
F. Paternò et al. (Eds.): AmI 2012, LNCS 7683, pp. 33–48, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Adaptive User Interfaces for Smart Environments
with the Support of Model-Based Languages

Sara Bongartz1, Yucheng Jin1, Fabio Paternò2, Joerg Rett1, Carmen Santoro2,
and Lucio Davide Spano2

1 SAP AG, Darmstadt, Germany
{sara.bongartz,yucheng.jin,joerg.rett}@sap.com

2 CNR-ISTI, Pisa, Italy
{fabio.paterno,carmen.santoro,lucio.davide.spano}@isti.cnr.it

Abstract. This article presents a solution for supporting adaptive user interfaces
in work environments. Its architecture is built upon the concept of model-based
UI design extended by context aware and adaptive features. Model-based
languages provide the software development process with useful support for,
building design prototypes and actual implementations for devices with various
interaction resources. The proposed architecture is able to adapt to selected
aspects of the context during run-time by communicating with a context server
and applying the specified adaptation rules. In order to show the possibilities of
the proposed solution, we report on its application in the development of an
adaptive user interface prototype to be used in a warehouse picking system.

Keywords: Adaptive service front-ends, Context-aware user interfaces, model-
based user interface languages, Warehouse picking system.

1 Introduction

Work environments are continuously becoming richer in sensors and devices and it is
important that users are efficient and perform well in such contexts, without having to
spend too long in understanding how to interact with the system. Adaptive interfaces
can be useful for this, because they can provide the required information in the most
suitable modality by taking into account the current context of use. For this purpose, it
is useful to consider various contextual aspects, including the user-related aspects
(tasks to accomplish, personal preferences and knowledge, etc.), the aspects related to
the technology (available interaction resources, connectivity support, etc.) and the
environmental aspects (level of noise, light, etc.).

In order to show the possible application of our methods, tools and languages; we
consider a specific application domain: warehouse picking, which is a part of a logis-
tics process often found in retail and manufacturing industries. Warehouses store the
goods and products incoming from suppliers until they are collected and shipped to
the stores or customers. The process of picking items from a shelf, collecting them in
some sort of container and bringing them to certain locations is usually conducted by

34 S. Bongartz et al.

one or more persons. This leaves a maximum degree of freedom for the enterprise to
change or rearrange the environment when needed. The costs of maintenance and the
down-times are lower compared to a fully automated system based on e.g. conveyor
belts. In addition, only people can react and adapt to unforeseen situations.

Since the beginning of warehouse picking, people have thought on how the pickers
can be supported in their task. Technological solutions have been provided, like
Voice-directed warehousing (VDW). VDW refers to the use of the voice direction and
speech recognition software in warehouses and distribution centres. In a voice di-
rected warehouse, workers wear a headset connected to a small wearable computer,
which tells the worker where to go and what to do using verbal prompts. Workers
confirm their tasks by speaking pre-defined commands and reading confirmation
codes printed on locations or products throughout the warehouse.

A significant drawback of VDW is that the information is volatile. Once informa-
tion, such as the amount of items to be picked has been given, the system might not be
able to repeat it. If the picker forgets such information, its retrieval might become labo-
rious. Thus, visual UIs have gained importance in the task of supporting the picker. In
previous work [1] the authors report on a 12 participant within-subjects experiment,
demonstrating the advantages of a head-mounted display based picking chart over
traditional text-based pick lists, paper-based graphical pick charts, and mobile pick-by-
voice systems. No multimodal solution was investigated in that study. A different
study [3] aimed at comparing various design solutions for head-mounted displays with
different levels of information. The order was not only presented on a graphical UI
(GUI) but also supported by some kind of sensors installed in the environment. This
system exhibited a kind of Ambient Intelligence by detecting the picker’s action of
reaching into a shelf and comparing the respective box and its containing item with the
order from the backend system. Such systems based on HMDs can be extended to
support Augmented Reality, as shown in [2]. One limitation of these contributions is
that they provide solutions that are implemented with ad hoc techniques and thus can-
not be easily generalised to other similar applications. The use of model-based lan-
guages provides designers and developers with a general vocabulary for describing
their solutions that can be refined in concrete terms for various interaction platforms,
and then used to obtain implementations in a variety of languages, even for various
combinations of interaction modalities. Thus, this model-based approach can be inter-
esting in this application domain in which the combination of vocal and visual interac-
tion has not been investigated so far. The level of multimodality, i.e. emphasising one
of the two modalities, should depend on the context of use. For instance, in a noisy
environment the interaction should rely mainly on the GUI. In addition, also the user’s
preferences and the capabilities of the platform should be considered. If the environ-
ment is fully intelligent, the picker can receive support for navigating through the loca-
tion and picking the right items. Ideally, the system should be able to receive this
context information and adapt the UI accordingly.

In this paper we present a solution consisting of an adaptive, context-sensitive UI
which is based on an architecture for context-sensitive service front-ends. The solu-
tion is based on the use of model-based languages for interactive application descrip-
tions in order to facilitate the possibility of deriving versions adapted to various

 Adaptive User Interfaces for Smart Environments with the Support 35

contexts of use, particularly in terms of interaction device resources. Such languages
are currently under consideration for standardisation in W3C, because of their useful
support in creating versions of interactive applications that adapt to different interac-
tive devices. However, they have been mainly used in academic environments, with
very few cases of use in real world applications.

In the paper, after discussing related work, we provide some background informa-
tion related to the approach we have developed and how it has been extended in order
to better support adaptive multimodal user interfaces for smart environments. Next,
we describe the example application considered and how it varies depending on the
context of use; followed by a description of the architecture supporting the adaptation
of the multimodal service front ends. Then, we introduce some adaptation rules for
the application considered, which are formalised in terms of event, condition, action
(ECA) rules. We then show the corresponding prototype and report on an early user
test focusing on the adaptation rules considered. Lastly, we draw some conclusions
and provide indications for future work.

2 Related Work

Mobile applications often require highly-focused visual attention, which poses prob-
lems when it is inconvenient or distracting to continuously look at a screen (e.g.,
while walking). Aural interfaces support more eyes-free experiences, as users can
primarily listen to the content and occasionally look at the device. However, design-
ing aural information architectures remains a challenge. For example, recent studies
[15] have highlighted that backward navigation is inefficient in the aural setting, as it
forces users to listen to each previous page to retrieve the desired content. Thus, they
have introduced topic and list-based back navigation strategies in order to enhance
aural browsing and improve the navigation experience, reducing the perceived cogni-
tive load. This shows the potential of multimodal interfaces in ubiquitous scenarios,
but also the need for some specific design solutions, which depend on the interaction
modalities exploited.

The problem of designing user interfaces that are able to be rendered on multiple
types of platforms, including multimodal and vocal ones, has been addressed in some
previous work, but still needs more general, better engineered solutions. Damask [10]
includes the concept of layers to support the development of cross-device (desktop,
smartphone, voice) UIs. Thus, the designers can specify UI elements that should be-
long to all the user interface versions and elements that should be used only with one
device type. However, this approach does not consider the support of multimodal user
interfaces. XFormsMM [8] is an attempt to extend XForms in order to derive both
graphical and vocal interfaces. The idea is to specify the abstract controls with
XForms elements and then use aural and visual CSS respectively for vocal and
graphical rendering. However, aural CSS have limited possibilities in terms of vocal
interaction and the solution proposed requires a specific ad-hoc environment. For this
purpose we propose a more general solution which is able to derive implementations
in various languages.

36 S. Bongartz et al.

Obrenovic et al. [11] have investigated the use of conceptual models expressed in
UML, in order to derive graphical, form-based interfaces for desktop, mobile or vocal
devices. However, since UML is a software engineering standard, aimed at supporting
the specification of the internal software application functionalities, it seems unsuit-
able to capture the specific characteristics of user interfaces. A different approach to
multimodal user interface development has been proposed in [9], which aims to pro-
vide a workbench for prototyping UIs using off-the-shelf heterogeneous components.
In that approach, model-based descriptions are not used and it is necessary to have an
available set of previously defined components, which are able to communicate
through low-level interfaces; thus making it possible for a graphical editor to easily
compose them.

Sottet and others [13] have presented a set of general principles relevant for sup-
porting model-based adaptation while in our case we present a software architecture
supported by engineered tools that can be applied in real world applications.

Octavia et al. [12] have considered the use of a model-based approach to facilitate
adaptation in virtual environments, also using the event-condition-action paradigm,
we provide a more general architecture for this purpose able to support adaptation
involving various interaction modalities.

To summarise, we can say that the few research proposals that have also consid-
ered multimodal interaction have not been able to obtain a suitable engineered solu-
tion in terms of logical descriptions and corresponding software architectures
and provided limited support in terms of the generation of the corresponding user
interface implementations. For example, in [14] the transformations were specified
using attributed graph grammars, whose semantics is formally defined but have
considerable performance limitations.

3 MARIA and Its Support for Multimodal Interaction

We exploit the MARIA model-based framework [5] for obtaining adaptation able to
better support various interaction modalities. The framework provides a language for
the abstract description (the so-called “Abstract User Interface” level, in which the UI
is defined in a platform –independent manner) as well as multiple platform-dependent
languages (which are at the level of the so-called “Concrete User Interface”), which
refine the abstract language depending on the interaction resources at hand. Examples
of platforms are the graphical desktop, the graphical mobile, the vocal platform, etc.

At the abstract level, a user interface is composed of a number of presentations, it
has an associated data model, and can access a number of external functions. Each
presentation is composed of a number of interactors (basic interaction elements) and a
set of interactor compositions. There are four types of interactor composition opera-
tors: grouping, relation, composite description and repeater. These composition opera-
tors support the structuring of the elements inside a presentation. A grouping is a type
of interactor composition used when a logic composition of interactors is needed.
Therefore, grouping basically represents a generic group of interactor elements. A
relation is an interactor composition which expresses a relation between an interactor

 Adaptive User Interfaces for Smart Environments with the Support 37

(or an interactor composition) and other interactors (or interactor compositions). A
composite_description represents a group aimed to present contents through a mixture
of only_output elements (namely: description/object/feedback/alarm) with navigator
elements, while a repeater is used to repeat the content according to data retrieved
from a generic data source. Each presentation is also associated with a dialogue
model, which describes how the events generated by the interactors can be handled.
With respect to previous languages in this area a number of substantial features have
been added, such as a data model, a dialogue model, the possibility to specify typical
Web 2.0 interactions, and the support to access Web services.

In its current version, MARIA consists of a set of languages: one for abstract user
interface descriptions and a set of concrete refinements of such language for various
target platforms (Vocal, Desktop, Smartphone with touch, Mobile, Multimodal desk-
top, Multimodal mobile). Moreover, user interface generators for various implementa-
tion languages are available starting with such concrete languages. The multimodal
concrete language provides the possibility to indicate how to distribute the user inter-
face elements across modalities through a simple and intuitive vocabulary that can be
applied at various granularity levels. While previously this multimodal concrete lan-
guage was associated with a generator of X+V implementation [6], in this work we
consider a new generator able to create HTML 5 applications with multimodal features
obtained using the Google support. Such support allows sending the user’s utterance to
a remote vocal recogniser in order to determine the corresponding input value, together
with a Google Chrome extension that provides Text-to-Speech (TTS) access directly
from JavaScript code. An HTML5 page developed with this extension consists of two
parts: the graphical and the vocal one. These parts are linked by a rule applied to the id
attributes of the HTML elements: the id of the vocal element is obtained adding
“_vocal” at the end of the id of the graphical object. This allows us to obtain different
implementations for the same interface element in the two modalities. Once a graphical
element gets the UI focus, the extension retrieves its corresponding vocal element and
invokes the TTS engine. The synthesis properties (e.g. speech, break, emphasis) are
represented by a set of pre-defined CSS classes. If the graphical element is an input,
the extension also starts the possibility of recording the voice and, when it detects a
long silence after the vocal input, it invokes the ASR passing it the user’s utterance.
The result of the ASR is then used for filling the corresponding graphical element, or
simulating a link or button click.

4 Example Application

In this work we want to exploit the model-based approach in supporting adaptation in
real world applications relevant in the ambient intelligence domain. Thus, we provide
some further detail on the application considered and how interaction can vary in it
depending on the ambient intelligence available. The example application is situated
at a distribution centre of a supermarket chain in the domain of retail industries. The
task of the so-called pickers is to collect items from the shelves in the warehouse and
place them into containers. One collection belongs to an order issued by a specific
store of the supermarket chain.

38 S. Bongartz et al.

The process starts when the picker signs-up for an order. Fig. 1 represents the sce-
nario in Business Process Modelling Notation [4]. The simplified model for the ware-
house picking process consists of Events of types: message (circle with envelope),
Gateways of the type data-based exclusive (diamond with X), Tasks (rounded rectan-
gles) processed by whether the system (scroll) or the picker (people), Data objects
(document) and Text annotations (square bracket).

Fig. 1. Scenario for a warehouse picking process expressed in Business Process Modelling
Notation [4]

After the Order Assignment, the system will provide the shelf identifier to the
picker so they know where to find the items. The picker will then proceed to the shelf
by navigating through the aisles. Depending on the initial location and the destination,
s/he may pass through several halls. The system needs to be informed that the picker
has reached the shelf location (i.e. a message needs to be sent). The system will then
provide the amount of items to be picked and the picker can begin picking them. After
this, the system needs to be informed about the completion of the picking. As long as
there are still some items left, the process will loop back to the first Task. The process
ends when the order is completed, i.e. when all items have been picked.

Now, we are going to consider the example application in two different contexts of
use, with and without ambient intelligence. In the first situation (A) we assume that
the warehouse is equipped with a kind of sensor which could support Ambient Intelli-
gence. Concerning the example scenario described in this article, we assume that the
system supports:

• the input of vocal prompts by the picker,
• tracking the position of the picker, e.g. through indoor navigation,
• identification of the actions of the picker, e.g. reaching into a shelf or,
• tracking the location of the items, e.g. by means of RFID tags.

In situation (A) the environment will trigger the event. In our example scenario the
event “Shelf Location Reached” can be triggered by the module that tracks the posi-
tion of the picker. The event “Item picked” can be triggered by a module that tracks
the location of an item. In the second situation (B) we assume that the system can
only support the input of vocal prompts by the picker. In this case the picker needs to
trigger the event, i.e. issue messages to the system. In our example scenario, the event
“Shelf Location Reached” can be triggered by the picker through a vocal interface. It
is common that the picker reads a number from a sign which is attached to the shelf.
The event “Item picked” can be triggered in a similar fashion. The picker then repeats
the amount of items that have been picked.

Proceed
to shelf

Provide
Order

Information

Shelf
Identifier

Amount
of Items

Picker navigates
through the aisles

Provide
Order

Information
Pick Items

Shelf Location
Reached

Items Picked
Order

Assignment
Order

Finalized
Items Left?

 Adaptive User Interfaces for Smart Environments with the Support 39

It is clear, that the situation at a specific warehouse might be somewhere in be-
tween situation A and B. For example, one warehouse might have a tracking system
for the picker but not for the items and vice versa. Thus, it would be desirable to have
an interactive application that could adapt to the specific situation of the warehouse
environment.

5 Architecture

Our architecture shows how we can provide support for adaptation through the use of
model-based descriptions of interactive applications. At design time the various initial
versions of the applications are developed in terms of the three concrete descriptions
(vocal, graphical, and multimodal) specified according to the MARIA language. In
addition, the relevant adaptation rules are specified in terms of events, conditions, and
actions according to a language for adaptation rules that will be described later on.
Such adaptation rules are triggered by contextual events, which can depend on various
aspects (user preferences, environmental changes, application-related events, etc.).
The impact of the adaptation rules can have various granularities: complete change of
user interface (e.g. from vocal to graphical if the environment becomes noisy), change
of some user interface parts (e.g. change from map view to order view), and even
change of attributes of specific user interface elements (e.g. change of font size).

Fig. 2. The software architecture supporting the adaptive application

Thus, at design-time it is possible to specify the relevant logical descriptions of the
interactive application versions and the associated adaptation rules.

At run-time we have an adaptation server that is able to communicate with the con-
text manager server in order to receive information on subscribed events and the
interactive devices available in order to update the application according to the adap-
tation rules. The context server is also able to communicate with the applications,
which can manage directly some contextual events according to their specifications.

40 S. Bongartz et al.

More specifically, the adaptation rules interpreter has access to the list of the rele-
vant adaptation rules. Changes in the context communicated by the context manager
can trigger some of them. The adaptation rule interpreter considers the action part of
the rules and depending on its content it can either trigger the activation of the appli-
cation in a different modality (which means to trigger a new application generator for
the most relevant modality in the new context of use) or indicate some change to per-
form to the adapter associated with the current modality (in this case the adapter will
then request the corresponding generator to update the interactive application accord-
ingly). The languages to specify the adaptation rules and the interactive applications
are distinct, so that it is possible to modify one without having to change the other
one, but with clear relations defined among them so that the actions of the adaptation
rules can be specified in terms of required modifications to the model-based descrip-
tions of the interactive applications. Thus, the logical description of the interactive
application can dynamically change from the version that was initially provided by
using the authoring tool.

6 Adaptation Rules

We developed a XML-based high-level description language intended to declaratively
express advanced adaptation logic defining the transformations affecting the interactive
application when some specific situations occur both in the context (e.g. an entity of
the context changes its state), and in the interactive application (e.g. an UI event is
triggered). In particular, the three parts of the language are: event, condition, action
(ECA). The event part of the rule should describe the event whose occurrence triggers
the evaluation of the rule. This part could specify elementary events occurring in the
interactive application, or a composition of events. The condition part is represented
by a Boolean condition that has to be satisfied in order to execute the associated rule
action(s). The condition part is optional. In the action part there might be 1 to N simple
actions occurring in the interactive application or even 1 to N other adaptation rules. In
practise, the action part often contains indications on how the concrete description of
the interactive application should change in order to perform the requested adaptation.
Event Condition Action is an approach that was originally introduced for the structure
of active rules in event driven architecture and active database systems, and has al-
ready been used for supporting adaptive user interfaces (see for example [12]). In our
case, we have structured it in such a way to easily connect it to the events generated by
the context manager and the interactive application specification.

Below there is a list of example adaptation rules supported by the prototype. For
each rule we provide a title with a brief explanation/rationale and the three key parts
of its specification (event, condition, action).

• Fragile object - The rationale of this rule is that when the worker is about to pick
a fragile object, the multimodal UI should switch to only-vocal modality in order
not to distract the user while picking the item.

o Event: the right shelf has been reached

 Adaptive User Interfaces for Smart Environments with the Support 41

o Condition: the worker has to pick a fragile item and the current modality
is not only-vocal

o Action: Switch from multimodal to only-vocal modality,
• Picking timeout - The user has just reached the destination shelf of the item but

there is no confirmation of the actual item picking. The application then assumes
that the worker is distracted/confused and/or not able to recognize the item to
pick, then it provides again info on the item, both graphically and vocally.

o Event: the user has reached the destination shelf
o Condition: there has not been confirmation of the item picking and the

user interface is multimodal
o Action: the application visualizes an image representing the item to pick,

and simultaneously repeats the item name vocally.
• Order visualization for experienced workers - If the user has good knowledge of

the warehouse shelf organisation, there is no need to show associated path infor-
mation: the application adapts accordingly.

o Event: beginning of a session with the HMD
o Condition: the user is a warehouse expert
o Action: the application hides the information about how to reach the dif-

ferent shelves.
• Traffic Jam - There are multiple workers who are expected to approach the same

path at the same time: the application adapts in order to minimise the risk of
workers to wait for other people before picking the items.

o Event: order completed
o Condition: multiple pickers are expected to approach the same path at

the same time and the path optimization preference is selected.
o Action: the application shows the blocked path suggesting a different

route.
• Noisy environment – The environment gets noisy, then the multimodal applica-

tion switch to ‘only-graphical’ modality.
o Event: the environment gets noisy
o Condition: the application is using both the graphical and vocal modality

for interacting with the user.
o Action: the application switches to the only-graphical modality

We show how it is possible to express such adaptation rules through our high-level
description language with one example. We consider (Fig. 3) the rule for the order
visualization for experienced workers. When the interaction starts (the presentation
raises the onRender event), if the current user is an expert one (represented as an at-
tribute in the ‘user’ part of the context model), the application hides the path to reach
the shelf, which is represented by an interactor with id path_to_shelf, setting its hid-
den attribute to true. A symmetrical rule manages the case of inexperienced
workers.

42 S. Bongartz et al.

Fig. 3. Formalization

7 Adaptive Applic

We start with a description
sidered. The GUI consists
sake of brevity only the Ord
shown in Fig. 4, mainly con
rent (i.e. shelf 473) and the
picks is represented in thr
current pick highlighted (i.e

a)

Fig. 4. Design of the gr

The columns reflect the
compartment, amount and c
shelf identifier (e.g. 473) a
here. The active view is re

of the Order visualization for experienced workers rules

cation

of the graphical version of the interactive application c
of four views (Order, Map, Task and Statistics), for

der view and the Map view are discussed. The Order vi
ntains information on the previous (i.e. shelf 433), the c
e next (i.e. shelf 481) items to be picked. This sequence
ree rows starting with the previous pick and having
e. inverted) and magnified.

 b)

raphical user interface (GUI). a) Order view b) Map view

types of information available for the pick (status, sh
container) while only the status of the pick (e.g. open),
and the amount of items to be picked (e.g. 7) are relev
eflected as a highlighted tab in the bottom area. The m

con-
the

iew,
cur-
e of
the

helf,
the

vant
main

 Adaptive User Interfaces for Smart Environments with the Support 43

information in the Map view is a simplified representation of the location of the
shelves (in Bird eyes view) showing the current location of the picker (i.e. the previ-
ous shelf), the destination shelf (i.e. 473) and a suggested route (line with arrow). In
general it is possible to navigate between the screens by using voice commands, but
this functionality is not used in the actual setting.

Based on a list of requirements for the prototype a Head-Mounted Display (HMD)
and a wearable computer are used to access the application. The UI generated from
the MARIA specification is implemented in HTML5, JavaScript and AJAX. The
navigation route in the Map view is drawn using the canvas label of HTML5. Speech
recognition is realized using the speech input label of HTML5 and calling a respective
API. The architecture of the application implementation is shown in Fig. 5.

a) b)

Fig. 5. a) Architecture of the prototype. b) Picking from a shelf using a Head-Mounted Display.

The adaptation server sends the updated data to the wearable computer after a
change in the context has triggered the execution of an adaptation rule. The display is
used for the visual output, the earphone for the vocal output and the microphone for
the vocal input of the user. Some changes might be triggered by the smart environ-
ment (e.g. tracking of the picker’s position or the item’s location). Table 1 lists the
five variations of the context and its consequences for the interaction modalities with
respect to the basic interaction flow. The variations are based on the Condition and
the consequences derive from the Action stated in the respective adaptation rule.

Table 1. Variations of the context and its consequences for the interaction modalities

Context variation Interaction consequence
The items to be picked are fragile After vocally confirming the arrival at the

destination by the picker, the visual output
will be switched off, only vocal remains.

The route is blocked by other
pickers.

The Map view marks the blocked path and
suggests an alternative route.

The picker is experienced The Map view is omitted.
The environment is noisy The vocal input and output is switched off,

only visual output remains
The picking is not performed due
to some confusion or distraction

An image of the item to be picked is shown,
the vocal output is repeated.

44 S. Bongartz et al.

Finally we present the basic interaction sequence (i.e. the basic interaction flow)
with an example for an adaption in Fig. 6: the picker is presented with three screens
and two vocal outputs (upper balloons) and needs to perform two vocal inputs (lower
balloons). Assuming that a picker, who is experienced, i.e. has been working for a
long time in the warehouse environment and thus should know by heart the location
of the shelves, and the Map view can be omitted. We assume that an indicator of the
experience level is stored within the profile of the picker and is added as context
information at run-time during the log-in procedure.

Fig. 6. Basic interaction flow with adaptation: the execution of the rule for an experienced
picker omits the appearance of the Map view (dotted line)

8 User Feedback

We have conducted a first user study in order to evaluate the five adaptation rules
from the end-users point-of view. The study aimed at evaluating the applicability and
usefulness of the adaptation rules, specified as described in Section 6 through an
XML-based ECA style, by assessing the quality of the adaptation rules as subjectively
perceived by the participants. The general concept “quality” was operationalized by
several more specific constructs, e.g. usefulness, comprehensibility or simplicity,
which were assessed by a questionnaire.

To address such issues, the five adaptation rules were the independent variables.
We had a within-subject design, meaning that every participant was confronted with
every adaptation rule. The dependent variables were the subjectively perceived qual-
ity of the adaptation rule as assessed in a 9-item questionnaire. The questions origi-
nated from a list of non-functional requirements for the prototype identified in user
studies in the beginning of the project and aimed at assessing the following aspects:
the user’s awareness for the adaptation rule, its appropriateness and comprehensibil-
ity, its effectiveness with respect to performance and usability, its error-prevention,
continuity, intuitiveness, and general likeability.

 Adaptive User Interfaces for Smart Environments with the Support 45

Participants were company staff or students of the local university. A total of 10
participants took part in the study, 9 were male and 1 was female. The average age of
participants was 24 years (SD = 1.82). The technical set-up consisted of an HMD with
earphone worn by the participants. The device presented the GUI and the vocal output
as shown in section 7. The sequence of the interaction was controlled by the modera-
tor simulating the change of context and the execution of the adaptation rule.

Participants were first introduced into the scenario and the interface, i.e. getting
familiar with the hypothetical situation in the warehouse and learning how to interact
with the interface. Participants were asked to play through a “basic interaction flow”
which started with the systems request to pick items from a certain shelf, required the
user to hypothetically walk to that shelf and ended with the user’s confirmation that
he picked a certain amount of items. Participants were asked to comment their hypo-
thetical actions, e.g. by saying “I walk to the shelf 473 now” or “I pick 7 items from
the shelf”. After ensuring that the participants understood the basic interaction flow of
the interface, the study started by introducing the first alternative flow. All alternative
flows (flows containing adaptation rules) were applied to the same scenario as prac-
ticed in the basic flow. Prior to playing through the alternative flows, participants
were informed about the condition of the adaptation rule (e.g. “imagine you are now
in a noisy environment”), but not about the actual rule (i.e. the action of the rule). All
five rules were played through and the sequence of the adaptation rules was permu-
tated to avoid order effects. After each rule, the 9-item questionnaire was filled out.

Since most of the scales of the questionnaire were not normal-distributed, we ap-
plied non-parametric tests for the data analysis. We calculated the Friedman test for
every single questionnaire scale and the aggregated overall rating from all 9 scales
(Bonferroni-corrected) to assess differences between the five adaptation rules. In case
of significance, we calculated a post-hoc Wilcoxon signed-rank test for each pair of
adaptation rule (Bonferroni-corrected as well).

The Friedman test revealed significant differences for the aggregated overall rating
over all 9 scales (χ²(4) = 18.74, p = .001) and for 4 of the subscales: Appropriateness
(χ²(4) = 19.26, p = .001), Performance (Z = -2.69, p=.007), Error-Prevention (χ²(4) =
22.73, p = .000), Intuitiveness (χ²(4) = 22.31, p = .000) and General Likeability (χ²(4)
= 18.92, p = .001). Only these significantly different scales are regarded in detail here.
Post-hoc tests revealed a significant difference in the rating between the rules Fragile
Objects and Traffic Jam (Z = -2.60, p = .009) and Experienced Worker and Traffic
Jam (Z = -2.70, p=.007). The significant differences in the subscale Appropriateness
are between the rules Fragile Objects and Traffic Jam (Z = -2.62, p = .009) and Frag-
ile Objects and Pick Timeout (Z = -2.69, p = .007). For the subscale Error prevention,
the significant differences can be found between the rules Fragile Object and Pick
Timeout (Z = -2.71, p = .007), Traffic Jam and Experienced Worker (Z = -2.81, p =
.005) and Pick Timeout and Experienced Worker (Z = -2.68, p = .007). Intuitiveness
shows significantly different values for the rules Fragile Objects and Traffic Jam
(Z = -2.69, p = .007). Finally, although the Friedman test revealed significant differ-
ences between the rules for the scales: general Likeability and Performance; direct
pairwise comparison failed reaching significance due to Bonferroni correction.

46 S. Bongartz et al.

Fig. 7. Overall rating and the

The big picture of the re
the Fragile Object rule are
Timeout rule are consistent
scales, indicating a clear an
out are consistently and un
ratings of 6.6 and 6.4 on a
rules, the standard deviatio
the participants. However,
highest variance in the rati
strong agreement between t
low ratings for that rule. A
the subject’s comments. W
support the process of pick
actual realisation of that ru
non-intuitive to the subjec

e subscales Appropriateness, Error-Prevention and Intuitivene

esults (see Fig. 7) shows a clear trend: all quality aspect
consistently rated the worst, and the Traffic Jam and P
tly rated best. This pattern can be observed for all qua

nd coherent preference pattern. Traffic Jam and Pick Tim
ndoubtedly preferred by the users (with very good ove
a scale from 0-7). Alongside the good rating of these t
n is very small, indicating a very high agreement betw
the Fragile Object rule, as the worst rated one, shows
ings between the subjects. This indicates that there is
the subjects, yet still most of the subjects gave compara

A possible explanation for this finding can be drawn fr
While all subjects gave a positive opinion about the idea

king a fragile object, most of the subjects noted that
ule was poor. Turning off the display was irritating
ts. The abrupt darkness in the HMD was perceived a

ess

s of
Pick
ality
me-
erall
two

ween
the

s no
ably
rom
a to
the
and

as a

 Adaptive User Interfaces for Smart Environments with the Support 47

break-down of the system and therefore caused confusion. Rather, subjects had
wished to receive a short warning message before turning off the display.

We found similarities between those rules that were ranked well and those that
were ranked poor. The group of poorly ranked rules was omitting information like the
visual output and the Map view with regard to the Basic Interaction Flow. The Fragile
rule takes a prominent position as a very strong modality, the visual channel, is shut
off. Those rules that were ranked well however delivered additional information like
the blocked path or the image of the item. This noticeable difference between the
adaptation rules is presumably the reason for the striking difference in the preference
ratings. It is worth investigating the role of adding vs. removing information as well
as amount of information in the course of interface adaptation.

9 Conclusions

Work applications often need intelligent environments able to provide adaptive user
interfaces that change the interaction modalities taking into account contextual aspects.
In this paper we have reported a solution exploiting the use of model-based descrip-
tions of interactive applications that facilitate the development and the dynamic update
of versions that depend on the interaction resources available. The models allow the
generation of different versions of the interactive application that exploit the different
modalities according to policies defined in adaptation rules, which are separated from
the UI definition and can be modified as a separate aspect. The solution proposed is
able to support adaptation at various granularity levels ranging from changing the in-
teractive application since the interaction modality has changed to small modifications
of the current version. We have discussed its application to a warehouse picking case
study, indicating how a set of integrated tools (authoring environment, adaptation
server, dynamic interactive application generators) have been exploited, and we have
also reported on an early user test related to the adaptive rules considered.

The result of the user test showed in general that adaptive rules are received well if
they trigger the delivery of additional information. Omitting some information with-
out notification, however leads to some usability problem.

The MARIA authoring environment including the interactive application generators
used in this work are publicly available at http://giove.isti.cnr.it/tools/MARIAE/home

Future work will be dedicated to further engineering the solution proposed and ap-
ply it to other case studies. In addition, we plan to do some studies targeting designers
and developers of adaptive interactive applications in order to better assess how their
work is facilitated through a model-based approach.

This work has been supported by the SERENOA EU ICT Project,
http://www.serenoa-fp7.eu/

48 S. Bongartz et al.

References

1. Weaver, K.A., Baumann, H., Starner, T., Iben, H., Lawo, M.: An empirical task analysis of
warehouse order picking using head-mounted displays. In: 28th International Conference
on Human Factors in Computing Systems (CHI 2010). ACM, New York (2010)

2. Schwerdtfeger, B., Klinker, G.: Supporting Order Picking with Augmented Reality. In: 7th
IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 91–94 (2008)

3. Ali, S., Lewandowski, A., Rett, J.: A SOA based context-aware order picking system for
warehouses using Laser Range Finder and wearable computer. In: 2011 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp.
1–8 (2011)

4. Object Management Group (OMG): Documents Associated with Business Process Model
and Notation (BPMN) Version 2.0, http://www.omg.org/spec/BPMN/2.0/

5. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments.
ACM Trans. Computer-Human Interaction 16(4), 1–30 (2009)

6. Manca, M., Paternò, F.: Supporting Multimodality in Service-Oriented Model-Based
Development Environments. In: Forbrig, P. (ed.) HCSE 2010. LNCS, vol. 6409, pp.
135–148. Springer, Heidelberg (2010)

7. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: the CARE Properties. In: Proceedings
INTERACT 1995, pp. 115–120 (1995)

8. Honkala, M., Pohja, M.: Multimodal interaction with XForms. In: Proceedings
ICWE 2006, pp. 201–208 (2006)

9. Lawson, J., Al-Akkad, A., Vanderdonckt, J., Macq, B.: An open source workbench for
prototyping multimodal interactions based on off-the-shelf heterogeneous components. In:
Proceedings ACM EICS 2009, pp. 245–254 (2009)

10. Lin, J., Landay, J.A.: Employing Patterns and Layers for Early-Stage Design and
Prototyping of Cross-Device User Interfaces. In: Proc. CHI, pp. 1313–1322 (2008)

11. Obrenovic, Z., Starcevic, D., Selic, B.: A Model-Driven Approach to Content
Repurposing. IEEE Multimedia, 62–71 (January, March 2004)

12. Octavia, J., Vanacken, L., Raymaekers, C., Coninx, K., Flerackers, E.: Facilitating
Adaptation in Virtual Environments Using a Context-Aware Model-Based Design Process.
In: England, D., Palanque, P., Vanderdonckt, J., Wild, P.J. (eds.) TAMODIA 2009. LNCS,
vol. 5963, pp. 58–71. Springer, Heidelberg (2010)

13. Sottet, J.-S., Ganneau, V., Calvary, G., Demeure, A., Favre, J.-M., Demumieux, R.:
Model-Driven Adaptation for Plastic User Interfaces. In: Baranauskas, C., Abascal, J.,
Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 397–410. Springer,
Heidelberg (2007)

14. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F.: A
Transformational Approach for Multimodal Web User Interfaces based on UsiXML. In:
Proc. ICMI, pp. 259–266 (2005)

15. Yang, T., Ferati, M., Liu, Y., Ghahari, R.R., Bolchini, D.: Aural Browsing On-The-Go:
Listening-based Back Navigation in Large Web Architectures. In: Proceedings ACM CHI 2012,
pp. 277–286. ACM Press (2012)

	Adaptive User Interfaces for Smart Environments with the Support of Model-Based Languages

	Introduction
	Related Work
	MARIA and Its Support for Multimodal Interaction
	Example Application
	Architecture
	Adaptation Rules
	Adaptive Applic cation
	User Feedback
	Conclusions
	References

