Skip to main content

Identification of OCD-Relevant Brain Areas through Multivariate Feature Selection

  • Conference paper
Book cover Machine Learning and Interpretation in Neuroimaging

Abstract

In this work we apply multivariate feature selection methods to construct a classifier that is able to differentiate among control subjects and OCD patients, with the purpose of bringing out regions of the brain that are relevant for the detection of the disease. Results show a discovery of regions that present great agreement with traditional methods used in OCD problems, but with the advantage of showing which ones are representative of control subjects or patients and providing cleaner and more accurate region maps.

This work was supported by grants Spain CICYT grant TEC2008-02473, Madrid Regional Government grant CCG10- UC3M/TIC-5511 and PASCAL2 Network of Excellence IST-2007-216886, and the Carlos III Health Institute (PI09/01331 and CP10/00604). Dr. Soriano-Mas is funded by a Miguel Servet contract from the Carlos III Health Institute (CP10/00604).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, D.D., Savoy, R.L.: Functional Magnetic Resonance Imaging (fMRI) ”brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)

    Article  Google Scholar 

  2. Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to discriminate cognitive states across multiple subjects. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)

    Google Scholar 

  3. Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nature Neuroscience 8(5), 679–685 (2005)

    Article  Google Scholar 

  4. Haynes, J.D., Rees, G.: Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience 8(5), 686–691 (2005)

    Article  Google Scholar 

  5. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fMRI data. Neuroimage 26, 317–329 (2005)

    Article  Google Scholar 

  6. Martínez-Ramón, M., Koltchinskii, V., Heileman, G.L., Posse, S.: fMRI pattern classification using neuroanatomically constrained boosting. Neuroimage 31(3), 1129–1141 (2006)

    Article  Google Scholar 

  7. Ford, J., Farid, H., Makedon, F., Flashman, L.A., McAllister, T.W., Megalooikonomou, V., Saykin, A.J.: Patient Classification of fMRI Activation Maps. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 58–65. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Shinkareva, S.V., Ombao, H.C., Sutton, B.P., Mohanty, A., Miller, G.A.: Classification of functional brain images with a spatio-temporal dissimilarity map. NeuroImage 33(1), 63–71 (2006)

    Article  Google Scholar 

  9. Demirci, O., Clark, V.P., Calhoun, V.D.: A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. NeuroImage 39(4), 1774–1782 (2008)

    Article  Google Scholar 

  10.  Castro, E., Martínez-Ramón, M., Pearlson, G., Sui, J., Calhoun, V.D.: Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia. NeuroImage 58(2), 526–536 (2011)

    Google Scholar 

  11. Ecker, C., Rocha-Rego, V., Johnston, P., Mourão-Miranda, J., Marquand, A., Daly, E.M., Brammer, M.J., Murphy, C., Murphy, D.G.: Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. NeuroImage 49(1), 44–56 (2010)

    Article  Google Scholar 

  12. Costafreda, S.G., Chu, C., Ashburner, J., Fu, C.H.: Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4, 6353 (2009)

    Article  Google Scholar 

  13. Pujol, J., Soriano-Mas, C., Alonso, P., Cardoner, N., Menchón, J.M., Deus, J., Vallejo, J.: Mapping structural brain alterations in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61(7), 720–730 (2004)

    Article  Google Scholar 

  14. Radua, J., Mataix-Cols, D.: Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. The British Journal of Psychiatry 195(5), 393–402 (2009)

    Article  Google Scholar 

  15. Soriano-Mas, C., Pujol, J., Alonso, P., Cardoner, N., Menchón, J.M., Harrison, B.J., Deus, J., Vallejo, J., Gaser, C.: Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage 35(3), 1028–1037 (2007)

    Article  Google Scholar 

  16. Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. J. Mach. Learn. Res. 3, 1229–1243 (2003)

    MATH  Google Scholar 

  17. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  18. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Computational Learing Theory, pp. 144–152 (1992), citeseer.ist.psu.edu/boser92training.html

  19. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)

    Article  Google Scholar 

  20. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., Frackowiak, R.S.: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001)

    Article  Google Scholar 

  21. Menzies, L., Chamberlain, S.R., Laird, A.R., Thelen, S.M., Sahakian, B.J., Bullmore, E.T.: Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav Rev. 32(3), 525–549 (2008)

    Article  Google Scholar 

  22. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parrado-Hernández, E. et al. (2012). Identification of OCD-Relevant Brain Areas through Multivariate Feature Selection. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics