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Abstract. This paper proposes an organizational framework and an ap-
proach for development of cooperation models for teams of Autonomous
Adaptive Vehicles (AAV), using goal-driven control components. The
framework and the approach are illustrated through the development
and assessment of task allocation in multi-robot teams. Two cooper-
ation models have been implemented: i) a team model based on the
Adaptive Multi-Agent Systems (AMAS) theory, where task responsibil-
ity is agreed between team peers, by exchanging individual estimations
of the degree of difficulty and priority to achieve the task; ii) a hierarchi-
cal model where an AAV manager asks team members estimations and
then assigns the task. Experimentation for team-cooperation assessment
has been done taking into consideration environmental changes, commu-
nications and internal failure. The most significant results reported in
this work concerns team coordination in stressing situations. The exper-
imental setting and team performance figures are detailed in the paper.

Keywords: adaptive multi-agent systems, agent framework, robotics,
distributed task allocation, cooperation models.

1 Introduction

Component based approaches are increasingly used to deal with heterogeneity
and complexity of robotic systems [2]. A key advantage of componentization is
to allow development of simulated models which could be seamlessly deployed
fully or in part into the robot hardware. Ongoing work on robot simulation tools
are also in this direction [3]. This paper proposes a component based layered
architecture for Autonomous Adaptive Vehicles (AAV) which control is based
on a deliberative goal driven agent pattern [10]. High-level deliberative control
facilitates development and experimentation with different behaviour models by
bridging the gap between analysis, design and implementation. It also allows



reusability, and ease traceability of the control process which is based on high
level constructs close to human behaviour. However common pitfalls are: hard in-
tegration with software engineering standards, poor performance, and difficulty
to control the deliberative process. Therefore, integration of symbolic delibera-
tive components with imperative components is still a challenge.

This paper describes an architectural framework for implementing teams of
AAVs capable to achieve individual and collective mission goals by taking into
account unexpected changes in the environment, internal failure and availabil-
ity of mission resources. The work is part of the research effort undergone in
the ROSACE (Robots and Embedded Self-Adaptive Communicating Systems)
project (http://www.irit.fr/Rosace,737), where the experimental setting is based
on a simulated fire forest crisis management scenario where AAV teams should
cooperate among themselves and with a Control Center broadcasting requests
for helping potential victims jeopardized by fire. Ongoing work in ROSACE
joints research efforts on MultiAgent System (MAS) coordination in other do-
mains such as poisonous material accidental release in a city [4]. In the Combined
System (http://combined.decis.nl) project, agents are used to implement a col-
laborative decision system for handling crisis situations. They are responsible
for the coordinate tasks, plan actions and reroute information of different actors
from different rescue organizations. Users can also benefit from agents’ informa-
tion using a dedicated geo-spatial language named OpenMap, and a dedicated
interaction language named Icon. Multi-agent-based Distributed Perception Net-
works (DPN) are also another relevant application of multi-agent systems to
crisis management by intelligently aggregating information coming from a net-
work of sensors [11]. Our works focus on sensor and data, and the intelligence
is embedded outside the devices, which implies a notable delegation for a tier of
computing services. While most of the experimental results focus on simulated
coordination for best cases, the most significant results reported in this work
concerns team coordination in stressing situations. Performance testing has been
done considering different team size, tasks to be achieved, and AAV deployment
in different processing nodes in order to assess the impact of communication.

The rest of the paper is organized as follows. Section 2 outlines the architec-
tural principles for AAV design, and the rationale for adopting a goal oriented
approach for implementing AAV control and team-cooperation. This approach
is illustrated with the development of two cooperation models in the ROSACE
project experimental setting: i) AMAS (Adaptative Multiagent System) model
where each team member evaluates the cost to achieve the goal, sends its eval-
uation to their peers and then assumes the goal if it has the most suitable eval-
uation; ii) hierarchical model where a manager, asks each peer to estimate the
evaluation of a given goal, then it proceeds to assign the goal to the most suitable
peer. Section 3 details assessment metrics, and testing results using different con-
figuration made up of various team size and number of victims to rescue. Stress
testing has been done to compare both functional issues and performance issues
on the AMAS model and the hierarchical model. Finally, conclusions and open
issues are summarized in Sect. 4.



2 A Goal Oriented Approach for AAV Control and
Cooperation

The proposed approach relies on a multi-layered component based architecture,
which is populated by manageable components offering their services to other
components through standard interfaces (see Fig. 1). The AAV behaviour is gov-
erned by the Robot Global Control Component (RGC) which gathers elaborated
information from the rest of the components, makes choices, orders execution of
actions, monitors results, and sends control information to relevant components
when is necessary.

RGC is implemented with a declarative goal processor [5] that manages a goal
space, and a working memory. Strategic and tactics criteria for generating goals
and executing tasks and actions, in order to try to achieve goals, are defined
by means of situation-action rules, where the situation part specifies a partial
state of the working memory including the objective and its internal state, and

Fig. 1. General architecture



the action part contains statements for executing tasks. The processing cycle is
droved by incoming information which is stored in the working memory. Then
control rules are used to decide either to generate new goals, to focus on a new
goal, to verify the resolution of pending goals, or to proceed to the resolution
of pending goals by executing new tasks and actions. Componentization allows
seamless integration of real or simulated components, then facilitating modelling,
encapsulation and reuse of control strategies and cooperation models.

2.1 Using the Approach for Developing Team-Cooperation Models

Work on team-cooperation focus on evaluating different control architectures and
cooperation models allowing an AAV-team achieve efficiently mission goals. The
experimental setting for AAV operation is based on fire forest crisis management
scenarios. The AAV team is situated in the intervention area to help people
jeopardized by fire. The Control Center (CC) broadcast requests to help potential
victims indicating the priority, location, and additional detail when needed.

The team should be capable of interpreting and evaluating the CC requests
taking into account their current work-load, then decide which member of the
team would assume the goal for helping the victim, and finally the team-mate
who have accepted the responsibility for the goal should proceed to help the
victim. When new requests for helping victims are sent by the CC, the team
should reallocate their current goals in order to satisfy the new demands.

Initial experiments have started implementing the AMAS cooperation model
[9], [1], [8]. AAVs are supposed to have a cooperative attitude which allows them
to take decisions in order to sharing resources and/or assuming goals (tasks),
avoiding possible conflicts. The generic process for team-cooperation to achieve
this common goal is the following.

Each AGV: (i) estimates the cost to achieve the new goal; (ii) sends its esti-
mated cost to the team members; (iii) receives estimated costs from team mem-
bers, and (iv) takes a decision to assume the goal based on the estimations received
from its peers. Three cases might happen. (C1) The agent has the best estimation:
it sends to their peers its proposal to achieve the goal, and waits to receive their
confirmation. (C2) There are other team-mates better suited than him to achieve
the goal: it sends them the agreement for them to achieve the goal. (C3) The agent
has the optimal cost, but it is tied with other team-mates: the tied peers add an
randomly generated number to their estimations, and send the new estimation to
tied peers, in order to allow one of them to take the responsibility of the goal.

Goal Allocation and Cost Estimation. A formal definition for the multi-
robot goal allocation problem can be defined as “given a number of goals, G1,
G2, ..., Gt, a team of robots, R1, R2, ..., Rr, and a function Feval(Gi, Rk), that
specifies the evaluation function (cost) of allocating goal Gk for the robot Rr, find
the assignment that allocates the goal for the robot with lowest cost according the
established criterion by the evaluation function”. The cost evaluation function is
calculated as follows. Goals consist on helping victims which should be rescued
according to its priority. When there two victims with the same priority the
victim that was notified first will be helped first. PriVv is the priority of victim



Vv. QR = V1, V2, ..., Vnew , ..., Vn−1, Vn is an ordered list by priority of victims
that are assigned for robot R, where the new notified victim (Vnew) is the victim
that is being considered by the team in order to decide which robot will be
responsible for its rescue. D(Vi,Vk) is the distance between the victims Vi and Vk.
D(Rr,V1) is the distance between the robot Rr and the first victim (V1) located
in QR. The distance is calculated using the Euclidean distance formula, in three-
dimensions. Length(Q) is the number of victims of Q. Using these concepts, for
goal (victim) allocation the evaluation function is defined as follows:

If VPD > RE then Feval = −1.0

else Feval = W1 ∗ VPD +W2 ∗ AT (1)

where RE is the robot available energy; V PD is the path distance to visit each
victim belonging to Q (see equation 2); AT is the required time for attending
victims belonging to Q (see equation 3); W1, W2 and W3 are weights for V PD,
AT and PriVv values. For the experiments the weight values are W1 = 10.0;
W2=3.0; W3=3.0.

V PD = D(Rr, V1) +

n=Length(Q)−1∑

i=1

D(Vi, Vi+1) (2)

AT =

n=Length(Q)∑

i=1

W3 ∗ PriVi (3)

Performance evaluation of the goal allocation algorithm is based on the following
three parameters. (1) The time required for a goal to be assigned to a team-mate.
This time is calculated using the processor real time clock, as the time difference
between the instant when the control center sends the request, and the instant
when the goal to help the victim was accepted by a team-mate. (2) Goal distri-
bution among team members. (3) The cost of the robot team, which corresponds
to the highest cost of the goals assumed by each team member.

Dealing with Uncooperative Peers. Cooperation comes out from the need
by each agent to get information from their team mates to achieve their own
goals. The cooperation process is highly dependent on team-communication
which quality cannot be guarantee in a hazardous and changing environment
as the fire-forest. Cooperation might fail when communication is missing, and
also due to internal processing factors such as lack of synchronization in the coop-
eration process, and malfunctioning of internal components like sensors, motion,
vision, position, computing, and others. Consequently each agent should be ca-
pable to deal with situations where: i) they cannot communicate with their peers;
ii) communication is possible but team-mates do not send the expected infor-
mation, and/or they do not respond to requests; and iii) they send unexpected
or out-dated information. In these cases individual decisions should be taken to
achieve the goals/tasks requested by the CC. To cope with “worst cases” which
correspond to real situations the AAV team model has been extended to take
into account: deadlines for decision making, missing information from the team
mates, the current workload of the AAV, and stressing requests from the CC.



A hierarchical team model has been implemented to have a reference for as-
sessing the strengths and weakness of the AMAS model, and for the utilization
of a “heavy deliberative control architecture” for implementing these models.

2.2 Implementation Approach Using ICARO’s Deliberative Control

The ICARO framework has been used in ROSACE and in other areas to model
AAVs using reactive patterns [6,7] which control is based on a Finite State
Automata. The deliberative control pattern is based on a goal processor. AAV
behaviour is characterized by: i) the set of goals which can be achieved; ii) the
activities, process and actions needed to achieve the goals; iii) the information
model representing the domain and environmental entities, the computing enti-
ties needed for representing goal achievement states, and intermediate results pro-
duced by activities and actions, and iv) the process defining the life cycle of goals.
This is done through situation-action rules expressing conditions for: a) goal gen-
eration; b) goal focalization; c) goal achievement, and d) executing activities and
actions tomake it possible that pending goals satisfy their achievement conditions.

Goals are represented as classes from which multiple object instances can be
generated. Activities and actions needed to achieve goals are represented as tasks.
The work-flow of activities and actions needed to achieve goals are first defined
with UML activity diagrams, and then implemented with situation-action rules.
In AMAS team model, the goal resolution process is defined with 41 structured
rules. From each behaviour model multiple distributed deployment instances
might be generated. The ICARO framework provides deployment, monitoring
and communication transparency among component instances.

The AMAS team-model is implemented with a common behaviour model
for all AAVs. Teams are made up of cloning instances; they have the same
goals, tasks, information model and goal-resolution rules. Requests sent by the
CC are received by all team-members which generates similar goal instances:
helpVictim() and decideWhoShouldGo(). Cooperation is modeled in the protocol
for making collective decisions, that is, to achieve the goal decideWhoShouldGo().
This is done by exchanging cost estimations, and then deciding which member
of the team is the best situated to help the victim.

Although all the team members participate voluntary on the decisions process,
the way in which each AAV achieves their own goals is dependent on its situation
in the environment and on its internal state which is characterized by information
objects in its working memory including previous goals and the current focus
representing the goal under resolution. Experimentation has been done for fine-
tuning the model in order to: 1) allow the AAV takes individual decisions when
collective decisions fails; 2) determine deadlines for expected information and
for taking collective decisions. As most of these parameters are dependent of
hardware and communication performance, they are defined as configurable.

The hierarchical team-model has two roles implemented with two be-
havioural models: a) the AAV-boss which is in charge of interpreting the requests
from the CC and deciding which team-member should be assigned to achieve
the goal; b) the AAV-subordinate which receives messages from his boss, first



requesting to estimate their cost for achieving the goal, and then to accept/refuse
proposals for assuming the goal. Subordinates might refuse proposals when they
do not have the necessary means to achieve it, however the final decision to as-
sign the goal correspond the boss. Deadlines for expected answers and deadlines
for taking decisions are similar to the AMAS model. The information model is
the same as for AMAS, goal and tasks might also be shared, however the boss
role is implemented with 15 rules, and the subordinate role with 6 rules.

The system is implemented in java. It may run in a central node or in a
network of processing nodes with OS windows/linux and virtual machine Java
6.xx. The rule processor used for implementing the deliberative agent pattern is
based on Drools 5.x. and communication among AAVs is done through RMI. A
public version will be available for demonstration during the conference.

3 Experimental Results

Metrics to assess both the model and the implementation approach using the
deliberative architecture considers two main aspects: functional conformity and
performance. Functional conformity focus on the quality of goal allocation, and
goal distribution among team members. Performance considers the time needed
for the team to assume goals for helping victims requested by the CC. Metric
values have been gathered from testing experiments considering the following
parameters: i) the team size and the number of victims to rescue; ii) the frequency
of messages sent by the CC in order to assess the response of the team face up
to stressing requests; iii) deployment in different processing nodes to assess the
impact of real parallel processing and communication.

Experimentation in one central node has been done in a processor AMD Phe-
nom II X4 at 3,20 GH with 4MB Ram and SO Windows 7. The two additional
nodes for distributed experiments are based on Intel core I7 at 2,20 Ghz with
8Gb of Ram, SO windows 7 , and AMD Turion X2 at 2 Ghz , 2Gb of Ram and
SO Windows XP. The most significant results are summarized below.

The AMAS model works as expected in situations where the CC sends
requests at frequency greater than the time needed for deciding the responsibility
to assume the goal. As the time required to take decisions increases with the size
of the team, deadlines for waiting responses and for taking decision should also
be increased to synchronize goal resolution. When deadlines are not met the
same goal might be assumed by two or more team members, however this rarely
happens. Tie-brakes for cost evaluation are satisfactorily solved.

Fig. 2 shows performance results for AAVs deployed in one central node and
deployed in 3 nodes. Time for allocating goals is quite similar. Stressing requests
degrade team performance due to the perturbation caused by the interpretation
of incoming requests during collective decision making.

The first consequence of increasing the frequency of CC requests is desynchro-
nising the process for achieving goals. CC messages are received at different time
and processed at different speed by team-peers. When a team-member receives a
request from the CC, it retrieves the victim’s priority and generates new goals for
helping the victim and for deciding who should assume that goal. If the priority



Fig. 2. AMAS model goal assignment

Fig. 3. AMAS model versus Hierarchical model

of the new victim is higher than the victim which decision is trying to achieve,
it delays the resolution of the current goal and starts a new decision process
to help this new victim. It is assumed that their team-mates will do the same,
consequently it estimates its cost to achieve the goal and send it to its compan-
ions. However it happens that team-peers receive cost estimations and requests
for sending its estimations before the message from the CC was processed. This
lack of synchronization might lead to various peers taking the responsibility to
assume the same goal. To deal with this situation, the peer receiving cost esti-
mations, or requests for sending estimations about unknown victims, acts as if it
were informed by its peer about the CC request. It trusts peer’s information, and
then it generates the goals and starts participating in the decision process. When
the CC request arrives interpretation is already done. If the CC request can-
not be received the AAV has been indirectly informed through its team-mates.
Goal desynchronisation delays decisions due to multiple interruptions during the



decision process, and consequently decrease team-performance but the goals still
allocated correctly. Experimentation shows (see Fig. 2) progressive degradation
of performance when stressing demand increase, however quality still assured.
This confirms the robustness of the model.

Performance of the hierarchical model compared to the AMASmodel is in Fig. 3.
Centralization of CC message interpretation and decision making facilitates con-
flict resolution reducing the number of messages needed for goal assignment. Per-
formance with respect to the AMAS model is shown in Fig. 3. It is 10 times faster
than AMAS model, however stress has more impact in its performance. Stressing
requests degrades performance by a factor of 3,3 while the impact in the AMAS is
of 1,6. The main weakness of this model concerns robustness since the efficiency of
the team is dependent on boss decisions. If the boss fails or communication among
the boss and the subordinates fails, the team became inactive.

4 Conclusions and Future Challenges

Experimentation with decision models using deliberative architecture requires
availability of engineering tools facilitating quick development, deployment and
evaluation. Face to the wide range of papers devoted to team modeling, avail-
ability of systems allowing verification and extension of these models are scarce.
Work have faced two related challenges: model validation taking into account re-
alistic constraints, and engineering evaluation mainly focused on the utilization
of heavy deliberative architecture for controlling the behaviour of complex enti-
ties such as AAVs. Experimentation has gone beyond “best cases” to be focused
on stressing test cases in order to validate key aspects of cooperative decision
making such as performance, quality and robustness. The most significant results
are obtained in worse case scenarios were team-members should face up with
internal failure, communication failure, and stressing requests. AMAS perfor-
mance is significantly lower than the hierarchical model; however this weakness
might be compensated by higher robustness. Stress decrease performance in both
models, most significantly in the hierarchical model, but quality is guaranteed.
Utilization of encapsulated deliberative architecture facilitates high level mod-
eling, and the traceability of the collaborative decision making process, then
allowing incremental development and bridging the gap between analysis design
and implementation. Seemly creation of multiple parallel instances can be done
without penalizing deployment and performance.

The current system is made up of open source, reusable, components provided
by ICARO . Extensibility, manageability, integration and deployment might be
done with most popular IDEs. This paves the way to the development and ex-
perimentation with new team models were teammates might change dynamically
their role. For example, the implementation of a team which starts hierarchical
but becomes AMAS when the boss looses connection with their peers, can be
done without significant effort. Other models such as selecting a new boss or
creating partial hierarchy for big teams might be quickly developed.

Future work aims to go beyond simulation to validate the models incorporated
into actual AAVs evolving in a physical environment.
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Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003.
LNCS (LNAI), vol. 3040, pp. 207–220. Springer, Heidelberg (2004)

6. Gascueña, J.M., Fernández-Caballero, A., Garijo, F.J.: Using ICARO-T Frame-
work for Reactive Agent-Based Mobile Robots. In: Demazeau, Y., Dignum, F.,
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