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Abstract. In this work we present a feature bundling technique that ag-
gregates individual local features with features from their spatial neigh-
borhood into bundles. The resulting bundles carry more information of
the underlying image content than single visual words. As in practice
an exact search for such bundles is infeasible, we employ a robust ap-
proximate similarity search with min-hashing in order to retrieve images
containing similar bundles.

We demonstrate the benefits of these bundles for small object retrieval,
i.e. logo recognition, and generic image retrieval. Multiple bundling strate-
gies are explored and thoroughly evaluated on three different datasets.

1 Introduction

In computer vision, the bag-of-visual words approach has been very popular in
recent years. Hereby, an image is described by multiple local features; their high-
dimensional descriptor vectors are clustered and quantized to a single integer
number - called visual word - that represents the cluster center. An image is then
usually modeled as an unordered collection of word occurrences, the so-called
bag-of-words. This description provides an enormous data reduction compared
to the original descriptor vectors. Its benefits are a fixed-size image description,
robustness to occlusion and viewpoint changes and eventually simplicity, i.e.
small computational complexity.

In this work we describe a novel approach that builds on visual words and
aggregates spatially close visual words into bundles. Such bundles are more dis-
tinctive than individual visual words alone, i.e. objects and image regions are
described with more expressiveness. We propose a robust method for approxi-
mate similarity search for such bundles, with performance close to the standard
bag-of-words method, but with higher precision and much lower response ratio,
i.e. less false positives.

Two different bundling strategies are evaluated thoroughly on three differ-
ent dataset and compared to bag-of-words retrieval and two recent min-hashing
approaches. We show that the retrieval using feature bundles yields similar per-
formance as standard bag-of-words retrieval and outperforms two other min-
hash-based approaches while providing a response ratio as low as the latter.

* This project is funded by Deutsche Forschungsgesellschaft (DFG).
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Fig. 1. Feature bundles: The neighborhood around a local feature, the central feature
(red), is described by a feature bundle. Features that are too far away or on scales
too different from that of the central feature are ignored during the bundling (yellow).
The features included in such a bundle (blue) are represented as set of visual word
occurrences and indexed by min-hashing (see Section [4)).

2 Motivation

It has been observed several times that the retrieval performance of bag-of-word-
based methods improves much more by reducing the number of mismatching
visual words, e.g. by large vocabularies or Hamming Embedding [5], than by
reducing quantization artifacts. In other words, the precision of the visual de-
scription seems to be more important than its recall, because low recall may be
recovered by doing a second retrieval round, i.e. by query expansion.

Inspired by this observation our contribution is a feature bundling technique
that builds on bag-of-words but does not describe each visual word individually
but rather aggregates the spatial neighboring visual words into feature bundles.
We propose an efficient indexing and search technique for such bundles based on
min-hashing, that allows for similarity search without requiring exact matching.

As illustrated in Figure [l on the left, we combine a visual word with its spa-
tially neighboring visual words into a bundle in order to obtain a more expressive
description of the respective image region.

Such bundles carry more information than individual visual words. Thus, we
expect that more false positives are suppressed during the retrieval and the
returned result set is much smaller and cleaner, compared to traditional bag-
of-words. Small result sets are beneficial because expensive post-retrieval steps
only need to be applied to a small number of images.

3 Related Work

As the core of our approach is based on min-hashing, we briefly highlight the
related work on min-hashing relevant in the context of our approach.

Min-hashing (mH). Min-Hashing is a locality-sensitive hashing technique that is
suitable for approximate similarity search of sparse sets. Originally developed for
detection of duplicate text documents, it was adopted for near-duplicate image
detection [3] and extended to the approximation of weighted set overlap as well
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as histogram intersection [4]. In each of these settings an image is modeled as
a sparse set of visual word occurrences. As the average number of visual words
per image is much smaller than the vocabulary size for large vocabularies, the
resulting feature histograms are sparse and are converted to binary histograms
or simply sets representing whether a visual word is present or not.

If one were able to do a linear search over all sets in a database one might
define a threshold on the overlap ovr(Iy, I3) between such sets I; and I5. This is
equivalent to a threshold on the Jaccard similarity and determines whether these
two sets are identical or “matching”. However, as the linear search is infeasible
in practice the min-hashing scheme provides an efficient way to index these sets
based on this overlap criterion.

Given the set of [ visual words I = {vg,...,v;_1} of an image, the min-hash
function is defined as

mh(l) = arvg]énjin h(v;) (1)

where h is a hash function that maps each visual word v; to a random value from
a uniform distribution. Thus, the min-hash mh itself is a visual word, namely
that word that yields the minimum hash value (hence the name min-hash).
The probability that a min-hash function mh will have the same value for two
different sets I; and I is equal to the set overlap:

P(mh(I1) = mh(Is)) = ovr(Iy, I) — :2%2: (2)

Note that, an individual min-hash value not only represents a randomly drawn
word that is part of the set, but each min-hash also implicitly “describes” the
words that are not present and would have generated a smaller hash - because
otherwise it would have been a different min-hash value.

The approximate search for similar sets is then performed by finding sets
that share min-hashes. As single min-hashes alone yield true matches as well
as many false positives or random collisions, multiple min-hashes are grouped
into k-tuples, called sketches. This aggregation increases precision drastically. To
improve recall, this process is repeated n times and independently drawn min-
hashes are grouped into n tuples of length k. The probability that two different
sets have at least one of these n sketches in common is then given by

P(collision) = 1 — (1 — ovr(Iy, Iy)*)" (3)

This probability function depends on the set overlap and in practice the overlap
between non-near-duplicate images that still show the same object is very close
to 0. In fact, the average overlap for a large number of partial near-duplicate
images was reported to be 0.019 in [6]. This makes clear that for applications
which target the retrieval of partial-near-duplicates e.g. visually similar objects
rather than full-near-duplicates, the most important part of that probability
function is the behavior very close to 0.
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The indexing of sets and the approximate search are then performed as fol-
lows: To index sets their corresponding sketches are inserted into hash-tables
(by hashing the sketches itself into hash keys), which turn the (exact) search for
a part of the set (the sketch) into simple lookups. To retrieve similar sets for
a query set, one simply computes the corresponding sketches and searches for
these sets in the database, that have one or more sketches in common with the
query. This is performed by doing lookups of each query sketch and determining
whether this sketch is present in the hash table, which we denote as ” collision”
in the following. The lookups can be done efficiently in constant time as hash
table offer access in amortized O(1). If there is a query sketch of size k that col-
lides with a sketch in the hash table, then the similarity of their originating sets
is > 0, because at least k of the min-hash functions agreed. To avoid collisions
resulting from unrelated min-hash functions, the sketches are put into separate
hash tables, i.e. the k-th sketch is inserted into the k-th hash table.

Geometric min-hashing (GmH). A conceptually similar approach to ours is geo-
metric min-hashing [2]. However, its statistical pre-conditions for the hashing of
sparse sets are totally different to our setting. There are two major differences:
(1) GmH samples several central features by min-hash functions from all over
the image. Thus, neither all nor even most features are guaranteed to be in-
cluded in the image description. (2) Given a central feature (randomly drawn by
a hash function) the local neighborhood of such feature is described by a single
sketch. In summary, this makes GmH very memory efficient, but not suitable for
generic image retrieval because of bad recall. Consequently, the authors use it
to quickly retrieve images from a large database in order to build initial clusters
of highly similar images [2][I]. These clusters are then used as “seeds”; each of
the contained image is used as query for a traditional image search to find more
cluster members that could not be retrieved by GmH.

Partition min-hashing (PmH). In [0] a scheme is introduced that divides the im-
age into several partitions. Unlike the global min-hashing (mH), min-hashes and
sketches are computed for all partitions independently. The search then proceeds
by determining the sketch collisions for each of the partitions. As the partitions
may overlap and are processed step by step this scheme is conceptually similar
to a sliding window search. The authors show that this scheme has identical
collision probabilities for sketches as mH in the worst case, but better recall and
precision if the duplicate image region only covers a small area. Furthermore
PmH is significantly faster than mH. We include PmH in our evaluation and
find that it performs not significantly better than mH on our dataset.

4 Feature Bundles

We build our bundling technique on min-hash mainly for two reasons: (1) Feature
bundles can be naturally represented as sparse sets and (2) min-hash does not
imply a strict ordering or a hard matching criterion. This requirement is not met,
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by local feature bundles. Due to image noise, viewpoint and lighting changes, the
individual local features, their detections, and their quantizations are unstable
and vary across images. Even among two very similar images, it is extremely
unlikely that they share identical bundles. We therefore utilize the min-hashing
scheme as a robust description of local feature bundles because it allows to search
for similar (not identical) bundles.

We consider the proposed bundling technique an efficient search method for
similar images with higher memory requirements than pure near-duplicate search
methods, but similar to that of bag-of-words. Its performance is close to bag-of-
words, but with much lower response ratio and therefore higher precision.

4.1 Bundle Min-Hashing

The idea of our bundling technique is simple: We describe the neighborhoods
around local features by bundles which simply aggregate the visual word labels
of the corresponding visual features. The bundling starts by selecting central
features, i.e. all features in an image with a sufficient number of local features
in their neighborhood. Analogous to the feature histogram of a full image, the
small neighborhood surrounding each central feature represents a “micro-bag-
of-words”. Such a bag-of-words vector will be extremely sparse because only a
fraction of all features in the image is present in that particular neighborhood.
Since the features of a bundle are spatially close to each other, they are likely to
describe the same object or a region of interest.

More specifically, given a feature x; its corresponding feature bundle b(x;) is
then defined as the set of spatially close features for a given feature x;:

b(xi) = {x;]x; € N(xi)} (4)

where N(x;) is the neighborhood of feature x; for which we propose two different
definitions in the following section. We further assume that for all features x; in
an image the descriptor vectors have been quantized to the corresponding visual
words v; = q(X;).

The bundle b(x;) is then represented by the corresponding set of visual words
of all features included in that bundle:

Wi(b(x:)) = { a(x;) | x5 € b(x:)} (5)

The resulting set W; is then subsequently indexed by min-hashing which samples
min-hashes based on the corresponding hash functions from this set and indexes
them as sketches.

In extensive experiments we observed the following: First, sketches of size > 3
do not work very well, therefore we perform all our experiments with sketches
of size 2. Second, we found that the overall performance increases drastically
if the first sketch element is not determined by min-hash but rather set to the
visual word of the central feature itself. That is, for each bundle the n-th sketch
is given as 2-tuple

(vi, mhn(Wi(b(x:))) ) (6)
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where v; denotes the visual word label of the central feature and mh,, denotes
the min-hash returned by the n-th min-hash function from the set of all visual
words W; present in bundle b(x;). The full process is also illustrated in Figure[ll
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Fig. 2. Collision probabilities given the set overlap between bundles. Left: Collision
probability for a single min-hash. Right: Sketches of size 2.

In Figure[2] the collision probabilities of sketches of size 1 (a single min-hash)
and size 2 given 1 to 4 sketches are shown. One can see that even two bundles with
an overlap of only 0.2, have a 0.5 chance to have one of 4 sketches colliding. This
means, while there are multiple feature bundles that need to be described, each
with several sketches, only very few sketches are needed per bundle to achieve
a high probability to retrieve similar sets. This keeps the memory requirements
for the indexing low. Further redundancy is added as images contain multiple
bundles that may overlap. If some bundles do not match (collide) across images,
there is the chance that other bundles in the same images collide. Throughout
our experiments we therefore describe each feature bundle by 4 sketches, limiting
the overall memory requirement to at most 4 times the storage of bag-of-words.

4.2 Bundling Strategies

In this section we introduce two strategies to select the features around a central
feature which are then combined into a feature bundle. Each feature x; in an
image that has at least 2 features in its neighborhood N(x;) is used to compute
a feature bundle. Features with less or no neighbors are ignored.

Strategy 1: Bundles of Equal Area. The first bundling strategy is based on
the intuition that features which are spatially close to each other might describe
the same object. That is, given a central feature we bundle it with its direct
spatial neighbors. We do not induce any further constraints except requiring
that all features of a bundle must be on a similar scale. This is in line with the
observation that true feature correspondences are often the same scale [5]. Thus,
each feature that is closer to a given central feature x; than a given cut-off radius
is included in the respective bundle b(x;):

de(xi) = {xj | ”pz - pj” < S Tmaz, Smin * Si < Sj < Smaz 3@'} (7)
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Here, p; denotes the location of the feature in the 2-D image plane and s;
denotes the corresponding scale determined by the interest point detector. The
scale is linked with the patch size that is described by the descriptor. For sim-
plicity we assume that s; denotes the radius of the patch in pixels. Only those
neighboring features are included in the bundle which are closer to the central
feature than the maximum distance r,,,, relative to the scale i.e. patch size of
the central feature s;. The minimum and maximum scales S,,i, and $,,4, control
the scales considered for determining the neighborhood relative to the scale of
the central feature. Figure[llshows the bundling criterion for 7,4, = 0.5 (dashed
gray circle), syin = 0.25 and $ppq. = 1.0.

Strategy 2: Bundles of Equal Size. In this strategy, the neighborhood of a
bundle is not determined by the size or scale of the central feature. Instead, the
neighborhood is chosen such that it includes exactly the m visual words which
are closest to the respective central feature and on a scale in between s,,;, and
Smax relative to the scale of the central feature.

This definition is based on the assumption that image regions showing the
same content in different images will yield roughly the same number of feature
detections. Most importantly, this neighborhood definition has the major advan-
tage that all bundles are of equal size, i.e. the overlap between these bundles will
be easily comparable. The redundancy and the robustness of the min-hash-based
search for bundles deals with missing or additionally included outlier features
and still retrieves similar bundles.

4.3 Ranking and Filtering

As mentioned above, we use min-hashing in order to find images which share
similar bundles with the query image. Once these images are determined, they
may be ranked by their similarity to the query image. In preliminary experiments
we evaluated several ways to compute a similarity score between query and
retrieved images, based on the number of sketch collisions or number of matching
bundles, either as absolute value or normalized in various ways. It turns out
that the simple absolute count of sketch collisions was always on par with more
complex similarity measures.

However, a ranking based on the cosine similarity between the full bag-of-
words histogram of the query image and retrieved images still performs signif-
icantly better than a ranking based on the sketch collision counts only. Thus,
in our experiments we rank all retrieval results by the cosine similarity between
the bag-of-words histograms describing the full image that have been obtained
with the same vocabulary size as used for bundling.

In other words, the retrieval by feature bundles is effectively a filtering step:
The bundles are used to quickly fetch a small set of images that are very likely
relevant. Subsequently, these images are then ranked by the cosine similarity. The
small response ratio of the retrieval with bundles is a major benefit: Small result
sets may be processed quickly even with more elaborate re-ranking methods.
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5 Experiments

For all of our experiments we used SIFT descriptors as visual features computed
from interest points found by the Difference-of-Gaussian (DoG) detector.

To quantize the descriptor vectors to visual words we use approximate k-
means which employs the same k-means iterations as standard k-means but
replaces the exact distance computations by approximated ones. Here, we use a
forest of 8 randomized kd-trees to index the visual word centers [7]. This kd-forest
then allows to perform approximate nearest neighbor search to find the nearest
cluster for a descriptor vector both during clustering as well as when quantizing
descriptor vectors to single visual words. To avoid overfitting, the clustering was
performed with data from the training and validation set of FlickrL.ogos-32 only.

5.1 Dataset and Evaluation Method

We evaluate our approach on three different datasets: FlickrLogos-32 [10], Uk-
Bench [§] and Oxford [9]. We use the FlickrLogos-32 dataset to perform pa-
rameter sweeps and optimization of our approach and compare the performance
of some selected well-performing configurations to several baselines. Then the
bundling is evaluated with unchanged configurations - without further tuning -
on both the UkBench and the Oxford dataset to demonstrate how this technique
generalizes.

As a retrieval system should have both good precision and good recall, we
measure the retrieval performance as the mean average precision (mAP) which
describes the area under the precision recall curve. It characterizes both aspects;
a system will only gain high mAP scores if both precision and recall are high.

The response ratio (RR) is then used to measure the efficiency of the retrieval.
It describes the number of retrieved images in relation to the database size. The
higher the response ratio the more images are in the result set, which is usually
post-processed or verified by computationally expensive methods. A low response
ratio will therefore increase the overall efficiency of the search.

The retrieval on the UkBench dataset is measured by the average top 4 score
(Top4), defined as the average number of correctly retrieved images among the
top 4 results. A perfect retrieval would retrieve 4 correct top-ranked images and
therefore yield a score of 4.0. We also report this score where appropriate.

5.2 FlickrLogos-32

The first dataset we use is FlickrLogos-32 (FlickrLogos) which is a recently pub-
lished dataset consisting of 32 classes of brand logos [10]. Compared to other
well-known datasets suited for image retrieval, e.g. Oxford, images of a similar
class in FlickrLogos-32 share much smaller visually similar regions. For instance,
the average object size of the 55 query images (derived from groundtruth an-
notation) of the Oxford dataset is 38% of the total area of the image (median:
28%) while the average object size in the test set of the FlickrLogos dataset
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Table 1. Retrieval results on the FlickrLogos dataset obtained with min-hash (left)
and Partition min-hash (right). 100K /1M: visual vocabulary size, k: sketch size, n:
number of sketches, p number of partitions, np: number of sketches per partition. The
overlap of the p partitions was 0.5 in all Partition min-hash runs.

Min-hash mAP|Top4| RR [[|Partition min-hash |mAP|Top4| RR

100K k: 2 n: 128 [0.072| 1.56 [0.0155||100K k: 2, p: 4, np: 256]0.243| 2.47 |0.0675
100K k: 2 n: 2566 |0.113] 1.97 [0.0303[|100K k: 2, p: 16, np: 64 |0.235( 2.44 |0.0457
100K k: 2 n: 512 |0.178] 1.32 [0.0553[|100K k: 2, p: 64, np: 8 [0.150( 2.23 |0.0327
100K k: 2 n: 1024)0.256| 2.49 [0.1011||100K k: 2, p: 64, np: 16 [0.221] 2.44 {0.0623
M k: 2 n: 128 |0.036] 0.96 [0.0007|[IM k: 2, p: 4, np: 256 |0.150] 2.30 |0.0037
1M k: 2 n: 256 0.059| 1.37 [0.0012|{1M k: 2, p: 16, np: 64  |0.152] 2.41 {0.0037
1M k: 2 n: 512 0.098] 1.78 10.0020|[1M k: 2, p: 64, np: 8 0.108] 2.09 | 0.004
1M k: 2 n: 1024 [0.142] 2.17 [0.0036 [ {1M k: 2, p: 64, np: 16  |0.167| 2.54 {0.0077

is 9% (median: 5%) of the whole image. As the retrieval of the Oxford build-
ing is sometimes coined “object retrieval”, the retrieval task on the FlickrLogos
dataset can be truly considered “small object retrieval”.

The dataset is split into three disjunct subsets. For cach logo class, we have 10
train images, 30 validation images, and 30 test images - each containing at least
one instance of the respective logo. For both validation and test set the dataset
also provides a set of 3000 negative (non-logo) images downloaded from Flickr
by the query terms “building, ” “friends”, “nature” and “people”. This dataset
of logos is interesting for both retrieval and classification since it features logos
which can be considered as rigid objects with approximate 2-D planar surface
visible from a single viewpoint only. The difficulty arises from the great variance
of object sizes, from tiny logos in the background to image-filling views.

Our evaluation protocol is as follows: All images in the training and validation
set, including those that do not contain any logo are indexed by the respective
method (In total: 4280 images). These 960 images in the test set which do show
a logo (given by the ground truth) are then used as queries to determine the
most similar images from the training and validation set. The respective retrieval
results are then ranked by the cosine similarity (see Section [4.3).

We evaluate the retrieval performance of all approaches for varying vocabulary
sizes. As we are especially interested in the impact of extremely large visual vo-

cabularies on the overall performance, we vary the vocabulary sizes from 10,000
(10K) to 4,000,000 (4M) words for all of our experiments.

Min-Hash and Partition Min-Hash. We compare the performance of our
approach to the performance of the standard min-hashing approach (mH) as
well as our Partition min-hash (PmH) implementation. These approaches are
specifically meant for near-duplicate and partial-near-duplicate image search.
This comparison shows how these methods perform for small object search on
the FlickrLogos dataset when used with typical parameters.

Table[Illists the obtained results for typical parameter constellations. From the
results it can be seen that both min-hash and Partition min-hash show reasonable



54

mAP on FlickrLogos Response ratio on FlickrLogos
T T T T T T T T

T T
[ —=— Bow, TF-IDF|

Y| — RSP A  SE S F N A SEO —=—BmH2a

i I I I I I I
I I I I I I i I

] I N e A [ e A [
I I I I I I I I I

| v | | | | | | | |
0.4F--1--N\c- e e Y
- | 1 | I I 1 1 1 | |

mean response ratio

| | | | | | | | |
| | | | | | | |

12 S N [y
- | I | | I 1 | 1 | |
| | L | | | | |

0 L L L L L L L L L T 0 L L L L — » —
10K 20K 50K 100K 200K 500K 1M 2M 3M  4M 10K 20K 50K 100K 200K 500K 1M 2M  3M  4M
vocabulary size vocabulary size

Fig. 3. Retrieval results on the FlickrLogos-32 dataset: The performance of the bundles
is on par with the bag-of-words model (left) but the response ratio is an order of
magnitude lower (right)

Table 2. Selected bundle configurations

Name Bundling | 7 [Smin|Smaz||Name Bundling [m/|smin|Smax
BmH 1a|Strategy 1{1.0] 0.5 | 1.0 ||BmH 2a|Strategy 2| 4| 0.7 | 1.42
BmH 1b|Strategy 1{1.5( 0.7 | 1.42 ||BmH 2b|Strategy 2|6 | 0.7 | 1.42

performance at retrieving the top-most similar images but vary greatly in their
mAP. In the following experiments, we compare the results for the arguably
best parameter settings, i.e. 1024 sketches for min-hash and 256 sketches with 4
partitions for PmH, to our approach and the bag-of-words baseline.

Bag-of-Words and Feature Bundles. We evaluate the performance of both
of our bundling strategies with regards to mAP and response ratio and compare
it to a retrieval with bag-of-words and tf-idf weighting, as described e.g. in [9].
Figure [Bl shows the obtained results on the FlickrLogos dataset for 10 different
vocabularies. One can clearly see that the bag-of-words with tf-idf weighting has
its peak at a vocabulary of 1 million words, which confirms that large vocabu-
laries are beneficial for image search [9].

In order to find the best bundle configurations we have done an extensive
parameter sweep on the parameters of the bundle configuration. Due to lim-
ited space, we cannot show a detailed evaluation for each of these parameters.
Therefore we report the performance of 4 selected well-performing bundle con-
figurations (two for each bundling strategy) shown in Table 21

As can be seen clearly in our figures, the two different bundling strategies (de-
noted as BmH1 and BmH2) perform equally well. Similar to bag-of-words they
profit from large vocabularies, but the peak is at 500 K words. More importantly,
the bundles are on par with bag-of-words, but have an order of magnitude lower
response ratio as can be seen in Figure [l on the right.

Note that we rank the result set with the same metric for all approaches, i.e. by
the cosine similarity as determined by the bag-of-words model. As the bundling
is by definition only able to find correspondences between images that share
visual words, the result set of the retrieval by feature bundles is a true subset
of the result set obtained with bag-of-words retrieval. This clearly demonstrates
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Fig. 4. Results on the UkBench dataset: The bundles yield an average top 4 score
similar to bag-of-words as well as min-hashing and partition min-hash

the discriminative power of feature bundles for efficient filtering before more
expensive post-retrieval steps are applied to the result set.

5.3 UkBench

We report the average top 4 score obtained on the UkBench dataset [§] (see
Figure M) to show the performance of feature bundles on a pure near-duplicate
retrieval task. We do not optimize the bundle configurations specifically for this
dataset. Instead, we show the performances for the bundle configurations as in
Table 2] since we want to demonstrate how the bundle configurations obtained
on the FlickrLogos dataset generalize on another dataset. From the results it can
be seen that the retrieval precision of the bundling is similar or better than that
of min-hashing and partition min-hashing and slightly lower than that of bag-
of-words. Again, the response ratio is much lower and expresses the efficiency
with which near-duplicates are retrieved.

5.4 Oxford Buildings

Finally, we also compare the performance of the feature bundles with bag-
of-words retrieval, min-hash and partition min-hash on the Oxford buildings
dataset [9]. This dataset contains 5063 images of 11 buildings from Oxford as
well as various distractor images. It is known for its difficulty to discriminate
very similar building facades from each other and is one of the most well-known
datasets for image retrieval.

Again, we use the previously obtained bundle configurations and just report
the retrieval performance as obtained with the evaluation protocol of the Oxford
dataset. Figure [l shows the results. One can observe that bag-of-words performs
best, while the bundles are worse yet outperform mH and PmH. Interestingly,
the bundles outperform the bag-of-words retrieval if the database is increased
by adding 100,000 distractor images downloaded from Flickr. In that case one
can observe a performance drop of both bag-of-words and feature bundles (see
curve BOF, TF-IDF, 100k in Figure (), but the bundles retain their extremely
low response ratio. This demonstrates that bundling spatially related features
suppresses false positives.
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Fig. 5. Retrieval results on the Oxford dataset

Conclusion

In this work we introduced a robust technique for efficient indexing and search of
feature bundles. Each bundle carries the information of individual visual words
and their surrounding neighborhood. We showed that the bundles have a perfor-
mance on par with bag-of-words models but with significant lower false positives,
i.e. the result set is reduced by an order of magnitude. This makes much more
complex and expensive post-retrieval operations on the small result set feasible.
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