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Abstract. Bayesian probabilistic analysis offers a new approach to char-
acterize semantic representations by inferring the most likely feature
structure directly from the patterns of brain activity. In this study, infi-
nite latent feature models [I] are used to recover the semantic features
that give rise to the brain activation vectors when people think about
properties associated with 60 concrete concepts. The semantic features
recovered by ILFM are consistent with the human ratings of the shelter,
manipulation, and eating factors that were recovered by a previous fac-
tor analysis. Furthermore, different areas of the brain encode different
perceptual and conceptual features. This neurally-inspired semantic rep-
resentation is consistent with some existing conjectures regarding the role
of different brain areas in processing different semantic and perceptual
properties.

1 Introduction

Mitchell et al. [2] showed that word features computed from the occurrences
of stimulus words (within a trillion-token Google text corpus that captures the
typical use of words in English text) can predict the brain activity associated
with the meaning of these words. The advantage of using word co-occurrence
data is that semantic features can be computed for any word in the corpus - in
principle any word in existence, as opposed to manually defined semantic features
like [3], [4]. Nonetheless, despite the success of this model, the work leaves open
the question about how to determine the optimal set of semantic features. [2]
hand-picked a set of semantic features defined by 25 verbs: see, hear, listen, taste,
smell, eat, touch, rub, lift, manipulate, run, push, fill, move, ride, say, fear, open,
approach, near, enter, drive, wear, break, and clean. This selection process was
motivated by conjectures regarding the centrality of sensory-motor features in
neural representations of concepts [5]. However, it is likely that there are other
sets of semantic features that better characterize the brain activity. One could
exhaustively search for the optimal set of features, but such an approach would
be computationally intractable and certainly not a satisfying approach.

In this study, we address the question by taking a bottom-up approach. In-
stead of searching for the optimal set of features that can account for the brain
activity, we try to infer the most likely feature structure directly from the pat-
terns of brain activity. We take a generative approach and model the semantic
representation as some hidden variables in the probabilistic Bayesian framework.
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A generative process is used to describe how brain activity is generated from this
latent semantic representation. The basic proposition is that the human semantic
knowledge system is capable of producing an unbounded number of features as-
sociated with a concept; however, only a subset of them are actively recalled and
reflected in brain activity during any given task. Moreover, some features will
be shared among a group of concepts (e.g. both dogs and cows have four legs),
while some features will be idiosyncratic to particular concepts (e.g. produces
milk is highly salient for cows only).

Thus, a set of latent indicator variables is introduced to indicate whether a
feature is actively recalled. By describing the prior distribution of these latent
indicator variables and the distribution of the observed brain activity given the
assignment of these latent variables, standard Bayesian inference procedure can
be used to infer the recalled features. More specifically, we used the infinite latent
feature model (ILFM) with an Indian Buffet Process (IBP) prior [I] to derive a
binary feature representation of conceptual knowledge from the brain activity.
ILFM is especially suited for our task because it automatically determines the
number of features that are manifested in the data. This data-driven feature
representation is neurologically-informed and may better capture what people
were thinking. To foreshadow our results, the ILFM is able to capture a latent
semantic representation that is consistent with human ratings of three semantic
factors recovered by factor analysis. Furthermore, we show that the recovered
latent features are consistent with some existing conjectures regarding the role
of different brain areas in processing different psycholinguistics features.

In section 2, we describe the data set and how areas of interests are identified.
In particular, we show that the distributed pattern of brain activity contains
sufficient signal to discriminate among concepts. In section 3, we discuss the
infinite latent feature model and show how it can be used to recover the latent
semantic representation encoded by brain activity. In section 4, we try to in-
terpret the recovered latent features by correlating the latent features with the
human ratings of the shelter, manipulation, and eating factors, as well as some
psycholinguistic word features. Finally, we discuss some of the implications of
our work and suggest some future studies.

2 Experimental Paradigm and Identifying Areas of
Interest

We used the CMU fMRI data-set of nine English speakers (5 female, all right-
handed, age between 18 and 32) thinking about 60 concrete concepts, in 12
categories, which was previously collected and made available online by [2]. For
each concept there are 6 instances of ~20k neural activity features (brain blood
oxygenation levels). In an concept-contemplation task, participants were pre-
sented with 60 line drawings of concepts with text labels for 3s (followed by a Ts
rest period) and were instructed to think of the same properties of the stimulus
concept consistently during each presentation.
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Table 1. Classification and infinite latent feature analysis

METRIC ALL FRONTAL TEMPORAL PARIETAL OCCIPITAL
Rank Accuracy 0.81 0.58 0.70 0.66 0.80
R? 0.77 0.66 0.69 0.69 0.76
Ky 14.44 + 3.09 16.67 £+ 4.47 14.22 4+ 3.67 15.44 £+ 6.13 14.89 + 4.81

Before progressing to the main results, we first attempt to verify if the dis-
tribution of brain activity encodes sufficient signal to decode the mental state
associated with viewing and contemplating particular concepts. Given the evoked
patterns of brain activity (mean PSC) brain that were observed while partici-
pants contemplated one of the 60 presented concepts, Gaussian Naive Bayes
classifiers were trained to identify the associated cognitive state. For instance,
the classifier should predict which of the 60 exemplars the participant was view-
ing and thinking about.

Classification results were evaluated using 6-fold cross validation, where one
of the 6 repetitions was left out for each fold. The voxel selection procedure
was performed separately inside each fold, using only the training data. Since
multiple classes were involved, rank accuracy was used as an evaluation metric,
as in [2]: given a new MRI image to classify, the classifier outputs a rank-ordered
list of possible class labels from most to least likely. The rank accuracy is defined
as the percentile rank of the correct class in this ordered output list, ranging from
0 to 1. Classification analysis was performed separately for each participant, and
the mean rank accuracy was then computed over the participants.

The first row in Table[Tllshows the results of the classification analysis. All clas-
sification accuracies were significantly higher than chance (p < 0.05), where the
chance level for each classification is determined based on the empirical distribu-
tion of rank accuracies over 100 randomly permuted null models. Using activities
recorded throughout the brain, the classifier was able to distinguish among the 60
exemplars with mean rank accuracies close to 81%. Distinct classifiers were also
trained separately for several anatomical regions: the frontal, temporal, parietal,
and occipital lobes. Occipital lobe activity gives the best classification accura-
cies, but the temporal, parietal, and frontal lobes can also classify with accuracies
significantly higher than chance. High classification accuracies indicate that the
distributed pattern of brain activity does encode sufficient signal to discriminate
differences among stimuli. Knowing this, we can turn to the question of what
semantic representation is encoded in brain activity.

3 Learning a Semantic Representation from Brain
Activity

We used the infinite latent feature model (ILFM) with an Indian Buffet Process
(IBP) prior [1] to derive a binary feature representation of conceptual knowledge
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from the brain activity. [I] described a non-parametric Bayesian approach to
latent variable modeling in which the number of variables is unbounded.

Let X denote the brain activity recorded in our concept-contemplating task
and Z denote the latent semantic representation that underlies the brain activity
pattern. The infinite latent feature model is then specified by 1) a prior over the
feature vectors P(Z), and 2) a distribution over the brain activity matrices
conditioned on the feature assignments, p(X|Z). In a linear-Gaussian infinite
latent feature model, the distribution of Z is modeled with an IBP prior, and
the distribution of X|Z is assumed to be matrix Gaussian with mean ZA and
variance oxI. The following equations summarize the linear-Gaussian infinite
latent feature model.

7 ~1BP(a, §) 1)
A ~ Gaussian(0, 0% 1) (2)
X|Z,A,0x ~ Gaussian(Z A, 0% 1) (3)

In the context of the 60-words experiment, X is a matrix of size N x V, where
ZTpy is the brain activity for concept n at voxel v. N = 60 and V = 120 since
our stimulus set consists of 60 concepts and a voxel selection procedure used in
[2] identified the 120 most stable voxels. Notice that each concept was presented
6 times in our experiment; a representative fMRI image for each concept was
created by computing the mean fMRI response over the 6 presentations, and
the mean of all 60 of these representative images was then subtracted from each
brain activity vector.

Z is a matrix of size N x K, where z,; is a binary value indicating if the
feature k is recalled for concept n. By assuming an IBP prior on the distribution
of Z, the number of K is unbounded. The hyper-parameters o and 3 controls the
number of features per concept and the total number of features in the matrix,
respectively.

A is matrix of size K x V', where ay, denote the feature-to-activity mapping,
such that X = Z x A. By assuming that the distribution of A is matrix Gaussian
with mean 0 and variance 041, we can easily integrate out A when computing
the full distribution of P(Z) - p(X|Z2).

We used Gibbs Sampling [6] to infer Z. The Gibbs sampler was initialized
with K = 1, with a random assignment to the first column by setting z;1 = 1
with probability 0.5. The model parameters, «, 3, 04, and ox were all initially
set to 0.5, and then sampled by adding Metropolis-Hastings [7] steps to the
MCMC algorithm. Separate ILFM is estimated for each participant and each
brain region. The sampler was allowed to run for 1000 iterations (though it
typically converged after approximately 100 iterations). Rows 2 and 3 in Table[I]
show the amount of systematic variance (R?) accounted by the latent semantic
structure and the average number of latent features (K ) inferred from the brain
activity in each brain region. All R? were significantly higher (p < 0.05) than
chance, where the chance level of approximately 0.23 was determined by random
assignments to the latent semantic matrix.
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4 Interpreting the Latent Features

The question now is what does each latent feature mean? Do different brain areas
encode different types of conceptual features? We can try to find correlations
between each latent feature vector (column vector describing which concepts
possess this feature) and both semantic features of the concepts (human ratings
of the 60 concepts reported in [§]), and possible psycholinguistic confounds (taken
from the MRC Psycholinguistic Database [9]).

4.1 Independent Human Rating

Just et al. [§] used factor analysis to identify three semantic factors: manipu-
lation, eating, and shelter that provide a good basis for the representation of
the 60 concepts. The manipulation factor assigns high scores to concepts that
are held and manipulated with one’s hands (e.g. pliers, screwdriver). The eating
factor assigns high scores to concepts that are edible (e.g. vegetables) or are
instruments for eating or drinking (e.g. glass, cup). The shelter factor assigns
high scores to concepts that provide shelter (e.g. house, apartment) or entry to a
sheltering enclosure (e.g. airplane). They collected an independent set of ratings
of each word with respect to each of the three semantic factors from a separate
set of 14 participants. For example, for the eating-related factor, participants
were asked to rate each word on a scale from 1 (completely unrelated to eating)
to 7 (very strongly related).

We show that the latent features recovered by ILFM are consistent with the
human ratings of the shelter, manipulation, and eating factors that are recovered
by the factor analysis. For each latent feature inferred, we correlate the latent
feature vector (column vector describing which objects possess this feature) with
human ratings of the three semantic factors (column vector describing how hu-
man rate the relatedness between the 60 objects and the specified factor). For
each brain region, we identify the maximum correlation between the semantic
factors with any one of the latent semantic feature. Figure2lshows the maximum
correlation between the latent feature vector and human rating vector, averaged
across subjects. The error bars indicate 95% confidence intervals, where the dis-
tribution of that statistic is estimated from the 900 Gibbs samples (excluding
the first 100 burn-in samples). Notice that the magnitude of correlations are low
partly because we are correlating binary latent feature vectors against semantic
and psycholinguistic features that are continuous.

Different brain regions are biased toward different latent features: the frontal
lobes tend to infer latent features that correlate with human ratings of manip-
ulation, whereas the temporal and parietal lobes tend to infer latent features
that correlate with human ratings of shelter and eating factor, respectively.
This pattern of results is consistent with contemporary conjectures that the
pre-central area in the frontal lobe is involved with motor planning, the fusiform
and parahippocampal place areas that are included in our temporal lobe are
involved with thought about places, and parietal area is involved in aggregation
of sensory input.
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Fig. 1. Correlating the latent features with human ratings of shelter, manipulation,
and eating factor

4.2 MRC Psycholinguistic Database

The MRC Psycholinguistic Database [9] is a dictionary that contains 150837
words with up to 26 attributes for each word which are relevant to linguistic pro-
cessing. While lexical measures are defined for most of the words, psychological
measures are recorded for only about 2500 words. Some of the psycholinguistic
measures that are of interest to us include meaningfulness (cmean), familiarity
(fam), concreteness (cnc), imaginability (img), number of letters (nlet), number
of phonemes (nphn), and frequency (t-1frq).

For each latent feature inferred, we also correlate the latent feature vector (col-
umn vector describing which objects possess this feature) with each of the MRC
psycholinguistic measure (column vector describing the psycholinguistic score of
the 60 objects). Figure [2] shows the maximum correlation between the latent
feature vector and MRC feature vector, averaged across subjects. Again, differ-
ent brain regions infer different latent features: frontal lobe activity correlates
most with meaningfulness, although the correlation is not significantly different
from that of the temporal and parietal lobe. The parietal lobe shows a bias for
concreteness and imaginability, compared to the other brain regions. The tem-
poral lobe tends to encode features that correlate with number of phonemes in a
word, consistent with the existing conjecture that the temporal lobe is involved
in speech production. Notice that the occipital lobe tends to encode features
that correlate most strongly with the number of letters, but not the number of
phonemes.
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Fig. 2. Correlating the latent features with MRC psycholinguistics features.

5 Conclusions and Future Directions

In this study we use a generative probabilistic model to describe how fMRI-
measured brain activity reflects a latent semantic representation. This data-
driven feature representation is neurologically-informed and may better capture
what people were thinking.

Compared to factor analysis (FA) or multi-dimensional scaling (MDS), there
are several advantages of using ILFM to model the semantic representation that
underlie brain activity, which 1) offers a formal probabilistic account of the brain
activity, 2) automatically determines the number of features that are manifested
in the data, and 3) allows different number of features to be inferred per words.
One critical difference between ILFM and FA/MDS is that the latter use a
continuous representation. In this study, we use a binary representation of the
feature matrices, but it can be easily extended to a continuous representation.
[1] showed that the binary matrix Z can be combined with a continuous matrix
V to define a richer representation.

There are several possible extensions of this work. First, in this study we try to
interpret the learned latent semantic features by comparing the vectors to human
ratings of three semantic factors and MRC psycholinguistic word features, but
one shouldn’t stop here. One obvious direction is to compare the feature vector
with other types of lexical semantic feature, such as elicited property lists [4]
and word co-occurrence statistics [10]. Moreover, we inferred the latent features
from predetermined brain regions that are known to process certain semantic
and psycholinguistics features, such that we can demonstrate that ILFM can be
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used to verify some existing conjectures. An extension is to infer latent features
from brain regions whose processing role are unknown in an attempt to discover
new areas of interest. Finally, in this work we fitted a unique model for subject,
it is interesting to explore how ILFM scale up to incorporate multiple subjects
and discover feature representation that generalizes across people.
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