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Abstract. Future Internet applications are becoming increasingly dy-
namic and can be composed of a wide range of services controlled and
hosted by different stakeholders. This paper addresses the challenge of
resource provisioning for applications that have specific Quality of Ser-
vice (QoS) requirements and where consumers of Cloud resources want to
avoid lock-in to any specific Infrastructure-as-a-Service (IaaS) provider.
Application modelling can be used to predict performance of applica-
tions given certain resources, workload and configuration. However, ap-
plication modelling is a significant challenge for Cloud consumers due to
the limited and varying information IaaS providers disclose about infras-
tructure resources. We demonstrate in this paper how Dwarf benchmarks
can be used as a uniform and informative way of characterising compute
resources, which is successful for application modelling, achieving high
prediction accuracy on a range of applications.
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1 Introduction

Cloud computing offers the potential to dramatically reduce the cost of soft-
ware services through the commoditisation of information technology assets and
on-demand usage patterns. However, the complexity of determining Quality of
Service (QoS) requirements for applications in such environments introduces sig-
nificant market inefficiencies and has driven the emergence of service engineering
tools for modelling, analysing and planning the QoS of service based applications
deployed within the Cloud [1,2].

In this paper we address the problems of resource provisioning for Software-
as-a-Service (SaaS) providers with guarantees on QoS whilst avoiding lock-in to
any particular Infrastructure-as-a-Service (IaaS) provider. This is a significant
challenge for applications deployed across federated Clouds as the resource of-
ferings by different IaaS providers vary significantly. In practice, the approach to
determining resources required for a particular application is often ad hoc, most
likely requiring SaaS providers to run their application on different resources (on
different TaaS providers) and observe the performance. This can be a very time
consuming and costly exercise, which typically leads to relying on a single IaaS



provider. Dwarf benchmarks have been proposed as a way to describe compute
resources in a uniform manner across different IaaS providers whilst also being
intended to be sufficiently information-rich to be used directly in application
modelling [3].

This paper demonstrates how the Dwarf benchmarks can be used in applica-
tion modelling to successfully predict the performance of several common multi-
media and scientific applications. This use of the Dwarf benchmarks, therefore,
enables transferability of service engineering tools to different TaaS providers,
opening up the Cloud market and helps SaaS and PaaS providers exploit the
potential for multi-vendor Clouds.

2 Background

2.1 Benchmarking Compute Resources

Measuring the performance of computers by benchmarking is a well-established
activity and a large collection of benchmarks exists, such as SPEC, EEMBC,
LINPACK and LAPACK. The issue with such benchmarks, which are not application-
focused, is that the results can be uninformative and misleading [4,5].

Colella [6] proposed a Dwarf taxonomy for benchmarking aiming to capture
known computational patterns. The Dwarf taxonomy was furthered developed at
UC Berkeley [7,8], now comprising 13 Dwarfs: Finite State Machines, Combina-
torial, Graph Traversal, Unstructured & Structured Grids, Dense & Sparse Ma-
trices, Spectral, Dynamic Programming, Particles, MapReduce (Monte Carlo),
Backtrack and Branch & Bound, and Graphical Models.

Initial results in [3] indicate that using this taxonomy of Dwarfs is a useful
way to describe Cloud compute resources as they expose non-obvious differences
in resources deemed to be the same by the IaaS provider.

2.2 Resource Estimation and Application Modelling

One of the motivations of the work discussed in this paper is helping Cloud
consumers determine which IaaS provider(s) and specific resources are required
to run their applications in the Cloud with particular QoS constraints. This
work fits particularly well within the service engineering tools that a Platform-
as-a-Service (PaaS) provider can offer as part of the wider role of helping the
application provider develop, deploy and manage their application.

Application modelling can be used to predict the performance of an appli-
cation given some specific resources. A generic application model takes as input
a description of the expected static application workload, a description of the
resources (physical or virtual) used to execute the application (including the
resource reliability) and a description of any expected user interactions which
contribute to the workload or otherwise affect the process [3]. Using a mathe-
matical process, the model makes a prediction of the application performance.

We focus here on computing the core processing time of components in such a
model. In related research, the work described in [9] achieved this by performing



extensive benchmarking of the application on the same hardware the application
would be run on. These benchmarks, therefore, could not support new hardware,
nor be transferable to another TaaS provider.

3 Method

We investigate the use of Dwarf benchmark scores to characterise computational
resources, which are used as input to an application model to predict the appli-
cation performance. Using the Dwarf benchmark scores, we achieve a uniform
description of compute resources, which we hypothesise will allow prediction of
application performance on unseen resources.

3.1 Benchmark Suite

The benchmark suite we have adopted is described in [3], and therefore not all
details are repeated here. The suite currently comprises eight out of the thir-
teen Dwarfs suggested by Asanovic et al. [8]: Structured & Unstructured Grid,
MapReduce, Dense & Sparse Matrix, Graph Traversal, Particle and Spectral.

To calculate the Dwarf scores, we have used the as Phillips et al. [3]. Each
Dwarf in the benchmark suite is executed multiple times to obtain a mean per-
formance metric that is used to calculate the Dwart score [3]. Thus, giving a
numerical performance characterisation of a compute resource in the form of
eight Dwarf scores.

3.2 Applications

Similarly to Phillips et al. [3] we make use of the following three applications
for this investigation: Gromacs v. 4.0.7 (molecular dynamics), FFmpeg v. 0.6.2
(video transcoding) and Blender v. 2.49.2 (3D rendering).

For Gromacs, two different workloads have been chosen. One configuration
uses a spherical cut-off for the electrostatic calculations and the other one uses
the Particle Mesh Ewald (PME) method. We observe in [3] that these algo-
rithms do correlate differently with the different Dwarfs, although computing an
approximation of the same physical property.

The chosen FFmpeg computation is the transcoding of the “Big Buck Bunny”
video [10] from M4V (h264 encoded) to OGV (libtheora encoded), and changing
the frame size from 640x360 to 480x270. The sound is also changed from AAC
to FLAC. As in [3], we have used Blender to render a bespoke animation small
enough to process on resources constrained to 1GB RAM.

3.3 Computational Resources

We have conducted this investigation as part of an experiment in the BonFIRE
project [11], which offers a multi-site testbed of heterogeneous Cloud resources
across Europe for Internet of Services research. At the time, BonFIRE offered



four infrastructure testbeds: EPCC, HLRS, IBBT and Inria This investigation
also includes five public Cloud providers, all of which have different resource
offerings and ways of describing them; Amazon EC2, Rackspace, CloudSigma
(Ziirich site), ElasticHosts and GoGrid.

The BonFIRE testbeds use a common labelling of small, medium, large, etc.,
which have defined number of cores and RAM size. However, the 100% of the
CPU is given, which means the performance of resources with the same label
can vary significantly between the testbeds due to heterogeneous hardware [3].
Amazon EC2 also operates with similar labels, but defines CPU performance
in ECUs as well as the number of virtual cores and RAM size. Therefore, the
performance of resources with the same ECUs should be the same even if they
are heterogeneous as Amazon EC2 scale the CPU speed accordingly. This is not
the case, however, as demonstrated in [3], as characterising the performance of
a compute resource based on one parameter is not sufficient.

Other Cloud providers offer more fine-grained specifications of the VM in-
stances, such as ElasticHosts, allowing you to determine exactly the virtual CPU
speed, number of virtual cores, RAM size and storage space. CloudSigma also
offers a similar scaling of CPU speed, and for both providers, this is a guaranteed
minimum. Rackspace and GoGrid do not allow control of the CPU properties,
but offer different server options that vary in RAM and disk space. Since the
Dwarf benchmarks are invariant to the number of cores and RAM size [3], we
effectively only make use of one resource from each of these providers.

To increase the number of data points for statistical analysis and to build
better mathematical prediction models, we have also included five different phys-
ical hosts we had access to in-house. For these machines, we have executed the
benchmarks and applications on a Ubuntu Maverick VM running on VM Ware
4.0 with 1GB RAM. We have used an Ubuntu Maverick image on all the public
Cloud providers, and in BonFIRE a Debian Squeeze image. In total, obtaining
23 unique computational resources on which benchmarks and applications have
been executed.

3.4 Modelling Techniques and Validation Method

As discussed in Sect. 2.2, we focus on the challenge of calculating the core com-
putation time and ignore the problems of varying application workload and user
interactions. We have investigated several mathematical models/functions for
predicting the performance of the different applications, some based on a single
Dwarf, a combination of two Dwarfs and a combination of all Dwarfs.

Based on a single Dwarf, we have investigated 1°! to 5" order functions to
determine if there are any performance gains in increasing the complexity of the
function. For the sake of brevity, we only report results with a 1st order (linear)
function and 5th order polynomial.

Most applications will perform different types of computations and are, there-
fore, unlikely to be accurately modelled by just a single Dwarf. Therefore, we
have investigated a linear combination of two Dwarfs to determine any gain in



accuracy. The selection of Dwarfs for a given application could be done in differ-
ent ways; for example, based on knowledge about the application, code profiling
or according to correlation analysis. We present results for the latter here.

The final model we have investigated is the Moore-Penrose inverse matrix
calculation [12], which can take as input all Dwarfs. Each mathematical pre-
diction model is built on training data, to create a function that takes Dwarf
score(s) as input and outputs application performance. To make best use of the
data available, we conduct leave-one-out validation and report the mean per-
centage error. For each validation step (equal to the number of data points), the
percentage error ¢ is calculated as:

_m—p]
m
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Where m is the real measured application performance and p is the predicted
performance. The performance for all applications in this investigation is taken
as the execution time.

4 Empirical Results

All the mathematical functions examined here are able to successfully predict
the performance of all the applications using the Dwarf scores as characterisa-
tions of the compute resources. The accuracy varies with the complexity of the
mathematical function, as expected. However, even with a simple linear regres-
sion based on a single Dwarf, the mean prediction error is as low as 16.72%, as
seen in Table 1 (best results highlighted in bold). The improvements achieved
with the 5" order function are significant on all applications; as much as 13.01
percentage points on Blender.

The best results obtained with the 1% order function are achieved with the
Dwarfs that are correlated very highly with the application, which is to be ex-
pected. However, the lowest error achieved with the 5! order function is with a
different Dwarf compared with the 15¢ order function for all but one application.

A linear combination of the two highest correlated Dwarfs can improve the
prediction accuracy compared with using only one Dwarf, as seen in Table 2.
However, not in all cases. The 5" order function based on one Dwarf does give
better results on FFmpeg and Blender (over 10 percentage points lower).

More complex combinations of two Dwarfs may yield better results still, as
for the results with the Moore-Penrose inverse matrix. The mean error rates
with this function is in the range 4.70% - 6.47%. These results are encourag-
ing, especially considering the statistically low number of data points for this
investigation (23 unique compute resources) and that the benchmark suite only
considers computational benchmarks, which does not include six Dwarfs that
represent patterns that could further improve these predictions.



Table 1. Mean percentage error of the 1°* and 5" order functions on single Dwarfs.

Gromacs cut-off Gromacs PME FFmpeg Blender
Dwarf Linear 5th order Linear 5th order Linear 5th order Linear 5th order

Structured Grid 19.60 15.54 19.10 14.84 22.08 8.63 25.07 15.44

Unstructured Grid 20.80 15.50 18.86 13.72 20.70 7.91 22.24 9.23

MapReduce 17.98 15.37 16.72 13.50 18.04 7.61 2382 1441

Dense Matrix 19.15 17.24 18.06 15.36 17.93 9.25 22.59 15.17

Sparse Matrix  18.63 14.11 18.57  13.85  19.47 7.48 25.19 14.73

Graph Traversal 25.85 20.65 25.37  20.73 19.80 9.71 29.23 22.17

Particle 18.36 16.00 18.76  15.74 20.16 8.07 27.68 17.43

Spectral 25.16 17.00 25.20 15.79 24.89 9.81 29.05 10.83

Table 2. Overview of prediction results (mean percentage error).

Application 1 Dwarf 1 Dwarf 2 Dwarfs  All Dwarfs

1torder 5 order
Gromacs cut-off 17.98 14.11 11.80 5.79
Gromacs PME 16.72 13.72 15.02 4.70
FFmpeg 17.93 7.61 22.29 5.24
Blender 22.24 9.23 23.20 6.47

5 Conclusions and Further Work

Based on an investigation in BonFIRE and five public Clouds, we have demon-
strated that the characterisation of compute resources in the form of Dwarf
benchmark scores is indeed successful for application modelling to predict the
performance of two multimedia applications (Transcoding and rendering) and a
scientific application (molecular dynamics).

Ultimately we could imagine each IaaS provider describing the performance
of their resources in terms of a standard set of benchmark scores, such as the
Dwarfs, or even agreeing SLAs in such terms. Alternatively, a PaaS provider may
measure the performance of many IaaS providers, adding to one of the possible
services that could be offered. This would avoid consumers of Cloud resources
being locked in to a particular TaaS provider, which opens up the Cloud market
and helps SaaS and PaaS providers exploit the potential for multi-vendor Clouds.

Further work on this would benefit from extending the benchmark suite by
implementing the remaining five Dwarfs and addressing the challenge of using



the Dwarfs in modelling and predicting application performance with varying
workloads and taking into account the resource reliability in the Cloud from
both a computational and networking perspective. Disk and memory perfor-
mance are also important factors to be included in the future.
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