δ 

parameter does not help to guarantee an exact result. This means that although the 

algorithm is guaranteed to find k rules that are non-redundant, there rules are not 

guaranteed to be the top-k non-redundant rules. 

Table 2. Rules discarded by each strategy for minconf = 0.8, k=2000 and Δ = 0 

Dataset # rules discarded by Strategy 1 # rules discarded by Strategy 2 

Chess 961 10454 

Connect 2732 15275 

Mushrooms 39848 38627 

Pumsb 803 3629 

 

Experiment 4: Performance comparison with TopKRules. The next experiment 

consisted of comparing the performance of TNR with TopKRules. The parameter 

minconf and k were set to 0.8 and 2000 respectively. The execution times and 

maximum memory usage of both algorithms are shown in Table 3.  The results show 

that there is a significant additional cost for using TNR. The reason is that checking 

Strategy 1 and Strategy 2 is costly. Moreover, because a large amount of rules are 

discarded as shown in the second experiment, the algorithm needs to generate much 

more rules before it can terminate.  

Table 3. Performance comparison  

Datasets 
Runtime (s) Maximum Memory Usage (MB) 

TNR  TopKRules TNR  TopKRules 

Chess 8 1.49 269 72.12 

Connect 283 25.51 699 403.38 

Mushrooms 105 3.46 684 255 

Pumsb 125 46.39 576 535 

 

Experiment 5: Influence of the number of transactions. Next, we ran TNR on 

the datasets while varying the number of transactions in each dataset. We used k=500, 

minconf=0.8. We varied the database size by using 70%, 85 % and 100 % of the 

transactions in each dataset. Results are shown in Figure 2. Globally we found that for 

all datasets, the execution time and memory usage increased more or less linearly for 

TNR. This shows that TNR has good scalability.  



 

 

     

Fig. 2. Influence of the number of transactions 

Discussion. Our conclusion from these experiments is that TNR is more costly than 

TopKRules. But it provides the benefit of eliminating redundancy.  

5. Conclusion  

Two important problems with classical association rule mining algorithm are that (1) it 

is usually difficult and time-consuming to select the parameters to generate a desired 

amount of rules and (2) there can a large amount of redundancy in the results. 

Previously, these two problems have been addressed separately. In this paper, we have 

addressed them together by proposing an approximate algorithm named TNR for 

mining the top-k non-redundant association rules.  The algorithm is said to be 

approximate because it is guaranteed to find non-redundant rules. But the rules found 

may not be the top-k non redundant rules. We have compared the performance of TNR 

with TopKRules and found that TNR is more costly than TopKRules. However, it 

provides the benefit of eliminating a great deal of redundancy. Source code of TNR 

and TopKRules can be downloaded at http://www.philippe-fournier-viger.com/spmf/ 

as part of the SPMF data mining platform. 
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