
Automated Information Extraction
from Web APIs Documentation

Papa Alioune Ly1,2, Carlos Pedrinaci1, John Domingue1

1 Knowledge Media Institute, The Open University
2 School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne (EPFL)

{alioune.ly, carlos.pedrinaci, john.domingue}@open.ac.uk

Abstract. A fundamental characteristic of Web APIs is the fact that,
de facto, providers hardly follow any standard practices while imple-
menting, publishing, and documenting their APIs. As a consequence, the
discovery and use of these services by third parties is significantly ham-
pered. In order to achieve further automation while exploiting Web APIs
we present an approach for automatically extracting relevant technical
information from the Web pages documenting them. In particular we
have devised two algorithms that automatically extract technical details
such as operation names, operation descriptions or URI templates from
the documentation of Web APIs adopting either RPC or RESTful inter-
faces. The algorithms devised, which exploit advanced DOM processing
as well as state of the art Information Extraction and Natural Language
Processing techniques, have been evaluated against a detailed dataset ex-
hibiting a high precision and recall–around 90% for both REST and RPC
APIs–outperforming state of the art information extraction algorithms.

Keywords: Web API, RESTful service, Web Page Segmentation, Information
Extraction, Service Discovery

1 Introduction
On the Web, service technologies are currently marked by the proliferation of
Web APIs, also called RESTful services when they conform to REST princi-
ples [1]. Major Web sites such as Facebook, Flickr or Amazon provide access
to their data and functionality through Web APIs. This trend is impelled by
the simplicity of the technology stack, compared to WS-* Web services [2], as
well by the simplicity with which such APIs can be offered over preexisting Web
sites infrastructure [3]. Thanks to these APIs, we have seen in the last years a
proliferation of applications and Web sites that exploit and combine them to
provide added-value solutions to users.

When building a new service-oriented application, it is fundamental to be able
to swiftly discover existing services or APIs, to figure out what operations and
resources they offer as well as to understand the ways in which one can use them.
Unfortunately, supporting the aforementioned steps over the Web APIs one can

find on the Web is most challenging nowadays since most often the only way to
carry this out requires interpreting highly heterogeneous HTML pages that are
intended for humans and that provide no convenient means for supporting their
identification and interpretation by machines. In fact, although REST principles
contemplate mechanisms that could help circumvent these issues, e.g., the use
of Hypermedia as the Engine of Application State (HATEOAS), our previous
research revealed that REST principles are seldom strictly followed [4]. Similarly,
although there have been a number of languages and formalisms suggested for
explicitly describing Web APIs very few API providers actually use them. Thus,
while providing support for discovering and invoking Web services and their
operations can directly be solved by locating and parsing WSDL documents,
discovering Web APIs is far more complex a task that is yet to be adequately
addressed.

Driven by the aforementioned observations in our ongoing work on iServe [3],
a public platform for service publication and discovery, we are approaching the
discovery of Web APIs as a three steps activity, whereby we first carry out a
targeted crawling of HTML Web pages providing the technical documentation
of Web APIs, we subsequently analyse the pages obtained to detect and extract
relevant technical information, e.g., operation names, URLs, etc, and we ulti-
mately provide search functionality over the extracted information. In earlier
research we have reported our approach and the results obtained in the first
step [5]. In this paper we focus on the second step which is in charge of pro-
cessing the obtained Web pages to extract as much information as possible that
shall serve as a basis for advanced Web API discovery. In particular, we present
two novel algorithms for supporting the extraction of key information from Web
pages documenting Web APIs providing both Remote Procedure Call (RPC)
and RESTful interfaces. The algorithms combine state of the art Information
Extraction and Natural Language Processing (NLP) techniques to extract fea-
tures such as operation names, operation descriptions or URI templates. Our
algorithms have been evaluated against a dataset containing 40 highly heteroge-
neous Web APIs documentation pages covering both RPC and RESTful APIs.
The evaluation highlights the superior performance of our approach over state
of the art Information Extraction algorithms, reaching a precision of 89% when
detecting operations and their corresponding information for RPC Web APIs,
and 93.4% when detecting blocks describing methods3 for RESTful Web APIs.

The remainder of this paper is organised as follows. In Section 2 we cover
the related work and provide additional background information relevant for the
topic at hand. We next explain the approach we have followed and describe the
algorithms we have developed. In Section 4 we present the experiments we have
carried out and discuss the evaluation results, and finally in Section 5 we present
the main conclusions we have drawn and introduce lines for future research.

3 In Section 3 we explain what we understand by method block in this context and
why it is relevant.

2 Background and Related Work
2.1 Service Discovery
Service discovery has been the subject of much research and development. The
most renown work is perhaps Universal Description Discovery and Integration
(UDDI) [2], while nowadays Seekda4 provides the largest public index with about
29,000 WSDL Web services. Research on semantic Web services has generated a
number of ontologies, semantic discovery engines, and further supporting infras-
tructure over the years, see [6] for an extensive survey. Despite these advances,
however, the majority of these initiatives are predicated upon the use of WSDL
Web services, which have turned out not to be prevalent on the Web where Web
APIs are increasingly favoured [3].

A fundamental characteristic of Web APIs is the lack of standardisation both
concerning their implementation as well as concerning their publication and doc-
umentation. An analysis we carried out manually highlighted the heterogeneity
existing both in terms of the type of interfaces provided with only 32% apparently
RESTful, and the remaining 68% being either purely RPC or hybrid [4]. Addi-
tionally, although a few providers do follow REST principles like HATEOAS that
enable to some extent the automated discovery and invocation of these services,
most do not and provide instead weakly semistructured Web pages documenting
the APIs with a highly variable degree of detail (e.g., the HTTP method used is
not always indicated, etc) [4]. Furthermore, while the documentation of a single
Web API typically follows a certain pattern locally, the structure adopted by
different APIs documentation pages is highly heterogeneous which prevents the
direct application of general pattern-based solutions. To address these issues,
researchers have proposed a number of languages and formalisms for describ-
ing APIs, e.g., WADL [7] or for annotating the Web pages documenting them
such as SA-REST [8] and hRESTS/MicroWSMO [9]. However, their adoption
remains minimal outside academic environments.

As a consequence, there has not been much progress on supporting the au-
tomated discovery of Web APIs. The main means used nowadays by developers
for locating Web APIs are the use of traditional search engines like Google or
searching through dedicated and registries. The most popular directory of Web
APIs is ProgrammableWeb5 which, as of June 2012, lists about 6,200 APIs and
provides rather simple search mechanisms based on keywords, tags, or a sim-
ple prefixed categorisation. Based on the data provided by ProgrammableWeb,
APIHut [10] increases the accuracy of keyword-based search of APIs compared
to ProgrammableWeb or plain Google search. Unfortunately, on the one hand,
general purpose Web search engines are not optimised for this type of activity
and often mix relevant pages documenting Web APIs with general pages, e.g.,
blogs. On the other hand, current registries provide more focussed information,
but still present a number of issues. First and foremost, more often than not,
these registries contain out of date information or even provide incorrect links to
APIs documentation pages. Indeed, the manual nature of the data acquisition
4 http://webservices.seekda.com/
5 http://www.programmableweb.com

in APIs registries aggravates these problems as new APIs appear, disappear or
change. Secondly, the fact that the data listed is often not that accurate and
rather coarse grained hampers significantly the development of advanced search
functionality since automated algorithms are mislead and miss relevant informa-
tion such as the operations provided.

Therefore, despite the increasing relevance of Web APIs, there is hardly any
system available nowadays that is able to adequately support their discovery.
The main obstacles in this regard concern first of all, the automated location
of Web APIs, and subsequently, the gathering, interpretation and extraction of
relevant information concerning these APIs which is the main focus of this paper.
In this regard, to the best of our knowledge besides our own work we are only
aware of another initiative which has carried out some initial steps in a similar
direction [11]. However, at the time of this writing, details on the experiments
and the results obtained are hardly available and, according to the authors,
require further refinement.

2.2 Web Page Analysis and Information Extraction
As previously argued, obtaining the necessary information for discovering or in-
voking the vast majority of Web APIs nowadays requires interpreting highly
heterogeneous HTML pages providing documentation for developers. Although,
to the best of our knowledge, no other approaches to automating the extraction
of information from Web APIs documentation have been devised so far, consid-
erable effort has been devoted to extracting information from Web pages which
is relevant to this work.

Tag-based Segmentation approaches are used to analyse the DOM tree
of Web page and automatically divide it into subtrees in order to eventually
extract information. The essence of this approach relies on the observation that
useful information is usually wrapped into so-called important blocks. These tech-
niques usually rely on specific HTML tags, e.g., <table> in the case of [12], as
block separators. This approach is, however, not performant when dealing with
heterogeneous cases where various tags are used as separators. To address this,
proposals like [13] contemplate a wider range of tags e.g., <tr>, <hr> .

Template-based Segmentation techniques rely on the fact that, for repet-
itive information Web pages often use a recurring structure to capture infor-
mation [15]. These approaches exploit templates provided either by humans or
derived automatically by machine learning techniques in order to extract infor-
mation from the Web pages. Although, these techniques are performant when
dealing with Web pages that share (at least partly) a common structure, in cases
where the heterogeneity of the pages is very high the performance is considerably
affected. As we shall see, although it is possible to exploit local patterns within
a Web API documentation, currently diverse Web APIs use highly diverging
structured which prevents us from applying successfully this approach.

Vision-based Segmentation is another popular family of approaches that
exploits the technique the “visual" boundaries between blocks of content as a
means to segment Web pages into blocks of information. In [16] the authors
present the popular Vision-based Page Segmentation Algorithm (VIPS) which

views Web pages as (a collection of) images and traverses the DOM tree detecting
the “visual" boundaries between blocks. VIPS’s granularity of segmentation is
based on a predefined degree of coherence (PDoC) which acts as a lower bound for
the computed degree of coherence (DoC) of the identified page blocks. A number
of researchers have used VIPS as the underlying page segmentation algorithm,
see for instance [17–19]. One weakness of these approaches is due to the fact
that the visual boundaries of Web pages are often not clear cut. Additionally,
solutions based on VIPS sometimes face granularity problems, which may lead to
either too granular segmentations when the PDoC is high, or too coarse grained
segmentations when the PDoC is low.

3 Information Extraction from Web API Documentation
Given a Web page documenting a Web API our approach to extracting these
features consists on two main steps. On a first step, as is common practice when
processing Web pages, we pre-process the Web page to i) circumvent any issues
with incorrect HTML pages6, and ii) to remove scripts and images which will
not be taken into account for feature extraction. The second step, takes care of
processing and analysing the cleaned Web pages to extract the main technical
features of the Web APIs such as the operation names, URI templates, etc.

As we introduced earlier, currently two main styles for implementing Web
APIs coexist on the Web, i.e., REST and RPC. Both styles embed a number
of architectural and design decisions that condition the way service interfaces
are defined and documented, and which, as we shall see, condition the kinds of
techniques we can successfully apply to extract information. In the remainder
of this section we describe the approach and algorithms we have devised for
extracting information from each of these types of interfaces.

3.1 Information Extraction from RPC-style Web APIs

RPC is a communication style that is centred on the notion of operations or pro-
cedures which essentially define the actions that remote components can trigger.
Web APIs adopting this style of communication offer programmatic access to
the data and functionality hosted on the underlying Web site by means of an
arbitrary number of operations. Additionally, the documentation sometimes in-
dicates further details such as the invocation endpoint (a URL) or the HTTP
method to be used. Figure 1 shows two examples with the relevant blocks of
information extracted from RPC-style Web APIs whereby dashed border rect-
angles represent the operation identifiers and plain border rectangles represent
the information blocks that provide further details, e.g., parameters, and de-
scribe what the operations do in natural language. Even though the blocks are
both taken from RPC-style Web APIs documentation, the underlying structure
and their visual appearance differ significantly, providing an example of the het-
erogeneity among Web APIs documentation.

In extracting relevant information from RPC-style Web APIs the essence of
our approach in centred on the detection of blocks providing information about

6 We used the Jericho Parser http://jericho.htmlparser.net/docs/index.html

(a) Block extracted from http://www.benchmarkemail.com/API/Library

(b) Block extracted from http://30boxes.com/api/

Fig. 1: Examples of block content in RPC-style Web APIs.

the different operations. This detection relies on two main characteristics we
have observed while analysing a plethora of Web APIs documentation. First
and foremost, we exploit the fact that operation identifiers typically use words
in CamelCase7 notation whereby the first part is a verb and the rest a noun,
e.g., getArtist. Secondly, since documentation pages are designed for humans, a
single Web API documentation often uses some recurrent visual clue to provide
a distinct visual appearance to the different elements, e.g., operation names are
all within an <H3> tag, the description within a <p> tag, etc. Thus, although
structural patterns across Web APIs documentations cannot be exploited given
the existing heterogeneity we previously highlighted, we do utilise the fact that
there typically exist local patterns within the same API documentation.

Algorithm 1 details how we extract operation description blocks from RPC-
style Web APIs. In a first step we extract all the CamelCase words we can find
from the page and track the immediate tag they belong to. In this step, see line
4, we only keep track of the CamelCase words that are composed of a verb and
a noun, which, as we shall see in Section 4, is a significant improvement. To this
end we use the Log-linear Part-Of-Speech Tagger implemented by the Stanford
NLP group8. This tagger reads text in english and assigns a part of speech to
each word such as verb, noun, and adjective. Doing so allows us to distinguish
getArtist which denotes potentially an operation identifier as it is made of the
verb get and the noun Artist, from pageNumber which is composed of two nouns,
page and Number, and should hence be discarded.

7 http://en.wikipedia.org/wiki/CamelCase
8 http://nlp.stanford.edu/software/tagger.shtml

input : Source page of the Web API
output: Operation description blocks

1 foreach tagContent in page source do
2 camelCaseList ← tagContent.getCamelCaseWords();
3 foreach ccWord in camelCaseList do
4 if isOperation(ccWord) then
5 tagMap.Add(Pair<tagName, ccWord >);
6 end
7 end
8 end
9 electedTag ← getMostPopularTag(tagMap);

10 operationList ← getOperations(tagMap, electedTag);
11 operationMap ← ∅;
12 foreach tagContent in page source do
13 operations ← tagContent.getCamelCaseWords() ∩ operationList;
14 foreach ccWord in operations do
15 if getTag(ccWord) == electedTag then
16 if getTag(other words in operations) 6= electedTag then
17 operationMap.Add(ccWord → tagContent);
18 end
19 end
20 end
21 end
22 return operationMap;

Algorithm 1: Block detection for RPC-style Web APIs.

In a second step, we find out the HTML tag that has most commonly been
used for the operation identifiers candidates found in the first step. This tag,
which we refer to as the elected tag, is obtained by function getMostPopularTag
in line 9. Next, out of all the operation identifiers candidates, we only retain the
operation identifiers candidates that were within the elected tags. Finally, the
tag scope for each of the operations found is eventually used in order to segment
the page into blocks of additional information related to a single operations (e.g.,
operation description, parameters, etc), see Figure1 where the outer rectangle
delimits a single block and the dashed inner rectangle highlights the operation
indentifier detected.
3.2 Information Extraction from RESTful Web APIs

Web APIs that conform to REST principles [1] are characterised by a commu-
nication model whereby requests and responses are built around the transfer of
representations of resources and a prefixed set of operations one can carry over
these. The documentation of RESTful Web APIs is thus centred on the notion
of resource and the parameters required for identifying these resources as well
as on the actual operations allowed over the resources which in the case of Web
APIs is indicated by the HTTP method to be used. Figure 2 shows two examples
of blocks of information extracted from RESTful Web APIs whereby the inner
dashed rectangles represent the resources URI (templates), circles identify the
HTTP method to be used and the outer rectangles capture the entire segment
of information.

(a) Block extracted from https://dev.twitter.com/docs/api

(b) Block extracted from
http://www.peej.co.uk/articles/restfully-
delicious.html

Fig. 2: Examples of block content in RESTful Web APIs.

Given the characteristics of RESTful interfaces, the main goal in this case
is to detect and extract the resources, their URIs (templates) along with the
HTTP method to be used and the corresponding description (see plain border
rectangles in Figure 2). As opposed to the previous case, naming conventions
here are hardly usable since there is no usual criterion for defining resource iden-
tifiers. Instead, the most characteristic elements in this case are URI templates
and HTTP methods although they occur in several places throughout the docu-
mentation (e.g., one may GET and POST a resource) which hampers significantly
the segmentation of the Web page into coherent sets of resources and operations.
In order to deal with this, we exploit in this case the fact that within a single
API developers often adopt the same repetitive pattern for documenting each
resource and the operations available.

In particular, our algorithm, see Algorithm 2, first analyses the structure of
the API documentation in order to segment the Web page into similar structural
blocks and keeps those blocks that are believed to provide technical documen-
tation since they contain URIs and, whenever available, HTTP methods, e.g.,
GET, POST, PUT, DELETE, see line 1. In a second step, see lines 2 onwards, the
algorithm computes the similarity of the blocks detected in order to retain those
that appear to exhibit the same structure. Once the blocks have been filtered,
we extract the internal features contained, e.g., URIs, HTTP methods, etc, and
treat them as a coherent set of information related to a given resource and the
operations it offers.

To compute the similarity of the blocks detected the algorithm exploits the
notions of entropy and node internal structure. Entropy calculation is used
to quantify strong local patterns exhibited in a page segment, whereby a high
entropy indicates important disorder and a low entropy indicating strong simi-
larity.

input : Source page of the Web API
output: URI description blocks

1 blockPattern ← detectBlockPattern();
2 currentEntropy ← 1; oldEntropy ← 2;
3 electedDescriptionMap ← ∅; descriptionMap ← ∅;
4 while currentEntropy < oldEntropy do
5 descriptionMap ← ∅;
6 oldEntropy ← currentEntropy;
7 foreach tagContent in page source do
8 tagStructure ← getStructure(tagName);
9 if tagStructure starts with blockPattern then

10 while not tagContent contains a URI do
11 Tag ← parentTag; Update tagContent;
12 end
13 descriptionMap.Add(tagStructure → tagContent)
14 end
15 end
16 structureList ← descriptionMap.keySet();
17 currentEntropy ← getEntropy(structureList);
18 if currentEntropy < oldEntropy then
19 electedDescriptionMap ← descriptionMap;
20 end
21 end
22 return electedDescriptionMap;

Algorithm 2: Block detection for RESTful Web APIs.

The main concepts underlying the notion of entropy in our approach are as
follows. Given a set of nodes in the DOM tree structure of a Web page, fi denotes
the frequency with which the node name i appears and pi the probability of node
i.
pi is hence calculated via the formula:

pi =
fi
n

(1)

where, n is the total number of nodes. Using equation (1), the entropy of node
v is defined as:

E(v) = −
∑
i∈V

pilog(pi)

log(|V |)
(2)

where, V is the set of unique node names that appear in the subtree of the DOM
rooted at node v. We can easily extend this concept in calculating the entropy
of a list of elements.

We consider the internal structure of a node A as being the concate-
nation of the node name with all of its children traversed top-down left-right
in the subtree rooted at A, e.g if we consider part of the source code being
<div><a>title<p>body of the div
</div>, the internal structure

of the <div> node is <div><a><p>
.
In order to detect repetitive block patterns within the structure of the HTML
page, see function detectBlockPattern on line 1, we base our approach on
the ideas behind the “Repetition-based Web Page Segmentation” (REPS) al-
gorithm [19] which proposes a flexible approach for recognising repetitive tag
patterns in the DOM tree structure of a Web page, and the approach proposed
in [20] by Gujjar Vineel who proposed a DOM tree mining approach for page
segmentation where he introduced the concept of page segment nodes that would
characterise nodes that divide the DOM Tree into logical blocks.

In essence, we use the approach in [20] to segment the Web page into logical
blocks (e.g., header, footer, left column, right column, content), then in order
to find repetitive patterns within the DOM we exploit the approach proposed
by REPS and apply it on the each of the logical blocks. This way, we can keep
track of logical blocks that turn out to have repetitive patterns with URI within.
Eventually, we keep the most repeated pattern and refer to it as blockPattern.
Therefore, we can exploit the patterns detected to divide the logical block con-
taining the blockPattern into sub items that should in principle represent the
blocks describing each resource and their operations.

4 Evaluation

In order to evaluate our approach, we manually generated a dataset based on
the documentation of 40 Web APIs. The APIs selected were such that 20 had an
RPC interface and the other 20 a RESTful interface. APIs) and documentations
within each of these were had a significantly different structure (e.g., documen-
tation structured on the basis of tables, HTML headers, flat documentations,
etc). Each of the selected Web API documents were manually analysed in order
to extract the information captured within them. The resulting dataset contains
355 URIs for resources of RESTful Web APIs and 515 operations for RPC-style
Web APIs. For RPC-sytle Web APIs, we stored for each encountered operation:
i) the URL of the Web API documentation, ii) the operation identifier, and iii)
the description block that also contains the (required) parameters, and other
information regarding what the operation does. For RESTful Web APIs we cap-
tured for each resource: i) the URL of the Web API documentation, ii) the URI
(template), iii) the HTTP method, and iv) the description block. The inter-
ested reader can find concrete details about our dataset as well as subsequent
evaluations of our algorithms in the website of iServe9.

On the basis of the dataset generated, we evaluated the algorithms devel-
oped. Notably, we applied the algorithms over each Web API documentation
to automatically extract the main technical features of the Web APIs. We then
computed the overall precision and recall 10 by contrasting the automatically
extracted information with the one we manually extracted and recorded in the
dataset.

9 http://iserve.kmi.open.ac.uk/datasets/apis-information-extraction.html
10 http://en.wikipedia.org/wiki/Precision_and_recall

4.1 Evaluation Results for RPC-style Web APIs
In order to evaluate our algorithm for extracting information from RPC-style
Web APIs documentation we tested our own algorithm against the dataset and
compared it with other 2 techniques that we used as baseline. Given that no
other information extraction techniques have been devised for this purpose, we
compared the different techniques with respect to their accuracy for detecting
operation identifiers. The subsequent extraction of the operation description
block was in all cases based on the same common procedure we devised for
Algorithm 1 taking the detected operation identifiers as a starting point. The first
technique–T1–was solely based on the detection of CamelCase words, whereas
T2 was based on the combination of CamelCase word detection and the use
of Part-of-Speech tagging to filter out the operation identifiers that were not
composed of a verb and a noun. Finally, our algorithm which extends T2 with
the notion of elected tag, see Algorithm 1, is referred to in our evaluation as T3.
Table 1 provides a summary of the results for the three techniques. Regarding
the results obtained for technique T3, at the time we were experimenting this
approach, page 2011 could not be tested as it was no longer documenting a Web
API. This shows how fast references to Web APIs documentation are changing
which motivates further the work presented herein.

Overall, T1 obtained an average precision of 54.68% and an average recall
of 94.55%. These results confirm the fact that most operation identifiers are
CamelCase words (see the high recall), but also the fact that there are many
CamelCase words that are not necessarily operation identifiers (hence the low
precision). A detailed look at the extracted operation names for instance included
words like USgov, pageNumber and LinkedIn. The second technique, which ex-
ploits Part-Of-Speech tagging, exhibited a significant precision improvement over
T1 of about 20 percentage points, with a minor decrease in recall of about 3.5
percentage points. These results thus highlight the considerable benefits that are
obtained by using Part-Of-Speech tagging, but still the overall precision, 75%,
remains rather low. Finally, our algorithm exhibited the best precision with
92.71%, i.e., an increase of 38 percentage points over T1 and 17 over T2. Sim-
ilarly, the overall recall exhibited by our algorithm, although minimally worse
than the one for the other techniques, remains very good with 90.59%. This
result thus highlights the fact that using the notion of elected tag which exploits
the recurrent use of tags for structuring documents is a good means to fine tune
the extraction of information from RPC-style Web APIs documentation. The
results illustrate that, by combining CamelCase word detection, Part-of-Speech
tagging and the notion of elected tag, we succeeded in getting better precision
and recall as well as on providing a more stable algorithm.

Based on the operations identifiers detected, we also evaluated the perfor-
mance of our algorithm for detecting the entire operation description blocks, see
lines 11 to 21 in Algorithm 1. The results were very similar with a minor decrease
both in precision and recall, notably for T3 we obtained a good performance with
a precision of 89.09%, and a recall of 84.56%. This slight performance decrease
11 http://api.conceptshare.com/API/API_V2.asmx

Table 1: Operation detection from RPC-style Web APIs.

Tech
Pages

Avg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
re
ci
si
on T1 46.8 31.2 100 71.4 37.5 58.3 80 66.6 62.5 100 65.9 78 27.6 16.6 26 12. 9.5 66.2 90.4 46.1 54.68%

T2 68.1 62.5 100 92.6 72.7 87.5 100 83.3 83.3 100 90.6 92.9 44.5 31.8 46.2 26.2 50 88.6 95 85.7 75.08%

T3 68.2 100 96 88.9 93.3 100 83.3 100 100 96.9 97.5 97 63.6 81.8 100 100 94.7 100 100 - 92.71%

Tech
Pages

Avg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ec
al
l T1 68.2 83.3 98.9 100 90 93.3 100 100 100 100 86.1 100 94.2 100 100 94.4 100 82.4 100 100 94.55%

T2 68.2 83.3 76.3 100 80 93.3 100 83.3 100 100 80.5 100 92.9 100 92.3 88.9 100 81.6 100 100 91.04%

T3 57.7 83.3 100 80 93.3 100 83.3 100 100 77.5 100 92.9 100 69.2 90 100 93.9 100 100 - 90.59%

when extracting operation description blocks is due to the fact that in a few
cases the Web pages do not strictly partition operations’ details into different
blocks. In these cases, the next level up in the DOM structure with respect to
the tag holding the operation identifier contains several operation description
blocks rather than just the one sought.

4.2 Evaluation Results for RESTful Web APIs

Like in the previous case we evaluated our algorithm for RESTful APIs and
compared it with 2 techniques that we used as baseline. Given that no other
information extraction techniques have been devised for this purpose, the com-
parison was based in this case on the application of diverse heuristics for de-
tecting block patterns since this is the key step prior to extracting the relevant
information about resources and how to interact with them, see line 1 of Al-
gorithm 2. The first technique–T4–was based on the direct application of the
approach in [20] for block pattern detection. T5, on the other hand was based on
the use of REPS [19] exclusively. Finally, our algorithm which combines RESP
and the approach in [20] to detect block patterns, see Algorithm 2, is referred
to in our evaluation as T6. The subsequent processing exploiting the notion of
entropy to select the most promising blocks was in all cases based on our own
algorithm.

Table 2 summarises the results obtained in terms of precision and recall
when applying T4, T5 and T6 on the RESTful APIs recorded in our dataset. The
results obtained show that our approach outperforms state of the art techniques
(i.e. T4 and T5) in both terms of precision and recall. Notably, we obtain an
average precision of 93.4% and an average recall of 83.53% whereas for T4 and T5

obtain respectively average precisions of 88.91% and 92.52% and average recalls
of 69.18% and 72.46%. The results illustrate that, in most cases, by combining
ideas from [20] and [19] we succeeded in getting better precision and recall as
well as on providing a more stable algorithm.

Table 2: Block detection from RESTful Web APIs.

Tech
Pages

Avg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
re
ci
si
on T4 100 71.4 100 100 100 50 100 100 100 23.7 100 100 100 100 10.8 100 100 100 100 100 88.91%

T5 100 46 100 100 100 100 100 80 100 100 100 100 100 100 100 100 100 9.4 100 100 92.52%

T6 100 27 93.8 100 100 100 100 85.7 100 48.2 100 100 100 100 100 100 100 100 100 100 93.4%

Tech
Pages

Avg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ec
al
l T4 100 100 3 80 100 100 17.4 84.6 65 100 28.2 33.1 31.7 100 100 100 53.6 100 100 25.2 69.18%

T5 100 100 18.9 80 39.15 100 17.6 92.3 65 49.9 37 45.5 48.6 100 85.7 100 96.4 100 100 92.6 72.46%

T6 100 100 100 80 100 100 10.8 92.3 65 100 44.3 33.8 100 100 85.7 100 96.4 100 100 92.6 83.53%

5 Conclusion
Despite the availability of a number of best practices, e.g., REST principles, and
a plethora of software components and technologies, discovering and exploiting
Web APIs requires a significant amount of manual labour. Notably developers
need to devote efforts to interacting with general purpose search engines, fil-
tering a considerable number of irrelevant results, browsing some of the results
obtained and eventually reading and interpreting the Web pages documenting
the technical details of the APIs in order to develop custom tailored clients.

In an attempt to provide further automation while carrying out these activ-
ities in this paper we have presented an approach for extracting automatically
relevant technical information from Web pages documenting APIs. Notably, we
have devised two algorithms that automatically and accurately extract Web APIs
features such as operation names, operation descriptions or URI templates from
Web pages documenting APIs adopting both RPC-style interfaces or RESTful
interfaces. We have manually generated a detailed evaluation dataset which we
have used to test and compare our approach. The evaluation results show that
we achieved a high precision and recall–around 90% in both cases–outperforming
state of the art information extraction algorithms.

In our future work we plan to apply our algorithms over a large scale Web
crawl in order to develop a fully-fledged Web APIs search engine based on the
features extracted. This work is expected to eventually support a greater search
accuracy as well as finer grain discovery support than what is currently available
nowadays.

References

1. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

2. Erl, T.: SOA Principles of Service Design. The Prentice Hall Service-Oriented
Computing Series. Prentice Hall (July 2007)

3. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services for
the Web of Data. Journal of Universal Computer Science 16(13) (2010) 1694–1719

4. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating Web APIs on the
World Wide Web. In: European Conference on Web Services (ECOWS), Ayia
Napa, Cyprus (2010)

5. Lin, C., He, Y., Pedrinaci, C., Domingue, J.: Feature lda: a supervised topic model
for automatic detection of web api documentations from the web. In: The 11th
International Semantic Web Conference (ISWC), Boston, USA (2012)

6. Pedrinaci, C., Domingue, J., Sheth, A.: Semantic Web Services. In: Handbook on
Semantic Web Technologies. Volume Semantic Web Applications. Springer (2010)

7. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc. (May 2007)
8. Sheth, A., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and

Easier-to-Use Services and Mashups. Internet Computing, IEEE 11(6) (Nov 2007)
91 – 94

9. Kopecky, J., Vitvar, T., Pedrinaci, C., Maleshkova, M.: RESTful Services with
Lightweight Machine-readable Descriptions and Semantic Annotations. In: REST:
From Research to Practice. Springer (2011)

10. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted
classification based approach to search and rank web apis. In: ICWS ’08: Proceed-
ings of the 2008 IEEE International Conference on Web Services, Washington, DC,
USA, IEEE Computer Society (2008) 177–184

11. Steinmetz, N., Lausen, H., Brunner, M.: Web service search on large scale. In: Pro-
ceedings of the 7th International Joint Conference on Service-Oriented Computing.
ICSOC-ServiceWave ’09, Berlin, Heidelberg, Springer-Verlag (2009) 437–444

12. Lin, S., Ho, J.: Discovering informative content blocks from Web documents.
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining (2002) 588–593

13. Debnath, S., Mitra, P., Pal, N.: Automatic Identification of Informative Sections
of Web Pages. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGI-
NEERING 17(9) (2005)

14. Chakrabarti, D., Kumar, R., Punera, K.: Page-level template detection via isotonic
smoothing. Proceedings of the 16th international conference on World Wide Web
(2007) 61–70

15. Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., Crespo, A.: Extracting
Semistructured Information from the Web. In Proceedings of the Workshop on
Management of Semistructured Data (May 1997)

16. Cai, D., Yu, S., Wen, J.: Vips: a visionbased page segmentation algorithm. Tech-
nical Report MSR-TR-2003-79, Microsoft Research (2003)

17. Liu, Y., Wang, Q., Wang, Q., Liu, Y., Wei, L.: An Adaptive Scoring
Method for Block Importance Learning. In: Web Intelligence, 2006. WI 2006.
IEEE/WIC/ACM International Conference on. (2006) 761–764

18. Wan, X., Yang, J., Xiao, J.: Block-based similarity search on the Web using
manifold-ranking. In: Semantic Web: Research and Applications, Proceedings,
Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China (2006)
60–71

19. Kang, J., Yang, J., Choi, J.: Repetition-based Web Page Segmentation by De-
tecting Tag Patterns for Small-Screen Devices. IEEE Transaction on Consumer
Electronics 56(2) (May 2010)

20. Vineel, G.: Web page DOM node characterization and its application to page
segmentation. In: Internet Multimedia Services Architecture and Applications
(IMSAA), 2009 IEEE International Conference on. (2009) 1–6

