N
N

N

HAL

open science

Small Work Space Algorithms for Some Basic Problems
on Binary Images

Tetsuo Asano, Sergey Bereg, Lilian Buzer

» To cite this version:

Tetsuo Asano, Sergey Bereg, Lilian Buzer. Small Work Space Algorithms for Some Basic Problems on
Binary Images. 15th International Workshop Combinatorial Image Analysis, IWCIA 2012, Nov 2012,

Austin, United States. pp.103-114, 10.1007/978-3-642-34732-0_8 . hal-00827181

HAL Id: hal-00827181
https://hal.science/hal-00827181
Submitted on 30 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00827181
https://hal.archives-ouvertes.fr

Small Work Space Algorithms for Some Basic
Problems on Binary Images

Tetsuo Asano', Sergey Bereg?, and Lilian Buzer>
! School of Information Science, JAIST, Japan
2 Department of Computer Science, University of Texas at Dallas, USA.,
® Université Paris-Est, LABINFO-IGM, UMR CNRS 8049, and Department of
Computer Science, ESIEE, France.,

Abstract. This paper presents space-efficient algorithms for some basic
tasks (or problems) on a binary image of n pixels, assuming that an input
binary image is stored in a read-only array with random-access. Although
efficient algorithms are available for those tasks if O(n) work space (of
O(nlog n) bits) is available, we aim to propose efficient algorithms using
only limited work space, i.e., O(1) or O(y/n) space. Tasks to be consid-
ered are (1) CCC to count the number of connected components, (2)
MERR to report the minimum enclosing rectangle of every connected
component, and (3) LCCR to report a largest connected component. We
show that we can solve CCC, MERR, and LCCR in O(nlog n) time each
using only O(1) space. If we can use O(+/n) work space, we can solve
them in O(n), O(n), and O(n + mlog m) time, respectively, where m is
the number of pixels in the largest connected component.

1 Introduction

Demand for embedded software is growing toward intelligent hardware such
as scanners, digital cameras, etc. One of the most important aspects and also
differences between ordinary software in computers and embedded software come
from constraints on the size of local memory. For example, to design an intelligent
scanner a number of algorithms should be embedded in the scanners. In most
of those cases, the size of pictures is increasing while the amount of work space
available for such software is severely limited. In the sense algorithms which
require a restricted amount of work space and run reasonably fast are desired.

In this paper we propose several space-efficient algorithms designed for some
fundamental image processing tasks. All of the tasks that we consider have
straightforward solutions if sufficient memory (typically, of size proportional to
the size of the image) is available (see, for example, [5,8]). Solving the same
tasks with restricted memory, without severely compromising the running time,
is more of a challenge.

1.1 Computational model with limited work space

We measure the space efficiency of algorithms by the amount of work space used.
Such space typically takes the form of pointers and counters (whose number of

bits is at most the logarithm of the image size). Our objective is to design efficient
algorithms that use only O(1) or O(y/n) such pointers and counters.

Throughout the paper we assume that an input binary image consists of n
pixels in O(y/n) rows and columns, and it is stored in a read-only array in a
random-access manner.

1.2 Three basic tasks considered in this paper
Three basic tasks for an input binary image to be considered in this paper are:

CCC (Connected Components Counting) Count the number of connected
components.

MERR (Minimum Enclosing Rectangles Reporting) Report the mini-
mum enclosing (axis-parallel) rectangle of every connected component.
LCCR (Largest Connected Component Reporting) Report all pixels of

a largest connected component.

We have to output a number of information except the task CCC. MERR
requires us to output rectangles, and LCCR to output pixels in the largest com-
ponent. It is expensive to use an array for the output. So, we just output them
without using any array to store them.

1.3 Important concepts and terminologies

There are several important concepts and terminologies to design space efficient
algorithms for those tasks.

Lexicographical order: We assume a lexicographical order among all pixels.
A pixel at (z,y) precedes one at (2',y) if y <y or y =y and x < 2’. The
same order 1s defined for all vertical edges.

Canonical Edge: Connected components are described by external and inter-
nal boundaries. The canonical edge of a boundary is the lexicographically
smallest vertical edge on the boundary, which is uniquely defined.

Run: A maximal sequence of foreground (white) pixels in a row is called a run.

Run Adjacency Graph: Run adjacency graph represents incidence relations
among runs in two consecutive rows. The graph plays an important role in
the algorithms to be presented in the paper. It contains O(/n) vertices and
edges since there are only O(y/n) columns by the assumption.

Provisional Label: We put labels to runs to maintain information on con-
nected components. Once we know two runs belong to the same component,
their labels must be merged. In this way a number of labels are created and
disappear. Those temporary labels are called provisional labels. We use some
labels many times in our labeling process. This is a basic idea to save the
total number of labels.

1.4 Results obtained

We present space efficient algorithms for the tasks listed above using O(1)
or O(/n) work space. For the tasks CCC (Connected Components Counting)
and MERR (Minimum Enclosing Rectangles Reporting) our algorithms run in
O(nlogn) time with O(1) work space or O(n) time with O(y/n) space. For the
task LCCR (Largest Connected Components Reporting) our algorithm runs in
O(nlogn) time using O(1) work space. If we can use O(y/n) space it is reduced
to O(n + mlogm) time where m is the size of the largest component.

2 Known results for O(1)-space algorithms and their
extensions

2.1 Basic algorithm

We first give an intuitive explanation of an algorithm for counting the number
of connected components in a given binary image.

Basic algorithm for counting the number of connected components
¢=10. // counter for the number of connected components
for each pixel p in the lexicographic order (raster order)
if it 1s a unique pixel in a component then increment the counter c.
Report the counter value ¢ as the number of connected components.

We assume a lexicographical order among all pixels. A pixel at (z,y)
precedes one at (¢',y') if y <y’ or y =y and # < #’. The same order is defined
for vertical edges.

The algorithm correctly counts the number of connected components if a
unique pixel is defined for each connected component and we can determine in
some reasonable time whether a given pixel is the unique one. For the purpose
we introduce a notion of canonical edge instead of a unique pixel.

2.2 Canonical edge

A connected region in a binary image refers to a maximal set of foreground pixels
in which any two of them are connected by a 4-connected path of foreground
pixels. It may contain holes, islands, and further holes of islands. Thus, the
boundary of a connected component is defined by a single external boundary
and possibly more than one internal boundary. In this paper we assume a small
square for each pixel, which has four sides. Two adjacent pixels share a side. A
side between two pixels of different values is called an edge. Then, a boundary is a
sequence of such edges, horizontal or vertical. Any boundary must have a unique
vertical edge that is lowest (and leftmost if there are ties). This uniquely defined
edge is referred to as the canonical edge of the boundary, as was defined in
the literature [4,6]. Fig. 1 shows how canonical edges are defined using a simple
binary image when each boundary is oriented so that foreground pixels always
lie to the right.

Fig. 1. Geometric model of a binary image. There are three connected components
C1,C5 and C5. (5 contains four holes Hy, ..., Hy, and H; includes an island C5. Edges
are directed so that foreground pixels lie to their right. Canonical edges are indicated
by arrows.

2.3 Bidirectional search

It is known that we can enumerate all the canonical edges in O(nlogn) time
using the algorithm [3,4] which was originally designed for traversing a planar
map without using any mark bits. By the definition of a canonical edge, an
edge e is canonical if and only if there is no other boundary edge ¢ on the
same boundary which is lexicographically smaller than e, that is, ¢/ < e. The
condition can be tested by following the boundary until we find a smaller edge,
but it takes time. A magic for acceleration is to search in two opposite directions
(Bidirectionsl Search) [4].

Since we can distinguish canonical edges on the external boundaries from
those on the internal ones only using local information around them (see Fig. 1),
we can count the number of connected components by counting that of canonical
edges on external boundaries. Thus, the task CCC can be done in O(n log n) time
using constant work space[l, 2].

Algorithm for counting the number of connected components
¢=10. // counter for the number of connected components
for each pixel p in the lexicographic order (raster order)
Let e be the vertical edge to the right of p.
if LocalCondition(p) and IsCanonical(e) then increment the counter c.
Report the counter value ¢ as the number of connected components.
Boolean LocalCondition(p){ // Local condition for a canonical pixel
if p is background and p’s right pixel is foreground and p’s lower right pixel
is background then return True else return False.
}

Boolean IsCanonical(e){ // Is an edge e canonical?
e; = NextEdge(e). // the next edge of e on the boundary.
ey = PrevEdge(e). // the previous edge of e on the boundary.
while(e; > e and e, > ¢) do{

e; = NextEdge(es). // forward search

if e; = ¢, then return True. // if two pointers meet then canonical
ey = PrevEdge(ey). // backward search

if e; = ¢, then return True. // if two pointers meet then canonical

1

return False.

In the algorithm above, NextEdge(e) is a function to compute the next edge
of e on the boundary (since each boundary is singly connected the next element
is uniquely determined). PrevEdge(e) is a function for the previous edge of e.
NextEdge(e) and PrevEdge(e) can be computed in constant time. IsCanonical(e)
i1s a function to determine whether an edge is canonical or not. This function
cannot be computed in constant time, but the total time we need to evaluate
the function for every edge is bounded by O(nlogn) due to bidirectional search.

We now know that the first problem CCC to count the number of con-
nected components is easily solved using only constant work space. It is rather
straightforward to extend the algorithm for the task MERR. Whenever we find
a canonical edge of an external boundary, we follow the boundary. Then, we
can compute the minimum enclosing rectangle of the corresponding component
in linear time by maintaining the smallest and largest « and y coordinates of
the edges on the boundary. Thus, MERR can be solved in O(n logn) time using
O(1) space.

On the other hand, it is not easy to extend it so that it reports component
sizes. Difficulty comes from existence of holes. If a component has no hole, it
suffices to follow its boundary to compute its area. Fortunately, it is also known
that the problem can be solved in O(nlogn) time with O(1) space by applying
the algorithm due to Bose and Morin [4], which is described below.

2.4 Component pixel traversal

The algorithm by Bose and Morin [4] which works on a graph can be modified
to deal with a binary image where a graph structure is implicitly given. We start
from the canonical edge of the external boundary of a connected component ('
and follow boundaries associated with C'. At each upward vertical edge e walk
to the east until we reach a boundary edge f. If f is a canonical edge then we
move to f with f as the current edge. Otherwise we first check whether the next
edge of e on the boundary is canonical or not. If it is the canonical edge of the
external boundary (by further checking whether it is upward) then we are done.
If it 1s the canonical edge of a hole then we walk to the west until we encounter
a boundary edge ¢’ and let e = €.

Fig. 2 illustrates how the algorithm traverses pixels in a connected compo-
nent. Fig. 2(a) shows the first two rows and the entire traversal is given in (b).
A more formal description algorithm follows.

Fig. 2. Component pixel traversal: (a) the first two rows, and (b) the entire traversal.

Algorithm for visiting every pixel starting from an edge e;.
e =¢es. [/esis the starting edge.
repeat{
if e is horizontal then ¢ =NEXTEDGE(e).
else if ¢’s eastern pixel is foreground then{
Report consecutive foreground pixels until we reach a boundary edge f.
if IsCaNoNICAL(f) then e = f else e =NEXTEDGE(e).
telse if IsCaNONICAL(e) then
Walk to the west until we reach an edge f and let e = f.
else ¢ =NEXTEDGE(e).
tuntil(e = ;)

Theorem 1. Let T be a binary image. When a canonical edge of an external
boundary of a connected component C; 1s known, we can report all pizels of C;
in O(ac + be logbe) time using O(1) work space, where ac denotes the area of
C' and be denotes the number of edges defining the boundaries of C'.

Using the results listed above, we have the following theorem.

Theorem 2. Gwen a binary tmage of n pizels, we can solve the three basic

problems (CCC, MERR, and LCCR) in O(nlogn) time using O(1) work space.

Proof. Given a binary image, we examine every boundary edge whether 1t is the
canonical edge of an external boundary. It is done in O(nlogn) time in total.
Thus, counting the number of connected components is straightforward. To solve
MERR, it suffices to maintain the minimum and maximum « and y coordinates
of edges on an external boundary.

A largest connected component can be computed in two phases. In the first
phase we detect all canonical edges of external boundaries. For each such canon-
ical edge e we count the number of pixels of the component associated with e by
applying the function for component pixel traversal. In this way we maintain a
canonical edge having the largest count. Then, in the second phase we apply the

function for component pixel traversal again with the canonical edge obtained
in the first phase. a

3 O(4/n)-space algorithms using run adjacency graph

From now on we will consider algorithms using more work space, O(/n) space.
But, before introducing such algorithms we will start with a linear-space algo-
rithm for the labeling to explain our basic ideas of run adjacency graph and
provisional labels.

In our algorithm we read an input image row by row in the raster manner
and convert each row into a sequence of runs. More exactly, a run r is a maximal
sequence of foreground pixels (of value 1) in a row. It is associated with an
interval I(r) = {s,s+1,...,t} when it starts at the s-th column and ends at the
t-th column. So, a white run (s,¢) in the é-th row means that foreground pixels
continue from the s-th column to the ¢-th column and (s — 1)-st and (¢ + 1)-st
pixels are both black pixels in the row (if they exist).

Definition 1. A foreground run r1 ‘intersects” another foreground run ro if
they are in consecutive rows and their associated intervals denoted by I(r1) and
I(r2) have non-empty intersection.

We construct a graph called a Run Adjacency Graph with vertices being
runs and edges between two intersecting runs in consecutive rows. Then, we
partition the graph into connected components {C4,Cs, ..., Cy} by applying a
depth-first search and assign the integral label ¢ to each run in the component
C;. To distinguish connected components in a graph from those in a binary
image, we call the former as graph components and the latter as image
components. There is a one-to-one correspondence between graph components
and image components. So, the last phase is to convert the run representation
into a labeling matrix using the label for each run.

The algorithm described above is almost the same as the old one by Rosenfeld
and Pfalts [7], which consists of two phases, horizontal scan to partition each
row into runs and vertical scan to merge vertically adjacent runs using a union-
find data structure. Differences are (1) we use horizontal scan twice (instead of
horizontal scan followed by vertical scan) and (2) we use a depth-first algorithm
for computing graph components after building a run adjacency graph (instead
of using a union-find tree data structure). Since the depth-first algorithm runs in
linear time, the whole algorithm runs in linear time. This is a folklore knowledge
although such a formal statement is rather rare in the literature.

In this paper we are interested in space-efficient algorithms, especially using
O(+/n) space. Due to the space constraint we cannot build the whole run adja-
cency graph. A key idea is to use the O(/n) work space to keep a set of runs in
two consecutive rows.

Provisional label: an idea to save space
Unfortunately, there are O(n) runs in a binary image and thus O(n) vertices
in its associated run adjacency graph. There are two ideas to reduce the work

space. The first idea is to introduce a notion of provisional labels which are
labels temporarily used in the algorithm and may be different from the final
labels to be reported. More important is that we can use the same provisional
label for two graph components if they are ”clearly” separated.

We read an input binary image in the lexicographic order (raster order) row
by row. We read the first row and put provisional labels to those runs in the row.
Then, in the second row, we construct a modified run adjacency graph for a set
of runs in the two rows and then partition it into connected components (graph
components). In this way we know how those runs in the first two rows are
connected and thus we can put provisional labels to the runs in the second row.
In general, assuming that those runs in the previous row have been labeled, we
put provisional labels to the runs in the current row by examining connectivities
among those runs. Hereafter, those runs with provisional labels in the previous
row are called colored runs, and those runs with no provisional labels yet white
runs. A set of colored runs which have the same provisional label is replaced by
a path connecting them in a line.

e oleoimimi~io

:1:0:0:0:0:0: : :
] 10:0:0:0:0: !]
0! : g : 0!
,,,,,,,, O[O T 0
:1:1]0:0:0:0f{1:170:0f1:1TOJ1:1:1TO}1 0:0:0
1 O1:1:1:1:1: 11011 :110:0
i1 10:0[1:1i1:1]0: : 11:1]0
ik 11]10:0:0:0:0:0:0]1; 111110
1 11:1:1: 1010101101 1:110
)i 1:((1110101116101 0:0]1|0
s 10:0:0:0:0:0:0:0: 10100

Fig.3. A set of runs in two consecutive rows (rows 1 —1 and z) Runs r1,...,r5 in the
previous row (row ¢ — 1) have been labeled by connectivities established in the already
scanned part. The run r7 and rg in the current row intersect no run in the previous
row, and hence they may create new components. On the other hand, the component
associated with the runs r3 and ry does not extend to the current row, and hence the
component terminates here. The corresponding run adjacency graph is given below in
the figure.

The graph can be partitioned into connected components (graph compo-
nents) by applying depth-first search which runs in linear time. The resulting
graph components are classified into three kinds (see Fig. 3):

Starting component: consisting of a singe white run in the current row,

Terminating component: consisting of colored runs in the previous row, and

Extending component: including both of colored and white runs in the two
rows.

1. Starting Component: A graph component C' of a single white run.

If a graph component €' is a singleton consisting of a single white run in the
current row, then it means a new image component starts at the current row,
which may be merged in the future scan with another existing image component.
So, we need a procedure to create a new image component with a new label. We
maintain labels using integers with the current largest label L. Hence, whenever
we create a new image component, we increment the value of L and assign the
value to the new image component. We also maintain the size of each image
component by an array size[|, which is initially determined by the run length.

2. Terminating Component: A graph component C consisting of colored
runs and containing no white run. It may have two or more colored runs, which
must be connected in the graph by a path. Therefore, all the colored runs in the
component must have a single common provisional label. Since no colored run
in the component intersects any white run in the current row, it does not extend
to the current row. That is, the corresponding image component terminates in
the previous row. This event is called a death of the image component.

3. Extending Component: A graph component C' having both of colored
and white run(s).

If a component C' has at least one colored run and at least one white run,
then the corresponding image component extends to the next row. If the label &
is the smallest label among those colored runs in the graph component, then all
the pixels associated with those labels and runs in the graph components should
be labeled as &k in the next row. At the same time, we update the size of the
merged graph component C' labeled & by the sum of the sizes of all associated
image components.

Fig. 4 illustrates how provisional labels are created, propagated, and termi-
nate during raster scan.

Asisseen in Fig. 4, we can save a number of provisional labels. Unfortunately,
however, this is not enough to achieve O(+/n) work space. We need another idea.

A key idea is to reuse provisional labels again and again. A provisional label
disappears in two ways. A colored component of a label terminates at some row
or it is merged into another terminating component of a different (and smaller)
label. The latter case happens when a white run in the current row intersects two
or more terminating components of different provisional labels in the previous
row. In this case those labels are merged into one of the smallest label together
with their associated information such as their sizes.

0/0/0]0/0]0{0]0[0|0]0]0[0|0]0|0 ‘r
0/0/0]1/1|1/1]0/1j11]1|1]1|1]0
0[0/0{1/0{0/1]0/1]1/1]0/0]1|1]0
0/0[1]1/1]1{0]0[1/0]0]0[1|0]|1]|0
0/0/1{0/0{1/0{01]1/0|1|1]0/1]0
0/0/1]0/0{1/0{0/0{11]1/0]0/1]0
0/0{1]0/1|1|1]1|{0/1|1]1{0/0]|1]|0
0/1/1{0/1{0/1]1/0{1/0/0/0]1|1]0
0/1/1]0/1]0/0{1/0{1/0{0/0]1|1]0
0/1/1/1/1|1{1]1/0/0{0]1|1|1]0|0
0/0/1{0/0{0/0{0|1]1/0/0/1]0/0]0
0/0/1]0/0{1/1]0/0{0/0]1|1]1|1]0
0/1/1/1/1]1{0]0[1|1]1]1{0/0]|1]|0
0/1/0{0/1{1/1]0/0{0/0]0|1]1|1]0
0[0/0{1/1]0/1]1/0{0/1]1|1]1/0]0
0/0/0]0/0]0{0]0[0|0]0]0[0|0]0|0

Fig. 4. Provisional labels propagated during raster scan.

3.1 O(+/n)-space algorithm for CCC

Now we are ready to present an O(y/n)-space algorithm for the task CCC for
counting the number of connected components in a given binary image of n
pixels.

Lemma 1. For an arbitrary binary image consisting of O(y/n) rows and
columns, the marimum number of image components in a row (or a column)

is O(y/n).

Proof. If 0’s and 1’s alternate in a row and all 1-pixels belong to different com-
ponents we have O(y/n) components in the row, which is the worst case. Thus,
the lemma follows. a

In the above algorithm we have created a new label whenever we find a run
which i1s not connected with any component in the part already scanned. A label
may be merged into another. To save work space, we maintain two sets of labels,
U and V. The set U keeps a set of labels currently used. The set V 1s a set of
those labels which have been used before but are not used currently. Whenever
we need a new label, we check the set V' and takes one label out of V" unless it is
empty. If V' is empty then we create a new label and use it by incrementing the
value of L. Whenever a label has terminated or is merged into another; we move
the label from U to V. In this way we maintain a set of labels. Then, Lemma 1
guarantees that the maximum size of U/ UV is O(y/n). Thus, we have

Theorem 3. Gwen a binary tmage of n pizels, we can report the number of
connected components and the size of each component in O(n) time using O(y/n)
work space.

Proof. In each row we build a run adjacency graph which contains O(/n) ver-
tices and edges. We can decompose it into connected components in linear time
using depth-first search. Other operations are done in constant time by standard
techniques for such data structures. Thus, the total time required is linear in the
number of pixels. a

3.2 O(+/n)-space algorithm for MERR

It is rather straightforward to modify the algorithm for CCC so that it can also
report the minimum enclosing rectangle of every connected component using
O(y/n) work space. What we should do is to maintain rectangle information
when two or more provisional labels are merged.

Theorem 4. Gwen a binary image of n pizels, we can report the minimum
enclosing rectangle of every connected component in O(n) time and O(\/n) work
space.

3.3 O(+/n)-space algorithm for LCCR

We have already had an O(nlogn)-time and O(1)-space algorithm for solving
the problem LCCR (Largest Connected Component Reporting). Can we solve
it in linear time using O(y/n) work space? Unfortunately, it seems very hard,
but some small improvement is possible. Exactly speaking, we can design an
algorithm which runs in O(n + mlogm) time using O(y/n) work space, where
m 1s the size of a largest connected component.

We modify our algorithm for reporting the smallest enclosing rectangle for
each connected component. By the definition of the canonical edge of the external
boundary of a connected component C' it must be located at the leftmost lowest
corner. We modify the algorithm so that we maintain the following information
(1) the leftmost lowest edge,

(2) the number of pixels

for each label. Then, in one scan over an input image we get the leftmost lower
edge e of a largest component in O(n) time. Then, we apply the O(1)-space
algorithm for component pixel traversal which runs in O(mlogm) time for a
connected component of m pixels.

Theorem 5. Gwen a binary image of n pizels, we can report all pizels of a
largest connected component of size m in O(n+mlogm) time and O(\/n) work
space.

4 Conclusions

In this paper we have presented space efficient algorithms for some basic tasks
on binary images. We have shown that such basic tasks can be done in linear
or almost linear time even if work space is limited to O(y/n) or further to O(1).

Counting the number of connected components is rather easy. In fact we had a
linear-time algorithm if O(+/n) work space is available. However, it is not known
whether we can report all pixels in a largest connected component in linear time
or not.

In this paper we implicitly assumed 4-connectivity for foreground pixels,
that 1s, two foreground pixels are directly 4-connected if they are horizon-
tally or vertically adjacent. In the 8-connectivity the neighborhood includes
all eight neighbors around a pixel. It is rather easy to adapt our algorithms
for 8-connectivity. It suffices to modify the definition of intersection between
two runs in two consecutive rows. For the 4-connectivity a run [si,;] inter-
sects another run [sg,ls] if their associated intervals have non-empty inter-
section, that is, [s1,%1] U [s2,%2] # §. For the 8-connectivity it is the case if
[Sl,tl] n [82 - 1,t2 + 1] ;é 0 or [81 - 1,t1 + 1] n [Sz,tz] ;é 0

Acknowledgment

The part of this research of T.A. was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research on
Priority Areas and Scientific Research (B).

References

1. T. Asano, “Do We Need a Stack to Erase a Component in a Binary Image?,” Fifth
International Conference on FUN WITH ALGORITHMS, pp.16-27, 2010.

2. T. Asano, S. Bereg, and D. Kirkpatrick: “Finding Nearest Larger Neighbors: A
Case Study in Algorithm Design and Analysis,” Lecture Notes in Computer Sci-
ence, “BEfficient Algorithms,” edited by S. Albers, H. Alt, and S. Naeher, Springer,
PP.249-260, 2009.

3. M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars, “Simple traver-
sal of a subdivision without extra storage,” International Journal of Geographic
Information Systems, 11, pp:359-373, 1997.

4. P. Bose, P. Morin, “An Improved Algorithm for Subdivision Traversal without Ex-
tra Storage,” Int. J. Comput. Geometry Appl. 12, 4, pp:297-308, 2002.

5. R. Klette and A. Rosenfeld, “Digital Geometry: Geometric Methods for Digital
Picture Analysis,” Elsevier, 2004.

6. R. Malgouyres, M. More, “On the computational complexity of reachability in
2D binary images and some basic problems of 2D digital topology,” Theoretical
Computer Science 283, pp.67-108, 2002.

7. A. Rosenfeld and J. L. Pfalts, “Sequential operations in digital picture processing,”
J. ACM, 13(4): 471-494, Oct. 1966.

8. A. Rosenfeld and A. C. Kak, “Digital Picture Processing, 2nd ed.,” San Diego,
CA: Academic, 1982, vol. 2.

