Skip to main content

A Randomised Approximation Algorithm for the Partial Vertex Cover Problem in Hypergraphs

  • Conference paper
Book cover Design and Analysis of Algorithms (MedAlg 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7659))

Included in the following conference series:

  • 1069 Accesses

Abstract

In this paper we present an approximation algorithm for the k-partial vertex cover problem in hypergraphs. Let \(\mathcal{H}=(V,\mathcal{E})\) be a hypergraph with set of vertices V, |V| = n and set of (hyper-)edges \(|\mathcal{E}|, |\mathcal{E}| =m\). The k-partial vertex cover problem in hypergraphs is the problem of finding a minimum cardinality subset of vertices in which at least k hyperedges are incident. It is a generalisation of the fundamental (partial) vertex cover problem in graphs and the hitting set problem in hypergraphs. Let l, l ≥ 2 be the maximum size of an edge, Δ be the maximum vertex degree and D be maximum edge degree. For a constant l, l ≥ 2 a non-approximabilty result is known: an approximation ratio better than l cannot be achieved in polynomial-time under the unique games conjecture (Khot and Rageev 2003, 2008). On the other hand, with the primal-dual method (Gandhi, Khuller, Srinivasan 2001) and the local-ratio method (Bar-Yehuda 2001), the l-approximation ratio can be proved. Thus approximations below the l-ratio for large classes of hypergraphs, for example those with constant D or Δ are interesting. In case of graphs (l = 2) such results are known. In this paper we break the l-approximation barrier for hypergraph classes with constant D resp. Δ for the partial vertex cover problem in hypergraphs. We propose a randomised algorithm of hybrid type which combines LP-based randomised rounding and greedy repairing. For hypergraphs with arbitrary l, l ≥ 3, and constant D the algorithm achieves an approximation ratio of l(1 − Ω(1/(D + 1))), and this can be improved to l (1 − Ω(1/Δ)) if Δ is constant and k ≥ m/4. For the class of l-uniform hypergraphs with both l and Δ being constants and l ≤ 4Δ, we get a further improvement to a ratio of \(l\left(1-\frac{l-1}{4\Delta}\right)\). The analysis relies on concentration inequalities and combinatorial arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms (ACM) 2, 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Spencer, J.: The probabilistic method, 2nd edn. Wiley Interscience (2000)

    Google Scholar 

  3. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. Journal of Algorithms 39(2), 137–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Hypergraphs- combinatorics of finite sets. North Holland Mathematical Library (1989)

    Google Scholar 

  5. Chvátal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duh, R., Fürer, M.: Approximating k-set cover by semi-local optimization. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 1997), pp. 256–264 (May 1997)

    Google Scholar 

  7. Feige, U.: A treshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41(2), 174–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisection. Algorithmica 18, 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation Algorithms for Partial Covering Problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: ACM-SIAM Symposium on Discrete Algorithms, vol. 11, pp. 329–337 (2000)

    Google Scholar 

  12. Halperin, E., Srinivasan, A.: Improved Approximation Algorithms for the Partial Vertex Cover Problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Computation 11(3), 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph partitioning problems. Journal of Combinatorial Optimization 10(2), 133–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krivelevich, J.: Approximate set covering in uniform hypergraphs. J. Algorithms 25(1), 118–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. Assoc. Comput. Mach. 41, 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matousek, J.: Geometric Discrepancy. Algorithms and Combinatorics, vol. 18. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  20. Matousek, J., Wagner, U.: New Constructions of Weak epsilon-Nets. Discrete & Computational Geometry 32(2), 195–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDiarmid, C.: On the method of bounded differences. Surveys in Combinatorics, Norwich, pp. 148–188. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  22. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory of Computing, pp. 475–484 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Ouali, M., Fohlin, H., Srivastav, A. (2012). A Randomised Approximation Algorithm for the Partial Vertex Cover Problem in Hypergraphs. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34862-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34861-7

  • Online ISBN: 978-3-642-34862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics