Skip to main content

An Efficient Energy Transfer Inverse Kinematics Solution

  • Conference paper
Motion in Games (MIG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Included in the following conference series:

Abstract

In this paper, we present a fast and easy-to-implement locally physics-based Inverse Kinematics(IK) method. Our method builds upon a mass-spring model and relies on force interactions between masses. Joint rotations are computed using the closed-form method with predefined local axis coordinates. Combining these two approaches offers convincing visual quality results obtained with high time performance. Our IK solver is suitable for multiple constraints application and constrained 3D humanoid models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hidden Markov models: applications in computer vision. World Scientific Publishing Co., Inc., River Edge (2002)

    Google Scholar 

  2. Aristidou, A., Lasenby, J.: FABRIK: A fast, iterative solver for the inverse kinematics problem. Graphical Models 73(5), 243–260 (2011)

    Article  Google Scholar 

  3. Baerlocher, P., Boulic, R.: Parametrization and range of motion of the ball-and-socket joint (2000)

    Google Scholar 

  4. Baerlocher, P., Boulic, R.: An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20, 402–417 (2004)

    Article  Google Scholar 

  5. Blow, J.: Inverse kinematics with quaternion joint limits. Game Developer (2002)

    Google Scholar 

  6. Boulic, R., Varona, J., Unzueta, L., Peinado, M., Suescun, A., Perales, F.: Evaluation of on-line analytic and numeric inverse kinematics approaches driven by partial vision input. Virtual Reality 10(1), 48–61 (2006)

    Article  Google Scholar 

  7. Bounard, A., Gibet, S., Wanderley, M.M.: Hybrid inverse motion control for virtual characters interacting with sound synthesis: Application to percussion motion. Vis. Comput. 28(4), 357–370 (2012), http://dx.doi.org/10.1007/s00371-011-0620-9

    Article  Google Scholar 

  8. Buss, S.R., Kim, J.S.: Selectively damped least squares for inverse kinematics. Methods 10(3), 1–13 (2004)

    MathSciNet  Google Scholar 

  9. Canutescu, A.A., Dunbrack, R.L.: Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Science (5), 963–972 (2003)

    Google Scholar 

  10. Chin, K.W., Konsky, B.R.V., Marriott, A.: Closed-Form and Generalized Inverse Kinematics Solutions for the Analysis of Human Motion, vol. 19 (1997)

    Google Scholar 

  11. Courty, N., Arnaud, E.: Inverse Kinematics Using Sequential Monte Carlo Methods. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Shanno, D.F., Kettle, P.C.: Optimal conditioning of quasi-newton methods. Mathematics of Computation 24(111) (1970)

    Google Scholar 

  13. Gan, J.Q., Oyama, E., Rosales, E.M., Hu, H.: A complete analytical solution to the inverse kinematics of the pioneer 2 robotic arm. Robotica 23, 123–129 (2005)

    Article  Google Scholar 

  14. Georgii, J., Westermann, R.: Mass-spring systems on the gpu. Simulation Modelling Practice and Theory 13, 693–702 (2005)

    Article  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the stormer/verlet method. Acta Numerica 12, 399–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hecker, C., Raabe, B., Enslow, R.W., DeWeese, J., Maynard, J., van Prooijen, K.: Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. Graph. 27(3), 27:1–27:11 (2008)

    Google Scholar 

  17. Horn, B.K.P., Hilden, H.M., Negahdaripourt, S.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4, 629–642 (1987)

    Article  Google Scholar 

  18. Huang, J., Pelachaud, C.: Expressive Body Animation Pipeline for Virtual Agent. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS, vol. 7502, pp. 355–362. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Jeff, L.: Making kine more flexible. Game Developer 5(3), 15–22 (1998)

    Google Scholar 

  20. Korein, J.U.: A geometric investigation of reach. MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  21. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press (1999)

    Google Scholar 

  22. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum 24(3), 343–351 (2005)

    Article  Google Scholar 

  23. Lewin, W.: Hook’s Law, Simple Harmonic Oscillator. MIT Course: Classical Mechanics, Lecture (1999)

    Google Scholar 

  24. Muller-Cajar, R., Mukundan, R.: Triangualation - a new algorithm for inverse kinematics. In: Proceedings of Image and Vision Computing New Zealand 2007, vol. (5), pp. 181–186 (2007)

    Google Scholar 

  25. Roberts, R.G., Maciejewski, A.A.: Singularities, stable surfaces, and the repeatable behavior of kinematically redundant manipulators. International Journal of Robotics Research 13, 70–81 (1994)

    Article  Google Scholar 

  26. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer (1998)

    Google Scholar 

  27. Tang, W., Cavazza, M., Mountain, D., Earnshaw, R.: Real-Time Inverse Kinematics through Constrained Dynamics. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS (LNAI), vol. 1537, pp. 159–170. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  28. Unzueta, L., Peinado, M., Boulic, R., Suescun, A.: Full-body performance animation with sequential inverse kinematics. Graph. Models 70, 87–104 (2008)

    Article  Google Scholar 

  29. Verlet, L.: Computer ”experiments” on classical fluids. i. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  30. Wampler II, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986)

    Article  MATH  Google Scholar 

  31. Wang, L.C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Transactions on Robotics and Automation 7, 489–499 (1991)

    Article  Google Scholar 

  32. Welman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation. Science C, 86 (April 1993)

    Google Scholar 

  33. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. Science MM(2), 47–53 (1969)

    Google Scholar 

  34. Wilhelms, J., Gelder, A.V.: Fast and easy reach-cone joint limits. Journal of Graphics, GPU, and Game Tools 6(2), 27–41 (2001)

    MATH  Google Scholar 

  35. Wolovich, W.A., Elliott, H.: A computational technique for inverse kinematics, vol. 23, pp. 1359–1363. IEEE (1984)

    Google Scholar 

  36. Wu, X., Ma, L., Chen, Z., Gao, Y.: A 12-dof analytic inverse kinematics solver for human motion control. Journal of Information Computational Science 1(1), 137–141 (2004)

    Google Scholar 

  37. Yuan, J.: Local svd inverse of robot jacobians. Robotica 19, 79–86 (2001)

    Article  Google Scholar 

  38. Zhao, J., Badler, N.I.: Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Trans. Graph. 13, 313–336 (1994)

    Article  Google Scholar 

  39. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24(3), 697–701 (2005), http://doi.acm.org/10.1145/1073204.1073249

    Article  Google Scholar 

  40. Zordan, V.B., Van Der Horst, N.C.: Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH Symposium on Computer Animation, pp. 245–250 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, J., Pelachaud, C. (2012). An Efficient Energy Transfer Inverse Kinematics Solution. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics