
Self-adaptive Complex Systems

Marie-Pierre Gleizes

IRIT (Institut de Recherche en Informatique de Toulouse), Toulouse University, 118
Route de Narbonne, F-31062 Toulouse Cedex 9, France

gleizes@irit.fr

Abstract. Nowadays and in the near future, the complexity of com-
puter applications is exponentially increasing. This complexity comes
from the inherent properties of such applications: the great number of
their involved components, the distribution of their control and skills,
the nonlinearity of their process and their increasing openness. This is
also caused by the unpredictable coupling with their environment due
to high dynamicity. To fulfill these requirements, systems have to adapt
themselves in order to be robust and efficient. This paper will deal with
self-adaptation in software systems, particularly from a multi-agent view-
point and will focus on the Adaptive Multi-Agent Systems theory.

1 Introduction

Nowadays and in the near future, the complexity of computer applications is
exponentially increasing. This complexity comes from the inherent properties
of such applications: the great number of their involved components, the dis-
tribution of their control and skills, the nonlinearity of their process and their
increasing openness. This is also caused by the unpredictable coupling with their
environment due to high dynamicity. Complexity was previously studied in a for-
mal way, mainly by Kurt Gödel who stated that some inherent limitations exist
about completeness and consistency for formal theories including arithmetic.
This means that their own validity can only be proved outside of them. Demon-
stration of Gödel ’s incompleteness theorem introduced the computable function,
formalized later in computer science (such as pi-calculus, Turing machines, re-
cursive functions, Post’s machine). These lead to main several limitations in
complex artificial systems: we cannot prove in a general way that they cannot
be free of bugs, and these bugs can only be detected at runtime. From this very
basic result, it is possible to define some directions to design complex systems:

– A complex system must be able to self-adapt during its execution because of
the dynamics but also because residual bugs are potentially included despite
the design and verification phases. For the same reasons, classical learning
methods cannot be sufficiently general in order to suppress these residual
bugs and we must discover new approaches able to self-adapt at the micro-
level without any knowledge of the global goal to achieve at the macro-level.



– Each component of the system has only to be coupled with a small number of
the total amount composing the global system. This constraint comes from
the previously quoted inapplicability of the global function at the micro-
level, but implies the definition of micro-theories able to converge towards
the desired emergent global functions.

– Designing systems in a top-down manner presupposes that the assembling
of the specified components provide the desired global behaviour. Unfortu-
nately, it is well-known that non-linearities and the multiplicity of dynamics
lead to emergent phenomena at the macro-level. Consequently top-down de-
sign is fundamentally inappropriate for complex systems design.

These reasons lead us to change the perspective in order to design complex adap-
tive systems from satisfaction of system requirements by global and top-down
activity to satisfaction of system requirements by local and bottom-up activity.
Self-organisation is a way to achieve this change by allowing the design of sys-
tem with emergent funtionality. To contribute to this approach, the Adaptive
Multi-Agent Systems (AMAS) theory provides a guide to design self-organising
systems. This theory is based on the observation that the cooperation enables to
guide the agent behaviour at the micro-level, helping the agents to self-organise
and to obtain adaptation at the macro-level. The modification of the interac-
tions between the agents of the system modifies also the global function and
makes the system able to adapt to changes in its environment. The interactions
between agents depend on the local view these agents have and on their ability
to ”cooperate” with each other.

In section 2, the motivations leading to design self-adaptive complex systems
are expounded. Then, section 3 presents the concepts of self-organisation and
emergence. Section 4 details the AMAS theory which is studied in the SMAC1

research group in Toulouse and has lead to Research led to a Spin off, UPETEC2.
Then, section 5 concludes and proposes some perspectives.

2 Motivations

Nowadays, applications to design and problems to solve become more and more
complex such as energy management [1], aircraft design [2], crisis management
[3], maritime surveillance systems [4], ambient systems [5]... This complexity
is due to a combination of aspects such as the great number of components
involved in the applications, the fact that knowledge and control have to be
distributed, the presence of non linear processes in the system, the fact that
the system is more and more often open, its environment dynamic and the in-
teractions unpredictable [6]. So, these properties motivate designer to realize
software systems taking into account scalability, difficulty to solve problems, dy-
namics and under-specifications. In order to tackle the design of such complex

1 SMAC Systèmes Multi-Agents Coopératifs www.irit.fr/SMAC
2 www.upetec.fr



systems, self-adaptive multi-agent systems represent a promising approach pro-
viding the needed robustness and adaptation in the light of the aforementioned
difficulties.

2.1 Scalability

The scalability of MAS [7] means that the system well behaves with a small
numbers of agents but also with a great number of agents. A scalable system
is a system which reaches scalable solutions that is to say with ”reasonable”
performances regardless of problem size.

The need of large-scale systems is an obvious fact in numerous domains as
traffic control systems, maritime surveillance systems, simulation of biochemical
reactions [8]. These domains provide strong constraints for the designer. The
first one concerns the control which must be decentralized. Decentralization
is required because it is too much difficult to get all informations about all
entities in a single point without leading to a bottleneck. Decentralization enables
to improve the system performances. The second point is about the solving
which also must be distributed. It is a quite obvious consequence of the first
point and this is also inevitable in systems composed of different physical agents
such as cars or aircrafts in a traffic control system. The last point refers to the
accessibility of a global knowledge about the system. Usually, because the
system is too large, an agent inside the system has only a partial knowledge
about the system,which is acquired from its environment. Depending on the size
of the system, a global knowledge is available or not.

2.2 Problems Difficult to Solve

Several reasons can explain the difficulty for humans to solve some types of
problems. The problem can present some non-linearity, some interdependencies
between its parameters. The most representative classes of these problems are
the multi-disciplinary, multi-objective, multi-level optimisation problems [2] and
the distributed constraint-satisfaction problems [9]. The recognition of the whole
problem is not possible because of its complexity. This has led to design self-
organising systems presenting emergent functionalities [10], [11]. Those systems
are necessarily composed of several autonomous interacting agents, plunged into
an environment. In general, the global behaviour of the system emerges from the
local interactions between agents. The potential of this approach is important
because it simplifies the design and diminishes the design delays. But this is
not so easy to do, as Van Parunak & Zambonelli [12] have claimed: ”Such be-
haviour can also surface in undesirable ways”. So, systems can reach undesirable
states because the main difficulty lies in controlling the global behaviour while
designing at micro-level.

2.3 Dynamics

Challenges of current systems are to take into account the dynamics. This dy-
namics is the result of changes that may be endogenous or exogenous to the



system. Endogenous changes are generated by the system and derive, for ex-
ample, from hardware failures or errors of the software behavior. Exogenous
disturbances come from the system environment. To enable the system to con-
tinue to fulfill the function for which it was designed, it is necessary that it can
adapt in real time. The system must also be open which means that an entity
of the system (agent) may be added or removed at runtime. Disturbances from
the environment of the system cause it to adapt.

2.4 High Level Expression of Requirement or under-Specified
Problems

The way we usually design computational systems requires for the designer, to
have some important initial knowledge. The first information a designer has to
know is the exact purpose of the system. But sometimes, the main goal of the
system is described at a very high level such as, for example: the system must
satisfy the end-user. It is difficult to freeze this goal at the design time. Or the
solution to be reached can be modified during the execution and in order to do
this, the end-users have to be able to interact with the system. The system and
the user have to co-construct the solution. It is the case, for example, for complex
constraints problem solving in which the user can relax some constraints. The
second kind of knowledge that the engineer has to know, concerns every inter-
action to which the system may be confronted in the future. The environment
of the system can evolve and by consequences, the designer is not able to know
all these situations at design time. The evolution of computer science forces us
to consider that it is more and more difficult - if not impossible - not only to
control accurately the activity of software with increasing complexity but also
to describe completely how they work [17]. Making systems more autonomous
and more adaptive is a way to simplify the task of the designer. That means
that systems are able to modify their behaviour in order to achieve what they
have to do at a given time.

3 Self-adaptation

As we have seen in section 2, the system to be designed must tackle complexity
by using self-adaptation.

3.1 Self-adaptive Systems

In [13], according to the DARPA definition, it is said ”self-adaptive software
evaluates its own behavior and changes behavior when the evaluation indicates
that it is not accomplishing what the software is intended to do, or when better
functionality or performance is possible”. This definition must be completed by
the fact that the system realizes the adaptation in an autonomous way, without
the designer intervention and at runtime. So, we do not have to stop the system



in order to adapt it, it is able to adapt its behaviour, by itself, without stopping
its excecution. This explains the prefix ”self”.

Designing these self-adaptive systems requires a radical change of perspective.
Classicaly, designers satisfy the requirements by a global and top-down activity.
They usually know the purpose of the system (main objective) and the interac-
tions corpus in the future between the system and its environment. Designers
must switch to the requirements satisfaction by a local and bottom-up activ-
ity. Furthermore, they do not know the purpose of the system and the body
of interactions occuring in the future between the system and its environment.
One of the most well-known mechanism used to enable adaptation of a system
is inspired from natural systems and social animals like ants, termites... and is
called self-organisation.

3.2 Self-organisation and Emergence

The works of the Agentlink Technical Forum on Self-Organisation in Multi-Agent
Systems[14] have established two definitions of self-organising systems:

– Strong self-organising systems are systems that change their organisa-
tion without any explicit, internal or external, central control;

– Weak self-organising systems are systems where reorganisation occurs
as a result of an internal central control or planning.

Furthermore, self-organisation implies organisation, which in turn implies some
ordered structure and component behaviour. In this respect, the process of self-
organisation changes the respective structure and behaviour and a new distinct
organisation is self-produced [14]. Finding a solution with this kind of systems
is equivalent to find the right organisation [15]. For designers, the benefits of
self-organising systems are mainly due to the fact that the resolution process as
a whole is not to be designed. To develop a complex system, it is sufficient to
design its agents, to provide them with means to self-organise and to enable them
to interact with the environment. Then, the solving process is self-constructed:
it emerges from the interactions between agents [6].

The concept of self-organisation is often coupled with the concept of emer-
gence. Emergence is the result of a collective activity and self-organisation is
the means to obtain an emergent phenomenon. And it seems that emergence
is a suitable context to design complex systems that cannot be controlled by a
human in a centralised way. We commonly agree with the fact that an emergent
phenomenon must be observable. From an observer point of view, we assume
that if one can observe the content of the entities of a system and if one can
observe at the system level a behaviour that cannot be reduced to the behaviour
of the entities, the global behaviour can be qualified as emergent. In other words,
we can say that a human cannot determine the global behaviour of the system
only by looking at the agent behaviour. We can also qualify a phenomenon as
emergent if we need different terms, vocabularies to explain the micro and the
macro levels. This leads to give the following operational definition of emer-



gence in artificial systems, based on three points: what we want to be emergent
(subject), at what condition it is emergent and how we can use it (method) [16].

1. Subject. The goal of a computational system is to realise an adequate func-
tion, judged by a relevant user. This ”function” can be for instance a be-
haviour, a pattern, a property (which may evolve during time) that has to
emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
mechanisms facilitating the adaptation of the system during its coupling with
the environment, so as to tend toward a coherent and relevant function.

3. Method. The mechanisms which allow the changes are specified by self-
organisation rules, providing autonomous guidance to the components’ be-
haviour without any explicit knowledge about the collective function nor
how to reach it.

3.3 Self-organisation / Re-organization

Two well-known communities focus on the design of adaptive and robust sys-
tems: SASO(Self-Adaptive and Self-Organising systems) and COIN (Coordi-
nation, Organisation, Institutions and Norms in agent systems). The SASO
community studies self-adaptation and self-organisation. In a self-organising
multi-agent systems context, the designer of such systems first focuses on agent
local behaviours and peer-to-peer interactions. The organisation is the result
of the collective emergent behaviour due to how agents act their individual
behaviours and interact in a common shared and dynamic environment. The
designer does not put any global knowledge about the organisation inside the
agents.

In the COIN community, the designer provides on one hand, the entire or-
ganisation and coordination patterns, and on the other hand, the agents local
behaviours . At runtime, the agents may consider the constraints imposed by the
defined organisation as compulsory or possible guidelines for the coordination of
their local behaviours. The organisation exists at design time. The designer puts
this knowledge inside the system and allows the agent access to this information.

Both communities are interested in adaptation and self-adaptation and use
the organisation concept but the hypothesis for designing systems are different.
Organisation is a first-abstract class in the design of COIN systems, required
at design time. In self-organising systems, the organisation is the result of the
collective behaviour.

3.4 Self-organisation Mechanisms

Currently, a lot of mechanisms of self-organisation are implemented in artifi-
cial systems [11] and cannot be all detailed here. The older are nature-inspired
mechanism and copy the activity of social animals such as: foraging, nest build-
ing, sorting, web weaving... The most well-known technique is the stigmergy



mechanism. It has been widely used and was first observed in societies of social
insects by Grassé and can be summarised as ”the work excites the workers”
[17]. Agents leave information in the environment which can be perceived by the
others. This information, usually evaporates after a given time. This mechanism
allows task coordination and regulation within a group, using only indirect in-
teractions and without any central control. There is no method to develop this
technique and the primary difficulty is to adjust the different parameters such
as the speed of evaporation or the amount of information dropped. Because the
solution must be represented in the environment, the final goal of the system
guides the design phase. Some mechanisms are inspired from physics such as the
gradient fields. They are based on attraction and repulsion behaviours and show
self-organised behaviour [18]. We can also find mechanisms imitating human be-
haviour such as gossip. It enables to spread information and to create evolving
organisations [19].

In all these works, researchers have applied a mechanism observed or not in
the nature, a theory to an application. Sometimes the phenomenon observed
by simulating the system is interesting such as web weaving. But it is difficult
to find a real application which can be realized by the system. Concerning web
weaving, researchers have applied it to regions detection but they do not propose
another application. What we try to do in my research group is to constantly go
from applications to theory but also from the theory to applications. We realize
specific applications by highlighting generic behaviours and then, we reuse these
behaviours by improving them to design other applications. Applications enrich
theory and theory enables to develop new applications. This theory: the Adap-
tive Multi-Agent Systems theory [20],[21],[16], [6] is presented in the following
sections.

4 AMAS Theory

The first aim of the AMAS theory is to design MAS having a coherent collective
activity that achieves the right task. We name this property ”functional ade-
quacy” and we proved the following theorem: ”For any functionally adequate
system, there is at least a cooperative interior medium system which fulfills an
equivalent function in the same environment”. Therefore, we focused on the de-
sign of cooperative interior medium systems in which agents are in cooperative
interactions. The specificity of the theory resides in the fact that we do not code
the global function of the system within the agents. Agents have only a partial
knowledge. The global function of this system emerges from the collective be-
havior of the different agents composing it. Each agent possesses the ability of
self-organisation i.e. the capacity to locally rearrange its interactions with oth-
ers depending on the individual task it has to solve. Changing the interactions
between agents can indeed lead to a change at the global level. This induces the
modification of the global function. This capacity of self-organisation enables to
change the global function without coding this modification at the upper level
of the system. An intuitive example is the realisation of an elementary math-
ematical function. Let five agents be *, +, 2, 100, 5, if the organisation is the



following: 2+(5*100) the result is 502 but if the organisation was (2+5)*100, the
result would be 700. With this simple example, we can see that a change inside
an organisation, changes the results provided by it. Self-organization in AMAS
is based on the capacity an agent possesses to be locally ”cooperative”.

These agents, called cooperative agents are composed of five parts con-
tributing to their behavior: skills (what the agent is able to do), representations
of the world (the knowledge it has about itself, about the others or about its
environment), an interaction language (to communicate with others or with its
environment), aptitudes (the capacities it possesses to reason on its knowledge)
and a social attitude led by what we call cooperation.

4.1 Definition of Cooperation

The basic definition of the cooperation between two agents is that an agent helps
the other to execute a task. For example, two agents are needed to carry a very
heavy object and they must help each other to do it. In Artificial Intelligence
[22] cooperation means that, if two agents have two different goals then the fact
that an agent can reach its goal, does not prevent the other to reach its own one.
In the AMAS theory, cooperation defines more an attitude, a behaviour that an
agent has to follow.

In the AMAS theory, an agent is benevolent, sincere, willing, fair and imple-
ments reciprocity. Benevolence is different from altruistism and means that for
a limited duration, an agent can leave its individual goal to help another agent
or to adopt the goal of another one. An agent is sincere if it never lies to other
agents. A willing agent is an agent which tries to satisfy a request if it is coherent
with its own skills and the current state of the world, and if no damage results
from the action, either to the acting agent or to another. If there is a resulting
damage, refer to property four. A fair agent always tries to satisfy, when it is
possible, agents with the highest level of difficulty for reaching their goals. Reci-
procity is the fact that each agent of the same society knows that itself and the
others verify these four main properties.

4.2 Cooperative Agent Behaviour

A cooperative agent aims at always being in a cooperative state that is in co-
operative interactions with its environement. However, because of the dynamic
nature of the environment of the system, as well as the dynamics of the inter-
actions between agents, an agent can be in a non cooperative state or can be at
the origin of cooperation failures. We call these states: ”Non Cooperative Situ-
ations” (NCS). More precisely an agent can detect NCS at three different steps
during its lifecyle:

– when a signal perceived from its environment is not understood and not read
without ambiguity;

– when the information perceived is not useful for the agent’s reasoning;
– when concluding results lead to act in a useless way in the environment.



The general algorithm followed by a cooperative agent (see 1) consists in exe-
cuting what the agent has been created for (called its Nominal behaviour), if it
does not detect NCS. But if a cooperation problem occurs, it can realize one or
more of the three following behaviours: tuning, reorganisation and evolution. For
tuning, an agent changes the value of some of its internal parameters. For reor-
ganising, an agent modifies the way it interacts with its neighbours by: adding
or removing a neighbour, modifying the trust it has in a neighbour. Concerning
the evolution, the agent self-removes or creates another agent (a replication of
it for example). Note that these behaviours lead to self-organisation.

Begin while The agent is alive do
if The agent does not detect any Non Cooperative Situation then

Execute the Nominal Behaviour;
else

The agent tries to:
Adjust its internal parameters: Tuning;
and/or Change its interactions: Reorganization;
and/or Add or remove an agent: Evolution;

end

end
Algorithm 1. Cooperative agent’s behaviour

In the algorithm, we can note that the detection of NCS infuences the agent
behaviour. As a consequence, a central point in the AMAS theory has been the
definition of NCS. At this step of our work, we have registered seven NCS [23]:

– Incomprehension is related to the interpretation of the messages and in-
forms that the agent is not able to extract any understandable information
from the received message.

– Ambiguity informs the agent that different interpretations are possible,
and therefore, an accurate representation update is not possible. That can
be due for instance to missing information.

– Incompetence is detected when the agent does not have the competence
to process the received information such as answering an agent request.

– Unproductivity is detected when the agent has accurately interpreted the
received information but cannot use it to produce any useful information for
itself because it already has this information, it is of no interest for it or the
received information is incomplete.

– Conflict is detected either when considering the list of possible future ac-
tions or when detecting a conflict in the environment. In the first case, among
the list of possible actions some are conflicting and such actions cannot be
performed by the agent at the same time (i.e. lack of resources). In the sec-
ond case, the conflict can either be due to a previous action performed by
the agent or another agent, or a change in the environment not related to
the agent activity. This situation is also detected when the agent considers



that modifying the environment can prevent other agents from reaching their
goals.

– Concurrence concerns the interactions between the agent and its environ-
ment. It is detected when among the list of possible actions, some can put
the agent in concurrence or competition with other agents.

– Uselessness is detected when the agent considers itself not useful for the
system or its environment. This can be due to a lack of information or unused
knowledge.

Depending on the application, only some of these NCS are relevant. For example,
in an ant simulation, the notion of incomprehension is not necessary because an
ant can always understand what it perceives (food, pheromone, ant, obstacle).

4.3 Mechanisms for Implementing Cooperation

Cooperation is considered as an attitude which guides the agent behaviour in
using only a partial knowledge: the agent’s knowledge and its local perceptions.
The cooperation is implemented inside an agent with the four following mecha-
nisms:

– spontaneously communicate,
– anticipate cooperation failures,
– repair cooperation failures,
– act for helping its worst neighbours.

Notice that depending on the application, not all these mechanisms must be
implemented by the designer inside the agent.

Spontaneous Communication. Spontaneous communication consists in com-
municating to an agent an information not requested by it. An agent sends a
piece of information if it thinks that this information can be useful to another
agent. An example of this action has been implemented in the simulation of for-
aging ants [24]. In this simulation, the environment is composed of the nest, some
obstacles, pheromone, pieces of food and ants. The pheromone self-evaporates
during time and can be accumulated when several ants drop pheromone at the
same place. The foraging ants are the cooperative agents of the multi-agent
system. Their behaviour is copied from natural ants and consists first in ex-
ploring the environment. When it encounters an obstacle, it avoids it. When
it encounters food, it can harvest it. When it is loaded, it goes back to nest
in dropping a given quantity of pheromone on the ground. By consequence,
tracks of pheromone appear in the environment. During its exploration, an ant
is attracted by pheromone and leads to follow pheromone track. This behaviour
implies a reinforcement of the existing tracks. In the following situation called
”come back to the nest”: when an ant is loaded and comes back to the nest,
it puts pheromone on the ground to mark the location. The spontaneous com-
munication is implemented as follows: in the ”come back to the nest” situation



Fig. 1. Spontaneous communication of an ant

if in addition the ant perceives new pieces of food, it drops a higher quantity
of pheromone on the ground (see figure 1). This is done to provide a better
information about the environment to other ants.

Anticipation of Non Cooperative Situations. If it is possible, an agent can
try to anticipate NCS. The designer has to implement the detection of possible
NCS due to the future action of the agent. If an agent can know in advance
that its action will lead to a NCS, it has to avoid it. For example, an agent can
anticipate anUnproductivity NCS by informing other agents about the update
of its profile such as the agents main interest or the information produced by the
agent and judged helpful for others. The NCS anticipation can be illustrated in

Fig. 2. Carrier robots

the carrier robots application [25]. In this application, see figure 2, there are two
rooms A and B, separated by two narrow corridors (where two robots cannot
cross). The robots have to take a box in the room A and to drop it in the room
B. They have only local perceptions (only adjacent cases). For each robot, we
store the ten last locations where the robot has encountered problems (most of



the time a location where it cannot move because something is in front of it).
These locations are in blue in the figure 2. There are a lot because all locations
marked by all robots are visualised on this figure. Of course for one robot there
are no more than ten blue locations. Therefore thanks to this memory a robot
can anticipate that there is a robot coming in the opposite diretion in front of
it, and choose another direction to avoid the conflict.

Treatment of Non Cooperative Situations. If an agent detects NCS, it
must act to repair them. By consequence, the designer has to provide for each
NCS an handler which will be executed by the agent to come back in a coop-
erative state. This handler is application-dependent. For example, if an Incom-
prehension NCS is detected, to solve this NCS, the agent can for instance ask
the sender to modify its message, or ask other agents that may understand it
for a translation/decryption.

The NCS treatment can be illustrated in the carrier robots application see
figure 2. A conflict occurs when inside the corridor, one robot is in front of
another robot moving in the opposite direction. In this case, if it is possible, the
agent must move to its sides (left or right). If it cannot move laterally, two other
solutions are opened. If the other robot has an antagonist goal, the robot which
is the most far from its goal will move backward to free the way for the robot
which is the closest to its goal. Robots can evaluate which is the most distant
since they know their goals and the associated zones.

Action to Help Its Worst Neighbour. Each agent can measure the degree
of difficulty it has to reach its individual goal. This measure is called critical-
ity. When an agent receives a request from its neighbours, the request can be
provided with the criticality of the sender agent. So a cooperative attitude is to
try to help its neighbours which have the most difficulties to reach their goals.
In fact, in doing this the satisfaction of all the agents in the system tends to be
balanced. No agent is very satisfied and no agent is not satisfied at all.

Fig. 3. Criticality in the MASCODE system



The criticality notion can be showed in the MASCODE system [2]. MAS-
CODE is an aircraft design system which realizes multi-disicplinary and multi-
objective optimisation. When designing a new aircraft, a designer defines his
objective parameters, the main constraints on the design and the main expected
performances. Each of these parameters are agentified. The criticality of an agent
provides information on the fact that the value of the parameter (it represents)
found by the agent is inside or outside the validity interval (see figure 3). With
the curve of figure provided to the agent, this latter is able to compute its criti-
cality. Within the objective limits, the agent is completely satisfied and it is not
critical. Outside its physical limits, it is not at all satisfied and its criticality is
equal to the maximum value.

4.4 Designing Self-adaptive MAS

To facilitate the design of systems based on the AMAS theory, we have proposed
a methodology called ADELFE [26] and a framework called MAY3. These two
tools will not be described here, only the main steps the designer has to follow
are summarized. First of all the designer has to determine the agents and their
nominal behaviour. He has also to verify which mechanism is needed and relevant
i.e. he has to decide if spontaneous communication is needed. Then, he has to
find for every type of agents, which NCS among the seven NCS (described in
section 4.2) an agent can encounter. For every possible NCS, he has to provide
a handler to treat this NCS and for every anticipated NCS, to provide a handler
to avoid it. At the end, he has to explore the utility of using or not criticality
notion.

All these steps are more or less simple, the expertise acquired in building
AMAS systems is of course very useful to design a new system. But the main
difficulty is to think ”local”. Because the designer knows what the collective
has to do, he tends to put this knowledge inside the agents. This is the wrong
way to design adaptive complex systems. Because of the difficulty to realize the
global task or at the deployment phase with a great number of agents, this global
knowledge is no more accessible.

5 Conclusion

Self-adaptive complex systems are relevant systems to cope with scalability, dy-
namics, difficulty to solve a problem, and under-specification. The AMAS the-
ory, presented in this paper, is our contribution to design a class of self-adaptive
systems: the self-adaptive multi-agent systems. This theory was and is also cur-
rently applied in numerous research projects but also in industrial ones: maritime
surveillance, aircraft electric harness optimisation, energy management,... Future
systems will be composed of systems and will be system of systems which will
not be designed by the same designer. In this context, interoperability and ope-
ness will be the main future research challenges. The large scale of systems will
require to find new means to evaluate and validate them. The context in which

3 www.irit.fr/MAY



the system will be deployed will not be known in advance. The designer will have
to tackle unanticipated adaptation. This means that he will not precisely know
this context at design time. Self-adaptive complex systems should be improved
to answer to these fascinating and open challenges.

Acknowledgements. I want to thank all members of the SMAC team: per-
manent researchers, students supervised in the past and ongoing PhD who con-
tributed to the work presented in this paper.

References

1. Lagorse, J., Paire, D., Miraou, A.: A multi-agent system for energy management
of distributed power sources. Renewable Energy 35(1), 174–182 (2010)

2. Welcomme, J.B., Gleizes, M.P., Redon, R.: Adaptive multi-agent systems for multi-
disciplinary design optimisation. In: 16th International Conference on Engineering
Design (ICED 2007), Paris, The Design Society (2007)

3. Lacouture, J., Gascueña, J.M., Gleizes, M.-P., Glize, P., Garijo, F.J., Fernández-
Caballero, A.: ROSACE: Agent-Based Systems for Dynamic Task Allocation in
Crisis Management. In: Demazeau, Y., Müller, J.P., Rodŕıguez, J.M.C., Pérez,
J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 255–260. Springer, Heidelberg
(2012), http://www.springerlink.com

4. Mano, J.-P., Georgé, J.-P., Gleizes, M.-P.: Adaptive Multi-agent System for Multi-
sensor Maritime Surveillance. In: Demazeau, Y., Dignum, F., Corchado, J.M.,
Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 285–290. Springer,
Heidelberg (2010)

5. Georgé, J.P., Camps, V., Gleizes, M.P., Glize, P.: Ambient Intelligence as a Never-
Ending Self-Organizing Process: Analysis and Experiments. In: ASAMi 2007 (2007)

6. Gleizes, M.-P., Camps, V., Georgé, J.-P., Capera, D.: Engineering Systems Which
Generate Emergent Functionalities. In: Weyns, D., Brueckner, S.A., Demazeau, Y.
(eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 58–75. Springer, Heidelberg
(2008)

7. Turner, P.J., Jennings, N.R.: Improving the Scalability of Multi-agent Systems. In:
Wagner, T.A., Rana, O.F. (eds.) Infrastructure for Agents 2000. LNCS (LNAI),
vol. 1887, pp. 246–262. Springer, Heidelberg (2001)

8. Videau, S., Bernon, C., Glize, P.: Towards Controlling Bioprocesses: A Self-
adaptive Multi-agent Approach. Journal of Biological Physics and Chemistry 10(1),
24–32 (2010)

9. Liu, J., Jing, H., Tang, Y.Y.: Multi-agent Oriented Constraint Satisfaction. Artifi-
cial Intelligence 136(1), 101–144 (2002)

10. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-Organization in
Multi-Agent Systems. The Knowledge Engineering Review 20(2), 165–189 (2005)

11. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.): Self-organising Soft-
ware - From Natural to Artificial Adaptation. Natural Computing Series. Springer
(Octobre 2011), http://www.springerlink.com

12. Zambonelli, F., Van Dyke Parunak, H.: Signs of a Revolution in Computer Science
and Software Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW
2002. LNCS (LNAI), vol. 2577, pp. 13–28. Springer, Heidelberg (2003)



13. Robertson, P., Laddaga, R., Shrobe, H.: Introduction: The First International
Workshop on Self-Adaptive Software. In: Robertson, P., Shrobe, H.E., Laddaga,
R. (eds.) IWSAS 2000. LNCS, vol. 1936, pp. 1–10. Springer, Heidelberg (2001)

14. Di Marzo-Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-Organisation and
Emergence in MAS: An Overview. Informatica 30(1), 45–54 (2005)

15. Georgé, J.P., Picard, G., Gleizes, M.P., Glize, P.: Living Design for Open Com-
putational Systems. In: International Workshop on Theory and Practice of Open
Computational Systems (TAPOCS) at IEEE 12th International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2003),
Linz, Austria, Juin 09-Juin 11, pp. 389–394. IEEE Computer Society (2003),
http://www.computer.org

16. Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: Emergence of Organisations,
Emergence of Functions. In: AISB 2003 Symposium on Adaptive Agents and Multi-
Agent Systems, pp. 103–108. University of Wales, Aberystwyth, Society for the
Study of Artificial Intelligence and the Simulation of Behaviour (2003)

17. Grassé, P.: La reconstruction du nid et les interactions inter-individuelles chez
les bellicositermes natalenis et cubitermes sp. La théorie de la stigmergie: essai
d’interprétation des termites constructeurs. Insectes Sociaux 6, 41–83 (1959)

18. Mamei, M., Zambonelli, F.: Field-based Coordination for Pervasive Multiagent
Systems. Springer Series on Agent Technology (2006)

19. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A., van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems 25(3) (2007)

20. Camps, V., Gleizes, M.P., Glize, P.: A self-organization process based on coop-
eration theory for adaptive artificial systems. In: 1st International Conference on
Philosophy and Computer Science ”Processes of evolution in real and Virtual Sys-
tems”, Krakow, Poland (1998)

21. Gleizes, M.P., Camps, V., Glize, P.: A Theory of Emergent Computation Based
on Cooperative Self-Oganization for Adaptive Artificial Systems. In: 4th European
Congress of Systems Science (1999)

22. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison Wesley (1999)

23. Kaddoum, E.: Optimisation sous contraintes de problèmes distribués par auto-
organisation coopérative. Thèse de doctorat, Université de Toulouse, Toulouse,
France (Novembre 2011)

24. Topin, X., Fourcassié, V., Gleizes, M.P., Theraulaz, G., Régis, C.: Theories and
experiments on emergent behaviour: From natural to artificial systems and back.
In: European Conference on Cognitive Science, Siena (Octobre 1999)

25. Picard, G., Gleizes, M.P.: Cooperative Self-Organization to Design Robust and
Adaptive Collectives. In: 2nd International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2005), Barcelona, Spain, September 14-17,
vol. I, pp. 236–241. INSTICC Press (2005)

26. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Model Driven Engineering
for Designing Adaptive Multi-Agent Systems. In: European Workshop on Multi-
Agent Systems (EUMAS), Hammamet, Décembre 13-Décembre 14. Ecole Nationale
des Sciences de l’Informatique, ENSI, Tunisie (2007) (electronic medium)


