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Abstract. The ability to track and trace individual items, especially through
large-scale and distributed networks, is the key to realizing many important busi-
ness applications such as supply chain management, asset tracking, and counter-
feit detection. Networked RFID (radio frequency identification), which uses the
Internet to connect otherwise isolated RFID systems and software, is an emerg-
ing technology to support traceability applications. Despite its promising benefits,
there remains many challenges to be overcome before these benefits can be re-
alized. One significant challenge centers around dealing with uncertainty of raw
RFID data. In this paper, we propose a novel framework to effectively manage
the uncertainty of RFID data in large scale traceability networks. The framework
consists of a global object tracking model and a local RFID data cleaning model.
In particular, we propose a Markov-based model for tracking objects globally and
a particle filter based approach for processing noisy, low-level RFID data locally.
Our implementation validates the proposed approach and the experimental results
show its effectiveness.
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1 Introduction

Radio Frequency Identification (RFID) is a wireless communication technology that is
useful for identifying objects. RFID uses radio-frequency waves to transfer identifying
information between tagged objects and readers without line of sight, thus enabling
automatic identification [1]. The ability to track and trace individual items—especially
through large-scale and distributed networks—is the key to realizing many important
business applications such as supply chain management, asset tracking, and counterfeit
detection [2–5].

One of the important technological advances that targets large-scale traceability (e.g.,
nation-wide supply chain management across companies) is the so-called “Networked
RFID” [6]. The basic idea behind Networked RFID is to use the Internet to connect
otherwise isolated RFID systems and software. With Networked RFID, traceability
applications analyze automatically recorded identification events to discover the cur-
rent location of an individual item. They can also retrieve the historical information,
such as previous locations, time of travel between locations, and time spent in storage.
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Such technological advances will revolutionize our ability to monitor the world around
us, allowing critical decisions and required interventions to be made in a timely fashion.

While RFID provides promising benefits in many applications, there remains signif-
icant challenges to be overcome before these benefits can be realized. Central to these
challenges is the uncertainty of the data collected by the underlying RFID networks.
Due to the sensitivity of sensing to the orientation of reading, interference, malfunc-
tion of reading components, and many environmental factors, RFID data are typically
incomplete, imprecise, and even misleading [7, 8]. Obviously, when such data streams
are used directly in monitoring and tracking applications (e.g., product recall), the qual-
ity of the applications can be a significant concern.

The inherent uncertainty of the raw RFID data makes it impossible to be used directly
in high-level applications. Instead, sophisticated approach needs to be developed to be
able to support uncertainty as a first-class citizen in RFID applications. In this paper,
we design and implement a novel framework for uncertainty management in large scale
RFID traceability networks, geared towards efficiently and accurately supporting trace-
ability applications. In particular, we develop techniques that cope with ambiguous and
imprecise RFID data by transforming low-level RFID readings into probabilistic events.
In a nutshell, our key contributions are as the following:

– We introduce a data model for globally tracking moving objects. The proposed
approach is based on a Markov-based process to infer objects’ actual location ac-
cording to probabilistic RFID observations.

– We propose a sampling-based inference technique to capture the uncertainty of
RFID raw data. The technique also produces the probability distribution of RFID
objects from dynamic and noisy low-level RFID data.

– We validate the proposed techniques in prototype implementation and the experi-
mental results show the effectiveness of the proposed techniques.

The remainder of this paper is organized as follows. In Section 2, we discuss some back-
ground information related to managing uncertain data in RFID traceability networks.
In Section 3, we introduce a data model for tracking moving objects and in Section 4, we
discuss local RFID data management. In Section 5, we present our experiments to show
the effectiveness and efficiency of our approach. Section 6 is dedicated to the related
work and Section 7 concludes the paper and discusses some future research directions.

2 Preliminaries

In this section, we first describe a scenario of recalling problematic drugs in a supply
chain application. We then propose an overall architecture and show how to efficiently
manage, query and analyze uncertain information obtained from RFID data sources.

2.1 An Example of Uncertainty in Object Tracking

We first use a simple example to illustrate locating and recalling problematic products
in a supply chain network, as shown in Figure 1. Suppose a particular type of drug to
be distributed from its manufacturer Brisbane Plant in Brisbane to its destination
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Fig. 1. An example of uncertainty in an RFID-enabled supply chain

Royal Adelaide Hospital in Adelaide. On the path of distribution of the drug,
RFID readers are positioned at different nodes like Melbourne Wholesaler and
Sydney Distributor to detect the event when the drugs pass by. Further suppose
that problematic drugs are detected at the Royal Adelaide Hospital in Ade-
laide. In this case, the source in Brisbane of problematic drugs needs to be identified.
Having tracked the source, the system may need to find similar problematic drugs that
may be distributed in other places (e.g., warehouses and pharmacies).

Unfortunately, due to the sensitivity of sensing to the orientation of readings, in-
terference, malfunction of reading components, and many environmental factors, raw
RFID data are highly noisy [7, 8]. For example, there could be duplicated reads, missed
readings (either due to malfunction of an RFID reader, or due to the objects being stolen
or misplaced), and even “ghost” reads, meaning that a tag “captured” by an RFID reader
does not exist or is not within the reader’s detecting field. Obviously, when such data
streams are used directly in monitoring and tracking applications (e.g., product recall),
the quality of the applications can be a significant concern.

2.2 Overview of the Framework

In this section, we provide a high level overview of the proposed traceability frame-
work. The framework involves two main tracking components: a global object tracking
component and a local RFID data management component.
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– The global object tracking component (GOTC), as shown in Figure 2, is used to
support tracking and tracing the objects moving from one organization to the other.
Our traceable network includes three main entities: sensor nodes, receptors and ob-
jects. First, a node is equipped with battery-powered devices that have basic sensing
modules and communication interfaces. In particular, each node governs a number
of receptors (e.g., RFID readers) whose signals can cover and monitor some areas.
These nodes are deployed and dispersed in different sites for monitoring and track-
ing objects. For example, in a supply chain network, a node may be a distribution
center, or a retail store and RFID readers are deployed at the fixed locations such
as the entrances of a warehouse. Second, an object is any monitored entry attached
with RFID tags such as items and goods, etc. Very often, objects move across the
nodes confined within this traceability network. We will use a Markov-based pro-
cess to model and infer objects actual locations based on probabilistic observations,
which will be detailed in the next section.

– Local RFID Data Management (LRDM), as shown in Figure 3, represents the in-
ternal structure and functionalities of each node in a traceability network. LRDM
component is executed at individual senor node. To capture uncertainty of raw
RFID data, we employ a sampling-based inference technique called particle filter-
ing [9] to compute the probability distribution of objects from dynamic and noisy
low-level RFID data. The generated probabilistic RFID data is then processed in
order to extract the high-level events that can be used by applications. In addition,
the processed data is stored in databases in terms of records according to a data
model developed in the framework, readily for querying and mining.

Fig. 2. Global object tracking Fig. 3. Local data management

3 A Global Data Model for Tracking Moving Objects

In this section, we introduce a data model for globally tracking moving objects. The
proposed approach is based on the Markov-based process to infer objects’ actual loca-
tion according to probabilistic RFID data observations.
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3.1 Location Information Flows vs. Observation Information Flows

We start with the basic description of tracking approach in traceable networks, shown in
Figure 2. When tracking and tracing objects that move along a certain route, we are in-
terested in two types of information flows: the location information flows (LIF) and the
observation information flows (OIF). Physically, one object moves along a certain route
(e.g., a pallet moves in a supply chain network) and such movement of objects causes
the change of object’s physical locations. We call this LIF. On the other hand, once the
objects are captured by RFID readers, the movement of objects generates digitalized
information, we call this OIF.

However, due to different factors such as inaccurate objects identifications and missed
readings caused by RFID readers, the observed information (OIF) may not exactly re-
flect the actual location of the object (LIF), which generates uncertain information. In
addition, LIF are often unobservable state variables due to the uncertainty, so we refer
LIF as hidden state variables. On the other hand, OIF are observable evidence variables
(e.g., observed by RFID readers) [10]. Thus, in this paper, one of our aims is to model
and reason objects’ actual locations according to OIF. We deal with this problem using
a Markov-based probability approach.

3.2 A Markov-Based Model for Global Object Tracking

Formally, we consider a distributed traceability network, comprising a collection of n
nodes. The LIF for the nodes are represented as X={x1, x2, ..., xn}, which are often
unobservable due to the uncertainty. Y={y1, y2, ..., yn} denotes a set of OIFs that are
generated by RFID readers. We use Xt to denote unobservable state variable at time t
and and Yt for observable evidence variable at time t.

We now consider an object moving across a traceability network as a first-order
Markov random process. At a given point of time, although an object can be at any
location of a set of possible locations X , the first-order Markov process assumes that
the probability distribution at t + 1 is entirely determined by the current state at t.
Thus, we use a conditional probability p(Xt|Xt−1) to represent the location change of
an object from state Xt−1 to Xt. The transition probability p(Xt|Xt−1) can be further
represented by a matrix M as the following:

ML =

⎡
⎢⎣
m11 · · · m1n

...
...

mn1 · · · mnn

⎤
⎥⎦ =

⎡
⎢⎣
p(x1|x1) · · · p(xn|x1)

... p(xj |xi)
...

p(x1|xn) · · · p(xn|xn)

⎤
⎥⎦

where the entry mij = p(xj |xi) represents the transition probability by which state
xi changes to state xj . Based on the above transition model, an object should be in a
certain location after state xi, so

∑
j �=i mij =

∑
j �=i p(xj |xi) = 1 should hold.

Similarly, we can further model the relationships between location flows X and ob-
servation flows Y . Intuitively, the observable variables Y are often affected by actual
state variables X . In other words, state variables X cause the observable variables Y to
take different values. Formally, let Y be a set of the observable variables taking values
from RFID readers. Based on Markov assumption, we can use a conditional distribu-
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tion to describe how state variables X affect the observable variables Y . This model is
represented by a matrix N :

N =

⎡
⎢⎣

n11 · · · n1m

...
...

nn1 · · · nmm

⎤
⎥⎦ =

⎡
⎢⎣

p(y1|x1) · · · p(ym|x1)
... p(yj |xi)

...
p(y1|xm) · · · p(ym|xm)

⎤
⎥⎦

where the entry nij = p(yj |xi) represents the probability that system will demon-
strate observation value yj given that the object is in location xi. Based on the above
transition model, an object should be in some location after state xi, so

∑
j �=i mij =∑

j �=i p(xj |xi) = 1 should hold. An example of transition and observation model for
an RFID traceability network is shown in Figure 4.

Fig. 4. Transition model for RFID traceable network

4 Local RFID Data Management in Traceable Networks

In this section, we describe our local RFID data management in traceable networks. We
first describe a probabilistic model of uncertain data. We then present a sampling-based
inference technique to capture uncertainty of RFID raw data.

4.1 A Probabilistic Model for Capturing Uncertain Data

In RFID-based tracking applications, raw data often exhibit uncertainty and impre-
ciseness. For example, the products may be stolen, counterfeited, damaged, and miss-
placed. Thus, data produced by sensors (e.g., RFID readers) are often noisy. These
uncertainties can be further classified into four categories: false negative, true negative,
false positive, and duplicate readings. To capture such uncertainty in data, we use a con-
tinuous random variable x and describe data’s uncertainty by using probability density
functions pdf(x).

Definition 1. (Uncertain Object ) An uncertain object o is defined to be a point x within
a region Ru covered by RFID readers. The positions of the object o follow a probability
density function pdf(x), denoting the likelihood of the object’s position,and the condi-
tion holds:

∫
x∈Ru

pdf(x)dx = 1.

We further use Bayes rule to infer an object’s location. As mentioned above, objects’
locations in RFID applications are regarded as hidden variables x and observation vari-
ables y are the readings produced by RFID readers.Thus, our aim is to compute the joint
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probability distribution p(x, y) over both hidden and observed variables. In addition,
given an observed values y, this joint model induces the computation of a conditional
distribution p(x|y), which can be used to predict the objects’ locations. More precisely,
based on Bayes’ rule, the conditional distribution p(x|y) can be represented as:

f(x|y) = f(y|x)f(x)∫
f(y|x)f(x)dx

Suppose we have n observationsYn = (Y1,Y2, ...,Yn) of RFID data at each time-step,
we replace f(y|x) with:

f(y1, y2, ..., yn|x) =
n∏

i=1

f(yi) = Γ (x)

Thus, the current true state is defined by the posterior density over the random variable
x conditioned on all RFID data:

f(x|yn) = f(yn|x)f(x)∫
f(yn)f(x)dx

=
Γ (x)f(x)

hn

where

hn =

∫
Γ (x)f(x)dx

is the normalizing constant. In this case, one location variable in X = (x1, ..., xk) (e.g.,
x1) is determined by computing the following marginal posterior density:

f(x1|Yn) =

∫ ∫
. . .

∫
f(x1, ..., xk|Yn)dx2 . . . dxk

The challenge here is to perform accurate inference for a large number of RFID data
because the cost of computing such posterior densities grows exponentially over time.
In order to deal with this issue, we next introduce a sampling-based inference called
particle filtering to approximate the target conditional distribution.

4.2 Processing Uncertain RFID Data Based on Particle Filtering

The main idea of the particle filter [9, 11] is to approximately represent the posterior
probability by a set of limited random state samples (also called particles), extracted
from this posterior probability. One of the main advantages for particle filtering is that
such approximation of original conditional probability is able to achieve the expected
solutions with only a limited number of samples. It can also represent a broader range
of distributions than common probabilistic distributions like Gaussian Distribution.

Intuitively, the main task of a tracking application in RFID is to estimate states (e.g.,
the location of an object), based on the available evidence states (e.g., RFID readings).
The estimating inference includes two main steps: prediction and importance sampling.
The prediction stage is to construct the set of candidate particles, while the update stage
is to construct the set of qualified particles from candidate particles. These qualified
particles will approximate the original posterior pdf .
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Algorithm 1. State Update

Input: raw RFID readings, X = {xi|i = 1...I} Output: estimation of an object’s location

1. for ∀xi ∈ X do
2. xi_location + = motion_model.
3. xi_location + = diffuse_rate ∗ random_number.
4. end for
5. prob← meausre_probability(xi_location).

6. calculate normalization_value

7. for ∀xi ∈ X do
8. xi_prob / = normalization_value.
9. calculatexi_prob.cumulative_prob

10. end for

11. for ∀xi ∈ X do
12. r ← random_num_coffie.
13. p← firstxi_prob.cumulative_prob >= r
14. ressampled_xi ← p
15. end for

Algorithm 2. Sampling Process
1. if object reading is missing
2. for ∀xi ∈ X do
3. find_nearest_reader(xi).
4. xi ← position_of_nearest_sensor
5. d← xi_distance_from_reader
6. end for
7. else
8. for ∀xi ∈ X do
9. dis← compute_distance(xi − reader).

10. end for
11. end if

The input to the particle filter algorithm are a set of samples (states) of an object,
Xt−1 = {x1

t−1, x
2
t−1, ..., x

m
t−1}, and a set of current observation yt. At the first step

of constructing set X c
t of candidate particles, the algorithm processes each particle in

Xt−1. At the end of this step, the set X c
t of candidate particles includes a set of weighted

particles X c
t = 〈xi

t, w
i
t〉 , where wi

t is the weight of a particle xi
t and 0 ≤ i ≤ m. At the

second step, the algorithm selects the particles from X c
t , and puts the particles that have

higher weights as qualified particles into the set X q
t of qualified particles . At the end of

this step, the set X q
t includes all qualified particles. Finally, these qualified particles in

the set X q
t approximate the original posterior probabilistic distribution pdf . The particle

filtering algorithm is a recursive process that includes constructing set X c
t of candidate

particles, and the set X q
t of qualified particles.
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Prediction. This step updates the particles to reflect the new states of the observed ob-
jects (see Algorithm 1). A new state xt at time t will be generated based on the particle
xt−1 and the observation yt. In our implementation, we define the difference between
the location of readers and object’s previous location as the motion model. The motion
model describes how the states of an object change. Thus, in the prediction stage, we
can update each of the particles based on the results from the motion model.

Algorithm 3. Managing Missing Readings

1. read input X = {xi|i = 1...I}
2. do
3. get readings
4. if reading_time = current_time
5. if object �= exist
6. initialize_object.
7. else
8. get_object
9. end if

10. calculate_motion_model
11. update_state_of_object
12. else
13. M = {mi|i = 1...H} \ ∗ check_missing_readings
14. for ∀mi ∈M do
15. simulate_uncertainty.
16. update_object_state.
17. end for
18. end if
19. while ! more readings

Sampling. This step involves taking samples for transition distribution p(xt|yt, xt−1).
In our case, the probability of each particle is calculated using a standard normal dis-

tribution (Gaussian) f(x) = 1√
2πσ2

e−
(x−μ)2

2σ2 , where μ is mean, and σ2 variance. Then

for each particle xi
t, we compute its weight wi

t = p(yt|xi
t). For example, if an observed

object is within the range that the RFID reader covers, the particles produced by the
object are assigned higher weights because these particles have a higher likelihood of
representing the correctly estimated locations. At the end of this step, the set X c

t of
candidate particles includes a set of weighted particles X c

t = 〈xi
t, w

i
t〉. An algorithm of

sampling process is shown in Algorithm 2.
Resampling. This step converts the set X c

t of candidate particles into the set X q
t of

qualified particles. However, only those particles in set X c
t that have bigger values of

weights are selected and transformed into X q
t .

We also design an algorithm (see Algorithm 3) to deal with missed readings in order
to further improve the effectiveness of our approach. When the readings are missed, the
location of an object indicates uncertainty. To simulate the uncertainty of an object’s
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locations due to missed readings, we set the locations of some particles randomly, and
estimate the locations of the remaining particles according to p(Xt|Xt−1).

4.3 A Data Store Model

We develop a new schema to store cleaned RFID data for supporting querying and
mining. Our model incorporates RFID data’s uncertain information, including time,
tagID, location, and probability. RFID records form a probabilistic database PDB:

Definition 2. Each record r ∈ PDB is represented by a tuple r=〈tr, dr, lr, pr〉,
where tr, dr, lr pr denotes the ‘time’, ‘tagID’, ‘location’,‘probability’.

For instance, one instance of record (2:05pm, EPC0001, Sydney-D, 0.57) indicates that
at 2:05pm, the object with ID of EPC0001 was located at Sydney Distributor (i.e.,
Sydney-D) with the probability of 0.57. This model also stores the probability dis-
tribution over an RFID object’s location at a given time. For example, there might be
another tuple (2:05pm, EPC0001, Melbourne-W, 0.43), indicating that there was also a
0.43 probability that the object with ID of EPC0001 was at Melbourne Wholesaler (i.e.,
Melbourne-W). An example of RFID data records is shown in Table 1.

Table 1. RFID data records

Raw Data Records (t1, r1, l1), (t1, r2, l1), (t1, r3, l2), (t2, r2, l1)
(t2, r1, l3), (t3, r1, l2), (t4, r4, l1), (t4, r3, l3)
(t2, r3, l4), (t5, r3, l4), (t5, r1, l3), (t5, r4, l5)

Probabilistic RFID Data Records (t1, r2, l1, 0.1), (t1, r3, l2, 0.4), (t2, r2, l1, 0.5)
(t2, r1, l3, 0.4), (t3, r1, l2, 0.2), (t4, r4, l1, 0.3)
(t2, r3, l4, 0.3), (t5, r3, l4, 0.4), (t5, r1, l3, 0.6)

5 Experiments

To validate the proposed approach, we conducted two groups of experimental studies.
The first group tested the effectiveness of the basic functionality of the system, and the
second group explored the accuracy of the particle filtering-based approach.

We use NetBeans to develop two Java applications to support experiments. The first
Java application is an RFID data generator that produces a series of simulated RFID
readings. The generated RFID data are then used as the input of the particle filtering
system. The probabilistic outputs generated from the particle filtering system are fed
into the second Java application. This Java application translates probabilistic outputs
into a SQL file for supporting updating and querying the database.

To test the basic functionality of the system, we have designed a scenario where two
pallets travel through different stages within a warehouse. The missed readings for the
first pallet occur at 3.02pm shown in Figure 5. The testing results are represented by
four three-dimensional graphs, as shown in Figure 6, each representing the first pallet’s
predicted location at a given time.
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Fig. 5. Missed reading in warehouse scenario
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Fig. 6. The result of testing particle filtering sys-
tem

In these graphs, the X axis and Z axis of the visualization represent the X and Y
coordinates of the warehouse, while the Y axis represents the probability values. The
red dots signify the different RFID readers and their positions within the warehouse. In
addition, each blue circle represents a particle of the object observed and the probability
of that particle. This experimental results show that the proposed system is able to
predict the locations of moving objects. For example, Figure 6 shows that the particles
are correctly predicted to be around the third reader with a probability of 0.489, although
some readings are missed at 3.02pm.

5.1 Experimental Results

To show the accuracy of our tracking system, we carried out two experimental studies.
The first experiment explores the accuracy of particle filtering system whilst the second
group demonstrates the effect of optimization on the runtime.

Accuracy of Particle Filtering System. In this experiment, we studied the effect of
missed readings on the accuracy of location estimation. For each category of missed
readings, our data generator generated an input file containing data with a certain per-
centage of missed readings. Each input data file includes 100 records, and these files
were used to examine the average accuracy. Figure 7 shows the experimental results.
Overall, our system is able to perform object location estimation with an accuracy of
76%. It indicates a good property of our system even if some readings are missing.

Effect of Optimization on Runtime. We have also examined the effect of optimization
on the runtime speed. For each experiment with a set of objects, we executed each
version of the program five times to determine the average runtime. Our experiments
show that our approach can reduce the numbers of objects to be processed. This also
has an impact on the runtime of the particle filter algorithm. From Figure 8, we can see
that when the number of objects exceed 1,000, the time used in our approach is much
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Fig. 7. Accuracy vs percentage of missed reads Fig. 8. Runtime speedup

less than the time used without our approach. Therefore, together with the ability to
perform object location estimation in reduced time, we can conclude that our system is
suitable for large-scale practical applications.

6 Related Work

Managing uncertain data is an important research topic in RFID-based applications.
There are a number of researches focusing on RFID networks [12–14], uncertain data
management[7, 15, 16], data model [17, 18] and probabilistic databases [4, 19–21].
However, there still lacks of effective framework to support uncertain data management
in a distributed traceability network.

EPCglobal[7] provides rich standards to support RFID-based tracking networks.
Currently, EPCglobal Architecture Framework (EAF) is widely regarded as one of the
most well-known RFID network architectures in industry [22]. In addition, works in
[13, 23] propose generic approaches for tracing and tracking of objects in large-scale
and distributed environments such as the Internet of Things. In particular, by analyzing a
wide range of traceability applications, these works provide models for moving objects
in discrete spaces, which are mainly built on top of the DHT (Distributed Hash Table)
based overlay network. Furthermore, the proposed frameworks separate functionalities
into three isolated modules: identity, capture, and exchange.

The work related to uncertain data management can be found in [7, 15, 16]. The
work by Diao et al. [16] proposes a probabilistic model and approach to transform raw
data streams into tuple streams with quantified uncertainty. This approach approximates
object location estimation based on data streams processing, making their research rel-
evant to our approach. However, their techniques cannot be directly used in our work
because their work focuses on general estimations for objects tracking and not deal
with the location estimation with the large-volume of data in distributed applications
such as supply chain networks. To understand the containment relationships of objects
for location estimating, the work in [15] presents a SPIRE framework, which relies
on packaging level information extracted from tagIDs of objects to form time-varying
graphs and depict the relationships of inter-objects’ containments. Based on the graphs,
estimating locations of an object can be done by inferring the edges and the nodes in
the graph, so that a probabilistic distribution over all possible states for each node could
be built.
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In the area of particle filtering in RFID-based applications, the Cascadia project [17]
applies a particle filter approach to infer the probability distributions over an object’s
location. In particular, each particle is associated with a location. Upon receiving a raw
RFID event, the particles are weighted based on the consistency of their coordinates
with the raw RFID event. However, since this project targets applications from a single
administrative domain, it is not required to process data in a large-scale and widely
distributed environments.

7 Conclusion

Effectively managing uncertain data in RFID traceability networks still remains a chal-
lenge. In this paper, we have studied the main problems related to tracking the move-
ments of objects and particularly focused on processing ambiguous and imprecise RFID
data. We have designed and implemented a novel framework, which improves the ex-
isting techniques for tracking the movement of objects and cleaning RFID raw data.
Within the framework, we use a Markov-based process to infer objects’ actual location
according to probabilistic RFID data observations. In addition, we propose a sampling-
based inference technique called particle filtering to capture uncertainty of RFID raw
data, and to compute the probability distribution of RFID objects from dynamic and
noisy low-level RFID data. Our probabilistic reasoning approach enables efficient and
accurate support for traceability applications. The experimental results have shown that
our approach is capable in object estimation with high accuracy and scalable in large-
scale applications.

Our further work include conducting more experiments to further study the system
performance. We also plan to develop a model for probabilistic RFID event generation.
This will particularly consider the issue of Unordered Event Stream (UnES) where the
order of arriving RFID events might not match with the order of the occurrence of the
events in the real world (e.g., due to network routing delay).
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