Skip to main content

Ensemble Fuzzy Rule-Based Classifier Design by Parallel Distributed Fuzzy GBML Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7673))

Abstract

We have already proposed an island model for parallel distributed implementation of fuzzy genetics-based machine learning (GBML) algorithms. As in many other island models, a population of individuals is divided into multiple subpopulations. Each subpopulation is assigned to a different island. The main characteristic feature of our model is that training patterns are also divided into multiple training data subsets. Each subset is assigned to a different island. The assigned subset is used to train the subpopulation in each island. The assignment of the training data subsets is periodically rotated over the islands (e.g., every 100 generations). A migration operation is also periodically used. Our original intention in the use of such an island model was to decrease the computation time of fuzzy GBML algorithms. In this paper, we propose an idea of using our island model for ensemble classifier design. An ensemble classifier is constructed by choosing the best classifier in each island. Since the subpopulation at each island is evolved using a different training data subset, a different classifier may be obtained from each island to construct an ensemble classifier. This suggests a potential ability of our island model as an ensemble classifier design tool. However, the diversity of the obtained classifiers from multiple islands seems to be decreased by frequent training data subset rotation and frequent migration. In this paper, we examine the effects of training data subset rotation and migration on the performance of designed ensemble classifiers through computational experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thrift, P.: Fuzzy Logic Synthesis with Genetic Algorithms. In: Proc. of 4th International Conference on Genetic Algorithms, pp. 509–513 (1991)

    Google Scholar 

  2. Karr, C.L.: Design of an Adaptive Fuzzy Logic Controller using a Genetic Algorithm. In: Proc. of 4th International Conference on Genetic Algorithms, pp. 450–457 (1991)

    Google Scholar 

  3. Karr, C.L., Gentry, E.J.: Fuzzy Control of pH using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 1, 46–53 (1993)

    Article  Google Scholar 

  4. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting Fuzzy If-Then Rules for Classification Problems using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 3, 260–270 (1995)

    Article  Google Scholar 

  5. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Herrera, F.: Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. International Journal of Computational Intelligence Research 1, 59–67 (2005)

    Article  Google Scholar 

  7. Herrera, F.: Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary Intelligence 1, 27–46 (2008)

    Article  Google Scholar 

  8. Cordón, O.: A Historical Review of Evolutionary Learning Methods for Mamdani-Type Fuzzy Rule-Based Systems: Designing Interpretable Genetic Fuzzy Systems. International J. of Approximate Reasoning 52, 894–913 (2011)

    Article  Google Scholar 

  9. Ishibuchi, H., Murata, T., Turksen, I.B.: Single-Objective and Two-Objective Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification Problems. Fuzzy Sets and Systems 89, 135–150 (1997)

    Article  Google Scholar 

  10. Ishibuchi, H., Nakashima, T., Murata, T.: Three-Objective Genetics-Based Machine Learning for Linguistic Rule Extraction. Information Sciences 136, 109–133 (2001)

    Article  MATH  Google Scholar 

  11. Ishibuchi, H.: Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions. In: Proc. of 2007 IEEE International Conference on Fuzzy Systems, pp. 913–918 (2007)

    Google Scholar 

  12. Fazzolari, M., Alcalá, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A Review of the Application of Multi-Objective Genetic Fuzzy Systems: Current Status and Further Directions. IEEE Trans. on Fuzzy Systems (to appear)

    Google Scholar 

  13. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer (2002)

    Google Scholar 

  14. Bull, L., Bernado-Mansilla, E., Holmes, J.: Learning Classifier Systems in Data Mining. Springer (2008)

    Google Scholar 

  15. García, S., Fernández, A., Luengo, J., Herrera, F.: A Study of Statistical Techniques and Performance Measures for Genetics-Based Machine Learning: Accuracy and Interpretability. Soft Computing 13, 959–977 (2009)

    Article  Google Scholar 

  16. Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Trans. on Evolutionary Computation 14, 913–941 (2010)

    Article  Google Scholar 

  17. Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of Fuzzy GBML Approaches for Pattern Classification Problems. IEEE Trans. on Systems, Man, and Cybernetics - Part B 35, 359–365 (2005)

    Article  Google Scholar 

  18. Ishibuchi, H., Nojima, Y.: Analysis of Interpretability-Accuracy Tradeoff by Multiobjective Fuzzy Genetics-Based Machine Learning. International J. of Approximate Reasoning 44, 4–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Abadeh, M.S., Habibi, J., Lucas, C.: Intrusion Detection using a Fuzzy Genetics-Based Learning Algorithm. Journal of Network and Computer Applications 30, 414–428 (2007)

    Article  Google Scholar 

  20. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Genetic-Based Machine Learning Systems are Competitive for Pattern Recognition. Evolutionary Intelligence 1, 209–232 (2008)

    Article  Google Scholar 

  21. Nojima, Y., Ishibuchi, H., Kuwajima, I.: Parallel Distributed Genetic Fuzzy Rule Selection. Soft Computing 13, 511–519 (2009)

    Article  Google Scholar 

  22. Nojima, Y., Mihara, S., Ishibuchi, H.: Parallel Distributed Implementation of Genetics-Based Machine Learning for Fuzzy Classifier Design. In: Deb, K., Bhattacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K., Jain, A., Aggarwal, V., Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 309–318. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Ishibuchi, H., Mihara, S., Nojima, Y.: Training Data Subdivision and Periodical Rotation in Hybrid Fuzzy Genetics-Based Machine Learning. In: Proc. of 10th International Conference on Machine Learning and Applications, pp. 229–234 (2011)

    Google Scholar 

  24. Ishibuchi, H., Mihara, S., Nojima, Y.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. IEEE Trans. on Fuzzy Systems (to appear)

    Google Scholar 

  25. Ishibuchi, H., Nozaki, K., Tanaka, H.: Distributed Representation of Fuzzy Rules and Its Application to Pattern Classification. Fuzzy Sets and Systems 52, 21–32 (1992)

    Article  Google Scholar 

  26. Cordón, O., del Jesus, M.J., Herrera, F.: A Proposal on Reasoning Methods in Fuzzy Rule-Based Classification Systems. International J. of Approximate Reasoning 20, 21–45 (1999)

    Google Scholar 

  27. Ishibuchi, H., Nakashima, T., Morisawa, T.: Voting in Fuzzy Rule-Based Systems for Pattern Classification Problems. Fuzzy Sets and Systems 103, 223–238 (1999)

    Article  Google Scholar 

  28. Ishibuchi, H., Yamamoto, T.: Rule Weight Specification in Fuzzy Rule-Based Classification Systems. IEEE Trans. on Fuzzy Systems 13, 428–435 (2005)

    Article  Google Scholar 

  29. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 6, 443–462 (2002)

    Article  Google Scholar 

  30. Nedjah, N., Alba, E., de Macedo Mourelle, L.: Parallel Evolutionary Computations. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  31. Ruciński, M., Izzo, D., Biscani, F.: On the Impact of the Migration Topology on the Island Model. Parallel Computing 36, 555–571 (2010)

    Article  MATH  Google Scholar 

  32. Araujo, L., Merelo, J.: Diversity through Multiculturality: Assessing Migrant Choice Policies in an Island Model. IEEE Trans. on Evolutionary Computation 15, 456–469 (2011)

    Article  Google Scholar 

  33. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  34. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A Dynamic Island Model for Adaptive Operator Selection. In: Proc. of 2012 Genetic and Evolutionary Computation Conference, Philadelphia, pp. 1253–1260 (2012)

    Google Scholar 

  35. KEEL dataset repository, http://keel.es/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Yamane, M., Nojima, Y. (2012). Ensemble Fuzzy Rule-Based Classifier Design by Parallel Distributed Fuzzy GBML Algorithms. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds) Simulated Evolution and Learning. SEAL 2012. Lecture Notes in Computer Science, vol 7673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34859-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34859-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34858-7

  • Online ISBN: 978-3-642-34859-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics