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Abstract. We study propagation of the RegularGcc global con-
straint. This ensures that each row of a matrix of decision variables
satisfies a Regular constraint, and each column satisfies a Gcc con-
straint. On the negative side, we prove that propagation is NP-hard
even under some strong restrictions (e.g. just 3 values, just 4 states in
the automaton, or just 5 columns to the matrix). On the positive side,
we identify two cases where propagation is fixed parameter tractable. In
addition, we show how to improve propagation over a simple decompo-
sition into separate Regular and Gcc constraints by identifying some
necessary but insufficient conditions for a solution. We enforce these
conditions with some additional weighted row automata. Experimental
results demonstrate the potential of these methods on some standard
benchmark problems.

1 Introduction

Global constraints can be used to model and reason about commonly found sub-
structures. Many such models contain matrices of decision variables [1–3]. Matrix
constraints are global constraints that apply to such matrices [4]. For example,
the RegularGcc matrix constraint can be used to model rostering problems.
It ensures each row of the matrix satisfies a Regular constraint (representing
the shift rules) and each column satisfies a Gcc constraint (representing the
required capacities for each shift). We prove here that propagating the Regu-

larGcc constraint is costly, even under very severe restrictions. Therefore, as in
[5], we look for partial methods that only enforce a limited level of consistency.
These methods are based on necessary conditions that improve propagation over
the decomposition into separate Regular constraints on the rows and separate
Gcc constraints on the columns. These necessary conditions depend on extract-
ing several string properties from the rows. We enforce these necessary conditions
by constraining the rows with additional automaton constraints. Unfortunately,
when the number of columns increases, these automata increase in size quite
drastically. By using weighted automata, we show that we can limit the increase
in size. Finally, we show that this approach can be used in a more general setting
where we have a matrix with multicostRegular and Gcc constraints.
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2 Intractable cases

We first prove that propagating the RegularGcc matrix constraint is in-
tractable even under strong conditions. More precisely, we show that enforcing
bound consistency (BC) is NP-hard. This justifies why we later look for partial
propagation methods based on some necessary (but not sufficient) conditions.

Theorem 1. Enforcing BC on RegularGcc is NP-hard, already for Regu-

lar constraints given by a DFA of size 4, Gcc constraints specifying only an
upper bound on the number of occurrences of one particular value, and just 3
values.

Proof: Reduction from 3-SAT. Let ϕ = γ1 ∧ · · · ∧ γC be a Boolean formula
in CNF on propositional variables p1, . . . , pR. We construct an R × C matrix
M of decision variables taking their values from {−1, 0, 1}, where each row
1 ≤ r ≤ R corresponds to a propositional variable pr and each column 1 ≤ c ≤ C

corresponds to a clause γc.
To initialize the domain of variables in the matrix, we do the following for

each clause γi = li1∨ li2∨ li3. We set Mr,i = 0 for all propositions pr not occurring
in γi. For j ∈ {1, 2, 3} we set Mi,k ∈ {0, 1} if lij = pk and we set Mi,k ∈ {0,−1}

if lij = ¬pk.
On each column we put the Gcc constraint that states that the value 0

occurs at most R − 1 times. On each row we put the Regular constraint that
states that besides 0’s either only 1’s or only −1’s occur.

We show that this instance of RegularGcc has a solution iff ϕ is satisfiable.
(⇒) We create a satisfying assignment I for ϕ as follows. For each pr, if in

row r occurs at least one 1, we let I(pr) = ⊤, otherwise we let I(pr) = ⊥ (the
choice of I(pr) when only 0’s occur in row r is arbitrary). Since in each column
c there occur only R− 1 many 0’s, we know that there exists some pi for which
Mi,c 6= 0 and thus I(lci ) = ⊤. Therefore I |= γc.

(⇐) Let I be an assignment satisfying ϕ. We can instantiate M as follows.
For each clause γc = lc1 ∨ lc2 ∨ lc3, for j ∈ {1, 2, 3} we do the following. If lcj = pk
and I(pk) = ⊤, we let Mk,c = 1. If lcj = ¬pk and I(pk) = ⊥, we let Mk,c = −1.
Otherwise, we let Mk,c = 0. Since I is functional each Regular constraint on
the rows is satisfied. Also, since at least one literal is satisfied in each clause,
each column contains at least one value that is not 0, so the Gcc constraints
are satisfied.

Automaton A in Fig. 1 witnesses that this Regular constraint can be en-
forced by a DFA of size 4. Note that this proof also works for any other restriction
on Regular constraints that can enforce that, for two given values, in any word
at most one of these values occurs. �

In fact, since we only bound the number of one particular value in the Gcc

constraint, the above proof also works for the RegularAmong constraint.
A common type of Regular constraint in aRegularGccmatrix constraint

is a Stretch constraint. This constrains the length of any stretch of values (e.g.
there are at most 3 night shifts in a row) and the possible transitions (e.g. a night
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Fig. 1. Automaton A.

shift can only be followed by a day off). Unfortunately, even this special case is
intractable to propagate.

Theorem 2. Enforcing BC on StretchGcc is NP-hard, already for just 3
values.

Proof: Reduction from the Exact Cover problem. We are given F =
{S1, . . . , Sn} with

⋃

i Si = U . We ask if there is some subset C ⊆ F with
⋃

c∈C c = U and c ∩ c′ = ∅ for all distinct c, c′ ∈ C. W.l.o.g. we assume U

contains the integers 1 to |U |.
We construct a |F | × |U | matrix M, of decision variables taking their value

in {−1, 0, 1}. For each row 1 ≤ r ≤ |F | and each value 1 ≤ i ≤ |U | we do the
following. If i ∈ Sr, we let Mr,i ∈ {0, 1}. If i 6∈ Sr, we let Mr,i ∈ {−1, 0}.

On each column we put the Gcc constraint that states that the value 1
occurs exactly once. On each row we put the Stretch constraint stating that
each stretch of 0’s must have a length of at least |U |.

We show that this instance of StretchGcc has a solution iff there exists
an exact cover.

(⇒) Take a solution for our instance. We let C be the set of all Ur for which
row r in the solution contains only −1’s and 1’s. Obviously C ⊆ F . In order
to show that

⋃

c∈C = U , it suffices to show that U ⊆
⋃

c∈C . Take an arbitrary
i ∈ U . Since our solution contains at least one 1 in each column, we know there
is some c ∈ C such that i ∈ c. We also show that all distinct c, c′ ∈ C are
disjoint. Take arbitrary c, c′ ∈ C such that c 6= c′. Assume j ∈ c∩ c′. This means
that column j in the solution would contain two 1’s, which contradicts the Gcc

constraints on the columns.
(⇐) Let C ⊆ F be an exact cover. We fill M as follows. For each row

1 ≤ r ≤ |F |, we do the following. If Sr ∈ C, fill the row with −1’s and 1’s (this
can be done only in one way). Otherwise, fill row r with only 0’s. Obviously, the
Stretch constraints on the rows are satisfied. Also, since C is an exact cover,
we know that for each 1 ≤ i ≤ |U | there is exactly one row r such that Mr,i = 1.
Thus the Gcc constraints on the columns are satisfied. �

This proof also works for the Regular constraint accepting only words that
contain either only 0’s or only −1’s and 1’s, and therefore for any restriction on
Regular constraints that can enforce permitted (or forbidden) words of length
two (such as the meta constraint Slide).

Corollary 1. Enforcing BC on SlideGcc is NP-hard, already for Slide con-
straints based on constraints of arity 2 and just 3 values.



Another common type of Regular constraint in a RegularGcc matrix
constraint is a Sequence constraint. This limits the number of values of a
particular type that occur in each sequence (e.g. at most 3 shifts in every 7
can be night shifts). This case is unfortunately also intractable to propagate.
We prove that both enforcing domain consistency (DC) and enforcing bound
consistency (BC) are NP-hard even if the matrix has just a few columns.

Theorem 3. Enforcing DC on SequenceGcc is NP-hard, already for just 5
columns.

Proof: Reduction from the 3D Matching problem. The proof is inspired by
[6]. Given are three pair-wise disjoint sets W , Z, Y of equal size q and a set
M ⊆ W × Z × Y , |M | = m. The question is if there exists M ′ ⊆ M such that
|M ′| = q and no two different elements of M ′ agree in any coordinate.

Assume M = {s1, . . . , sm}. We create a m × 5 matrix M of decision
variables taking their value in {0, t, w1, . . . , wq, z1, . . . , zq, y1, . . . , yq}. For each
(wi, zi, yi) = si we let Mi,1 ∈ {0, wi}, Mi,2 ∈ {0, t}, Mi,3 ∈ {0, zi}, Mi,4 ∈
{0, t}, and Mi,5 ∈ {0, yi}.

We constrain each row i with the constraint Sequence(Mi, 1, 2, 2, {0}), stat-
ing that in each sequence of length 2, at least one 0 occurs. On columns 1 (resp.
3 and 5) we put the Gcc constraint stating that each value in W (resp. Z and
Y ) occurs at least once, and that at least m− q many 0’s occur. On columns 2
and 4 we put the Gcc constraint stating that at least q many t’s occur, and at
least m− q many 0’s.

We show that this instance of SequenceGcc has a solution iff there exists
a 3D matching.

(⇒) Take a solution for SequenceGcc. We know column 2 contains exactly
m− q many t’s, and q many 0’s. For each occurrence of a t in column 2 at row
i, columns 1 and 3 contain a 0 at row i (by the Sequence constraint). Then,
by the Gcc constraint, for all rows j where column 2 contains a 0, columns 1
and 3 contain a non-0 at row j, and thus (by Sequence) column 4 contains a
0 at row j. By a similar argument, we know that in the remaining rows column
4 contains t’s. Continuing this argument for column 5, we know that in the
solution there are q many rows taking values (wi, 0, zi, 0, yi) and m − q rows
taking values (0, t, 0, t, 0). By the Gcc constraints, we know that each value
w ∈ W occurs exactly once, as well as each value z ∈ Z and each y ∈ Y .
Since the possible values were chosen by taking elements from M , we know that
M ′ = {si | Mi 6= (0, t, 0, t, 0)} is a 3D matching.

(⇐) Let M ′ ⊆ M be a 3D matching. We can fill M as follows. For each
(wi, zi, yi) = si ∈ M ′, we let Mi = (wi, 0, zi, 0, yi). For each si ∈ M\M ′ we let
Mi = (0, t, 0, t, 0). Obviously each row satisfies the Sequence constraint. Since
|M ′| = q and each value w ∈ W occurs exactly once in the first coordinate of
M ′ (and similarly for values z ∈ Z and the second coordinate, and y ∈ Y and
the third coordinate), we have that each column satisfies the corresponding Gcc

constraint. �
Note that the Sequence constraints on all rows are the same, but the Gcc

constraints on the columns differ.



Theorem 4. Enforcing BC on SequenceGcc is NP-hard, already for just 5
columns.

Proof: The proof is similar to the proof of Theorem 3, and also inspired by [6].

Let cwi (resp. czi, cyi) be the number of occurrences of the value wi

(resp. zi, yi) in M . For each value wi (resp. zi, yi) we create cwi − 1 (resp.
czi − 1, cyi − 1) clones of it. We now define the total order on values as U =

[−w1
q , . . . ,−w

cwq−1
q , . . . ,−w1

1, . . . ,−wcw1−1
1 ,−z1q , . . . ,−z

czq−1
q , . . . ,−z11, . . . ,

−zcz1−1
1 ,−y1q , . . . ,−y

cyq−1
q , . . . ,−y11, . . . ,−y

cy1−1
1 , 0, t, y1, . . . , yq, z1, . . . , zq, w1,

. . . , wq].

We create the matrix M in a similar fashion as in the proof for
Theorem 3, with the difference that for each (wi, zi, yi) = si we let
Mi,1 ∈ [−w1

i , . . . ,−wcwi−1
i , . . . , wi], Mi,3 ∈ [−z1i , . . . ,−zczi−1

i , . . . , zi], Mi,5 ∈

[−y1i , . . . ,−y
cyi−1
i , . . . , yi], and Mi,2 ∈ [0, t] and Mi,4 ∈ [0, t].

We adapt the constraint on rows to Sequence(Mi, 1, 2, 2, [−w1
q , 0]),

stating that in each sequence of length 2, at least one value in [−w1
q , 0]

occurs. On columns 1 (resp. 3 and 5) we replace the Gcc constraint with one

stating that each value in {−w1
q , . . . ,−w

cwq−1
q , . . . ,−w1

1 , . . . ,−wcw1−1
1 } ∪

W (resp. {−z1q , . . . ,−z
czq−1
q , . . . ,−z11 , . . . ,−zcz1−1

1 } ∪ Z and

{−y1q , . . . ,−y
cyq−1
q , . . . ,−y11, . . . ,−y

cy1−1
1 } ∪ Y ) occurs at least once. We

do not change the Gcc constraints on columns 2 and 4.

We show that this instance of SequenceGcc has a solution iff there exists
a 3D matching.

(⇒) By reasoning similarly to the proof of Theorem 3 (replacing ‘0’ with ‘a
value in [−w1

q , 0]’ when reasoning about columns 1, 3 and 5), we know that in the
solution there are q many rows taking values (wi, 0, zi, 0, yi), possibly containing
clones, and m − q rows taking values (n, t, n′, t, n′′) where n, n′, n′′ are either 0
or some clone w′

i, z
′
i, or y

′
i (respectively).

Furthermore, by the Gcc constraint on the odd columns, we know that each
value in {−w1

q , . . . ,−w
cwq−1
q , wq} must occur exactly once. Since these values

occur only in the domains of Mi,1 for the cwq many si ∈ M that contain wq,

we know that each of these Mi,1 must take a value in {−w1
q , . . . ,−w

cwq−1
q , wq}.

Then, by the Gcc constraint on the odd columns, we know that each
value in {−w1

q−1, . . . ,−w
cwq−1−1
q−1 , wq−1} must occur exactly once. These val-

ues occur only in the domains of Mi,1 for the si ∈ M that contain wq−1 or
wq. However, the Mi,1 for the si ∈ M that contain wq must take values in

{−w1
q , . . . ,−w

cwq−1
q , wq}. Therefore, the Mi,1 for the si ∈ M that contain wq−1

must take a value in {−w1
q−1, . . . ,−w

cwq−1−1
q−1 , wq−1}.

Repeating this argument recursively until reaching the value t, we can restrict
the effective domain of the odd positions of Mi for si = (wi, zi, yi) ∈ M to
Mi,1 ∈ {−w1

i , . . . ,−wcwi−1
i , wi}, Mi,3 ∈ {−z1i , . . . ,−zczi−1

i , zi}, and Mi,5 ∈

{−y1i , . . . ,−y
cyi−1
i , yi}.

Therefore, we know that each row Mi for si = (wi, zi, yi) ∈ M either has
the values (wi, 0, zi, 0, yi) or the values (w

′
i, t, z

′
i, t, y

′
i) for some clones w′

i, z
′
i, y

′
i of



wi, zi, yi. Now, by the Gcc constraints, we know that each value w ∈ W occurs
exactly once, as well as each value z ∈ Z and each y ∈ Y . Since the possible
values were chosen by taking elements from M , we know that M ′ = {si | Mi =
(w, 0, z, 0, y), w ∈ W, z ∈ Z, y ∈ Y } is a 3D matching.

(⇐) Let M ′ ⊆ M be a 3D matching. We can fill M as follows. For each
(wi, zi, yi) = si ∈ M ′, we let Mi = (wi, 0, zi, 0, yi). For each (wi, zi, yi) = si ∈
M\M ′ we let Mi = (w′

i, t, z
′
i, t, y

′
i) for some clones w′

i, z
′
i, y

′
i of wi, zi, yi that

have not been used before in the process of filling M. We know there are enough
different clones for this procedure. It is easy to verify that this instantiation of
M satisfies all the constraints. �

3 Fixed parameter tractable cases

We have seen that propagating the RegularGcc matrix constraint is NP-hard
even under the strong restriction that either the number of values or the number
of columns is bounded. However, if we consider Regular2 and we bound the
number of columns and the number of states in the row and column automata
we at last have a case in which propagation is polynomial.

Theorem 5. Enforcing DC on Regular2 is fixed parameter tractable in k =
C · |Q| · (log |Q′|), where C is the number of columns, |Q| is the size of the row
automata, and |Q′| is the size of the column automata.

Proof: We assume w.l.o.g. that all row constraints are the same, and all column
constraints are the same. We can encode the matrix constraint on a R × C

matrix M in a single DFA on the matrix stretched out to a single sequence of
variables M1,1, . . . ,M1,C , . . . ,MR,1, . . . ,MR,C . The state set of the automaton
is Q×Q′|C|. In each state, the automaton keeps track of the current state q′ ∈ Q′

for each column c, as well as the current state q ∈ Q in the current row. The size
of the automaton is O(|Q| · 2C(log |Q|)). Enforcing DC on a Regular constraint
takes time polynomial in the size of the automaton, so our algorithm runs in
fixed parameter tractable time. �

We also get tractability if we bound the number of rows and the size of the
automata.

Theorem 6. Enforcing DC on RegularGcc is fixed parameter tractable in
k = r(logQ) where r is the number of rows and Q the maximum number of
states in any row automaton.

Proof: This follows directly from Observation 2 in [4], and the fact that Gcc

over a sequence with fixed size can be encoded in a DFA with polynomially many
states. �

On the other hand, just bounding the number of rows is not enough to give
tractability.

Theorem 7. Enforcing BC on RegularGcc is W[2]-hard in k = R the num-
ber of rows, even with just 2 values.



Proof: This proof is similar to the proof of Theorem 3 in [4]. We reduce from
p-Hitting-Set. Let H = (V,E) a hypergraph, where V = {v1, . . . , v|V |} and
E = {e1, . . . , e|E|}. We ask if there is a hitting set S ⊆ V in H of cardinality k.

We construct an instance M of RegularGcc with |V | + |E| columns and
k rows on the alphabet {0, 1}. The Regular constraint accepts |V | different
words w1, . . . , w|V | of length |V | + |E|. For any word wv, the vth value is 1,
and the remainder of the first |V | values is 0. Also, for any word wv and any
1 ≤ j ≤ |E|, the jth value of wv is 1 if v ∈ ej , and is 0 otherwise. The Gcc

constraints we put on the columns are as follows. In the first |V | columns we
require exactly one 1. In the remaining columns, we require at least one 1.

In this reduction, each row corresponds to one vertex that is being chosen for
inclusion in the hitting set, and each column after the first |V | to one hyperedge.

The Gcc constraints on the first |V | columns ensure that no vertex is chosen
in two rows. The constraints on the last |E| columns ensure that each hyperedge
contains a vertex chosen for the hitting set. If there is a hyperedge all vertices
of which are not included in the hitting set, the column corresponding to this
hyperedge will contain 0’s only, violating the Gcc constraint of that column.

We show that there exists a hitting set S in H of cardinality k iff the Reg-

ularGcc matrix constraint has a solution.
(⇒) Assume there exists a hitting set S in H of size k. We construct an

assignment to RegularGcc by matching one vertex v ∈ S with each row (in
any manner). If row i is matched to vertex v, we assign word wv to row i. The
fact that S contains k different vertices v ensures that k different words wv are
used. Also, since S is a hitting set, we know that for each hyperedge ej there is
at least one v ∈ ej ∩S, and so each of the last |E| columns contains at least one
1. Thus the Gcc constraints are satisfied.

(⇐) Suppose the RegularGcc matrix constraint has a solution. We con-
struct a hitting set S by taking all v such that wv is a row in the solution. By the
Gcc constraints we know that the solution contains k different words wv, so S

is of size k. Now, to derive the contrary, assume there exists a hyperedge ej ∈ E

such that S ∩ ej = ∅. Then the column corresponding to ej (column |V | + j)
contains only 0’s. This violates Gcc on this column, which is a contradiction. �

Note that the Gcc constraints in the above proof can be expressed with Reg-

ular constraints of bounded size as well, which gives us the following corollary.

Corollary 2. Enforcing BC on the Regular2 matrix constraint is W[2]-hard
in k the number of rows, even with just 2 values.

Another special case that is intractable is when we repace the Gcc constraint
on the columns with a simpler sum constraint.

Theorem 8. Enforcing BC on the RegularSum matrix constraint is W[2]-
hard in k the number of rows, even with just 3 values.

Proof: (Sketch) The proof is similar to the proof of Theorem 7 and the proof
of Theorem 3 in [4]. We reduce from p-Hitting-Set and construct a matrix
constraint as in the proof of Theorem 7, with the following differences. The



first |V | columns we fill with −1’s instead of 1’s. We can then replace the Gcc

constraints on these columns with the Sum constraint requiring a sum of at
least −1. The Gcc constraints on the last |E| columns can be replaced with
the Sum constraint requiring a sum of at least 1. The arguments in the proof of
Theorem 7 now hold for this instance of RegularSum. �

Note that this result is strictly stronger than the W[1]-hardness proof of
enforcing BC on RegularSum in [4].

4 Some necessary conditions

Motivated by these rather negative complexity results, we investigate how to im-
prove propagation over a simple decomposition into separateRegular andGcc

constraints by means of deriving necessary conditions based on string properties.
In fact, we will show how to extend the method of [5] to the (decomposed) set-
ting of multicostRegular constraints on the rows andGcc constraints on the
columns. This method is based on a double counting argument. Using automata
constraints we extract several string properties from the rows. For these string
properties, we derive lower and upper bounds based on the Gcc constraints on
the columns. This allows us to derive necessary constraints relating the bounds
to the corresponding string properties.

We start with some preliminary definitions needed for our exposition. The
multicostRegular global constraint [7] is defined as follows. Given a sequence
X = (x1, x2, . . . , xn) of finite domain decision variables and a deterministic finite
automaton A = (Q, V,∆, s, F ), the constraint Regular(X,A) holds iff X is a
word of length n over V accepted by DFA A. Given a vector Z = (z0, . . . , zR) of

bounded variables and c = (crq,v)
r∈[0...R]
q∈Q,v∈V a family of assignment cost matrices,

multicostRegular(X,Z,A, c) holds iff Regular(X,A) holds and for an ac-
cepting run q0q1 . . . qn of A on the instantiation (v0, . . . , vn) of X we have that
∑

0≤i<n c
r
qi,vi+1

= zr for all 0 ≤ r ≤ R.
For any two DFAs A1 = (Q1, V,∆1, s1, F1) and A2 = (Q2, V,∆2, s2, F2),

with corresponding c1 and c2 cost matrices over resources R = {r0, . . . , rR}, we
define the product automaton A1 ×A2 = (Q1 ×Q2, V,∆, (s1, s2), F1 × F2) and
product cost matrix c = c1 × c2 as follows.

∆((q1, q2), v) = (∆1(q1, v), ∆2(q2, v))

cr(q1,q2),v = c1,rq1,v
+ c2,rq2,v

for 0 ≤ r ≤ R

In other words, when taking the product of two weighted automata, we take the
usual cross product of the underlying automata, and add the cost matrices.

We show how to extract relevant string properties using multicostRegular

constraints on the rows. In the following, we let v ∈ V denote a value that the
decision variables can take, we let v̂, ŵi ⊆ V (for indices i ∈ N) denote a subset
of these values, we let ¬v̂ denote V \v̂, and we let Z be a set of bounded variables
representing the calculated weights. We also define the concatenation ŵ1 · . . . ·ŵm

of several ŵi as the set {w1 · · ·wm ∈ V m | wi ∈ ŵi, 1 ≤ i ≤ m}.



To extract the number of uninterrupted stretches of elements from v̂ in X

using a resource variable zr ∈ Z, we can use the weighted DFA Av̂
1 (Figure 2),

where transitions are marked with the symbol and the cost cr they consume.
For any word X , we have that multicostRegular(X,Z,Av̂

1 , c) holds for zr

the number of stretches of symbols in v̂ that occur in X .

q0start q1¬v̂, 0

v̂, 1

v̂, 0

¬v̂, 0

Fig. 2. Automaton A
v̂
1 . Transitions are marked with cost cr.

To extract whether a word w ∈ ŵ occurs in X starting at position k using a

resource variable zrk, we can use the weighted DFA Ak,ŵ
2 (Figure 3) with param-

eter k ∈ N, where transitions are marked with the symbol and the cost cr they

consume. For any wordX , we have that multicostRegular(X,Z,Ak,ŵ
2 , c) sets

zrk to true if and only if some word w ∈ ŵ occurs in X starting at position k. To
extract the total number of occurrences of words w ∈ ŵ (starting any position)
in X , we take the sum of the values of the variables zrk (for 1 ≤ k ≤ n) that
represent whether a suitable word w occurs in X starting at position k.

q0

start

. . . qk−1 qk . . . qm−1+k qm+k

q

Σ, 0 Σ, 0 Σ, 0 ŵ1, 0 ŵm−1, 0 ŵm, 1

¬ŵ1, 0
¬ŵm, 0

Σ, 0 Σ, 0

Fig. 3. Automaton A
k,ŵ
2 . Transitions are marked with cost cr.

To extract the minimum and maximum length of stretches, we can sim-
ulate counters using weights. Let A be a DFA annotated with counters d =
(d1, . . . , dm), taking their values from {0, . . . , n − 1}. We can construct a DFA
A′ of size less than or equal to nm · |A|, together with a cost matrix c for re-
sources r1, . . . , rm such that for any word w there exists an accepting run for w
on A where the counters have final values (v1, . . . , vm) if and only if there exists
an accepting run for w on A′ for (z1, . . . , zm) = (v1, . . . , vm). This can be done
straightforwardly by choosing Q×{0, . . . , n−1}m as state set for A′, and choos-
ing transitions ∆ corresponding to the update formulae for the counters. Now
c can be chosen to mimic the changes in counter values over transitions. The
automaton A′ can possibly be reduced in size by removing unreachable states
or minimizing it using other methods.

We can transform any given automaton A to extract the minimum and max-
imum length of a stretch of symbols from v̂ occurring in A on X as follows.



We annotate A with counters that represent stretchminlen(v̂, n) and stretch-
maxlen(v̂, n), as described in [5]. Then we transform this annotated automaton,
as described above, into an automaton A′ with resource variables zv̂min and
zv̂max whose values (respectively) represent the minimum and maximum length
of stretches of symbols in v̂ occurring in X .

The above automata, extracting the different string properties from rows,
can be combined with each other and with other automata by using the product
operation. By defining zero cost matrices for all resources not used explicitly in
a given automaton, we can extract several different string properties simultane-
ously with one weighted product automaton.

In this more general decomposed setting with multicostRegular con-
straints on the rows, a tractable option for propagation is the algorithm based
on a Lagrangian relaxation of the Resource Constrained Shortest Path Problem
(RCSPP) from [7]. Using weighted automata to extract string properties has
several advantages. The size of the automata is relatively low. The automata
used to extract the number of stretch occurrences are even of constant size. A
weighted automaton used to extract a string property is never larger than the
unfolding of an (unweighted) automaton annotated with counters used to extract
the same string property. Also, the use of weighted automata allows us to express
several other constraints with small automata. For instance, Gcc constraints on
the rows can be expressed by a weighted automaton with a single state. In fact,
Gcc constraints can be expressed using additional weights on other automaton
constraints already posed on the rows.

Using the above string properties, we can derive necessary conditions that
exploit the matrix structure. Consider the following CSP, similar to the one
sketched in [5]. Given three positive integers R, K, and V , we have an R ×K

matrix M of decision variables with domain {0, 1, . . . , V − 1}, and a V × K

matrix M# of cardinality variables with domain {0, 1, . . . , R}. Each row r, for
0 ≤ r < R, of M is subject to a multicostRegular constraint. For simplicity,
we assume that each row is subject to the same constraint. Each column k, for
0 ≤ k < K, of M is subject to a Gcc constraint that restricts the number
of occurrences of the values according to column k of M#. Let #v

k denote the
number of occurrences of value v, for 0 ≤ v < V , in column k of M, that is, the
cardinality variable in row v and column k of M#. For any v̂ ⊆ V , we let #v̂

k

denote
∑

v∈v̂(#
v
k).

In order to constrain the number of occurrences of words, we define the
bounds lwk(ŵ) and uwk(ŵ) on the number of occurrences of words in ŵ starting
at column k, based on the Gcc constraints on the columns, as follows:

lwk(ŵ) = max









|ŵ|−1
∑

j=0

#
ŵj

k+j



− (|ŵ| − 1) · R, 0



 (1)

uwk(ŵ) =
|ŵ|−1

min
j=0

(

#
ŵj

k+j

)

(2)



Note that definitions (1) and (2) are exactly the same as in [5]. The lower bound
(1) is the worst-case intersection of all column value occurrences. The upper
bound (2) is justified by the fact that a word cannot occur more often than its
minimally occurring letter. We now get the following necessary conditions for
each 0 ≤ k < K:

lwk(ŵ) ≤
R−1
∑

r=0

zŵr,k (3) uwk(ŵ) ≥
R−1
∑

r=0

zŵr,k (4)

where zŵr,k denotes the resource variable representing whether a word in ŵ

occurs in row r starting at column k. Since we extracted the number of word
occurrences for each starting position k, we can directly relate the bounds
derived from the column constraints with the number of word occurrences per
starting position. This results in constraints (3) and (4) potentially leading
to more propagation than their counterparts in [5]. This is illustrated in
Example 1. Note that the constraints from [5] on words occurring as a prefix or
as a suffix correspond to particular cases of constraints (3) and (4).

Example 1. Consider the scenario concerning a partially instantiated 5 × 5
matrix in Figure 4, which could occur as a node in the search tree. Let

ŵ = {2}{2}. In this scenario lwk(ŵ) are variables. Also, zŵr is a variable

such that zŵr =
∑K−1

k=0 zŵr,k. In this scenario, the bounds of the variables zŵr,k
can be automatically derived by the row automata. By using equation (3), we
can directly detect unsatisfiability in this case, since lw1(ŵ) ∈ [3, 5] and thus

lw1(ŵ) 6≤ (
∑R−1

r=0 zŵr,1) ∈ [0, 2]. Consider the counterpart of equation (3) from

[5]:
∑K−|ŵ|

k=0 lwk(ŵ) ≤
∑R−1

r=0 zŵr . Using this constraint, unsatisfiability cannot
directly be detected in this particular case.

Fig. 4. Example search tree node.

M: 1 1

1 1

1 1

lw0(ŵ) ∈ [0, 2] zŵ0,1 ∈ [0, 1] zŵ0 ∈ [0, 1]

lw1(ŵ) ∈ [3, 5] zŵ1,1 ∈ [0, 1] zŵ1 ∈ [0, 1]

lw2(ŵ) ∈ [0, 2] zŵ2,1 = 0 zŵ2 ∈ [0, 1]

lw3(ŵ) ∈ [0, 5] zŵ3,1 = 0 zŵ3 ∈ [0, 1]

lw4(ŵ) = 0 zŵ4,1 = 0 zŵ4 ∈ [0, 1]

Take note of the following case, where ŵ = v̂ for some v̂ ⊆ V . In this case,
for each 0 ≤ k < K the constraints (1) and (2) and the constraints (3) and (4)
simplify to, respectively:

lwk(v̂) = uwk(v̂) = #v̂
k (5) #v̂

k =

R−1
∑

r=0

zv̂r,k (6)

In order to constrain the number of occurrences of stretches, we define the
bounds ls+k and us+k (referring to the number of uninterrupted stretches of vari-
ables from v̂ that start in column k) and the bounds ls−k and us−k (referring to
the number of uninterrupted stretches of variables from v̂ that end in column k),



based on the Gcc constrains as follows:

ls+k = max(0,#v̂
k −#v̂

k−1) (7)

us+k = #v̂
k −max(0,#v̂

k−1 +#v̂
k −R) (8)

ls−k = max(0,#v̂
k −#v̂

k+1) (9)

us−k = #v̂
k −max(0,#v̂

k+1 +#v̂
k −R) (10)

Definitions (7) through (10) are exactly the same as in [5]. The lower bound
(7) is the difference between the number of occurrences of values v̂ in column k

minus the number of occurrences of v̂ in column k − 1, if positive. If the total
number of occurrences of values v̂ on column k and on column k− 1 are strictly
greater than the number of rows R, then there must be at least #v̂

k−1 +#v̂
k −R

stretches of values v̂ that cover both columns. This minimum intersection gives
us the upper bound (8). Bounds (9) and (10) are derived similarly. We now get
the following necessary conditions:

K−1
∑

k=0

ls+k (v̂) ≤
R−1
∑

r=0

zv̂r (11)

K−1
∑

k=0

us+k (v̂) ≥
R−1
∑

r=0

zv̂r (12)

K−1
∑

k=0

ls−k (v̂) ≤
R−1
∑

r=0

zv̂r (13)

K−1
∑

k=0

us−k (v̂) ≥
R−1
∑

r=0

zv̂r (14)

where zv̂r denotes the variable corresponding to the resource that represents the
number of uninterrupted sequences of symbols in v̂ occurring in row r.

In order to constrain the minimum and maximum length of a stretch,
using the minimum and maximum length (zv̂min and zv̂max, respectively) of
uninterrupted sequences of symbols in v̂ occurring in any row, we get the
following necessary conditions for each 0 ≤ k < K:

#v̂
k ≥

k
∑

j=max(0,k−zv̂
min+1)

ls+j (v̂) (15) #v̂
k ≥

min(K−1,k+zv̂
min−1)

∑

j=k

ls−j (v̂) (16)

Constraints (15) and (16) are justified by the fact that stretches starting
resp. ending at the considered columns j must overlap column k. Also, for each
0 ≤ k < K − zv̂max we get the necessary condition:

ls+k (v̂) +

zv̂
max
∑

j=zv̂
min

#v̂
k+j − (zv̂max − zv̂min + 1) ·R ≤ 0 (17)

and for each zv̂max ≤ k < K the necessary condition:

ls−k (v̂) +

zv̂
max
∑

j=zv̂
min

#v̂
k−j − (zv̂max − zv̂min + 1) ·R ≤ 0 (18)



The justification behind constraint (17) is that for a stretch of values v̂ beginning
at column k, there must be a value not in v̂ in some column j, for k + zv̂min ≤
j ≤ k + zv̂max. Constraint (18) is justified similarly.

5 Evaluation

To evaluate our method, we used NSPLib [8], a library of benchmark instances
of the nurse scheduling problem (NSP). This is a particular rostering problem.
For N the number of nurses, D the number of days in the scheduling horizon,
and S the number of shifts, the objective is to construct a N × D matrix of
values in the integer interval [1, S], where value S represents the off-duty shift.

In instance files, there are hard coverage constraints and soft preference con-
straints. We only consider the hard coverage constraints. These give for each day
d and shift s the lower bound on the number of nurses that must be assigned to
shift s on day d. These constraints can be modelled by Gcc constraints on the
columns. We considered instance files forN×7 rosters withN ∈ {25, 50, 75, 100}.

Case files provide hard constraints on the rows. For each shift s, there are
lower and upper bounds on the number of occurrences of s in any row. There
are also lower and upper bounds on the cumulative number of occurrences of
the working shifts 1, . . . , S − 1 in any row. These two types of constraints can
be modelled by Gcc constraints on the rows. For each shift s, there are also
lower and upper bounds on the length of any stretch of value s in any row. Fi-
nally, there are lower and upper bounds on the length of any stretch of working
shifts 1, . . . , S − 1 in any row. These two types of constraints can be modelled
by stretch path and stretch path partition constraints on the rows, re-
spectively. By translating these row constraints to automata, we get that the
NSP benchmark problems as described above correspond to the RegularGcc

pattern studied in this paper.

In order to compare the effect of the necessary conditions in the settings of
both weighted and unweighted automata, we implemented the row constraints
(both for the constraints from the case files and for extracting string properties)
using weighted finite automata as well as regular (unweighted) finite automata.
For the setting of unweighted automata, we translated the case constraints spec-
ified for each shift and for the total set of working shifts as a single Regular

constraint on each row (by taking the corresponding minimised product DFA).
For each string property that we extract from the rows, we used automata an-
notated with counters (as described in [5]), unfolded into a DFA, expressed as
a decomposition into ternary constraints [9] allowing us to extract the counter
values. The methods used in [5] for automata annotated with counters are not
implemented in the free major constraint programming libraries and solvers.

For the setting of weighted automata. We translated the case constraints for
each shift and for the total set of working shifts as a single multicostRegular

constraint on each row (by taking the corresponding product automaton). For
each string property that we extract from the rows, we posed a single multi-



costRegular constraint defined by the corresponding weighted automaton as
described in Section 4.

In order to compare the two settings fairly, we posed the constraints defined
by automata in a similar pattern, i.e., we take the products of corresponding
automata in the two settings. One advantage that the setting of weighted au-
tomata possesses, is that taking the product of particular automata results in
a relatively small increase in the automaton size, not nearly as explosive as the
size increase in the corresponding unweighted product automaton. In order to
improve propagation, we were able to pose the weighted automata extracting the
number of stretches of different shifts from the rows as the product of the cor-
responding automaton with (a copy of) the automata specifying the constraints
on the number of shift occurrences from the case file. In the unweighted setting
this is completely intractable, since the size of the product DFA corresponding
to the automata annotated with counters gets too large.

In both settings, we implemented necessary constraints based on the following
string properties:

– for each shift, lower and upper bounds on the number of its occurrences,
– for each shift, lower and upper bounds on the number and length of its

stretches,
– each word of length at most 2 that consists of one single shift.

In the setting of weighted automata, the necessary constraints are derived as
described in Section 4. In the setting of unweighted automata, the necessary
constraints are derived as in [5].

The objective of our experiments is to measure the impact in runtime and
backtracks for the different settings. The experiments were run under Choco
2.1.1 on a 2.27 GHz Intel Xeon with a 4GB RAM. All runs were allocated 3
CPU minutes. For each case and nurse count N , we used instances 1-270.

In the experiments we used a labelling procedure that selects variables with
the smallest domain, with a row-wise order as tie-breaker, and selects the smallest
value. We used a LexChain constraint for symmetry breaking. We used the
implementation of the multicostRegular constraint available in Choco.

Table 1 summarises the running of the instances for the different settings (the
setting of weighted automata with cross products (CWA) and without extra cross
products (WA), and the setting of unweighted automata (UA)), for Cases 7 and
8. Each row first indicates the number of known instances of some satisfiability
status for a given case and nurse count N , and then the performance of each
setting to the first solution, namely the number of instances decided to be of
that status without timing out, as well as the average runtime (in seconds) and
the average number of backtracks for all instances on which none of the settings
timed out. Numbers in boldface indicate best performance in a row.

The benchmark results in Table 1 show that WA and CWA were able to
solve significantly more instances compared to the method using unweighted au-
tomata, both for satisfiable and unsatisfiable instances. Further, CWA improved
the performance for most of the benchmarks in terms of number of backtracks
and runtime, compared to WA. Notably, the UA method solved only 4 out of 156



known unsatisfiable instances while CWA and UA solved all of these benchmarks.
This shows that using weighted automata together with necessary constraints
leads to significantly more pruning than using unweighted automata with similar
necessary constraints. For the majority of solved unsatisfiable instances, WA and
CWA detected unsatisfiability at the root of the search tree. This is not visible
in the table, because the shown runtimes and number of backtracks are based
on instances solved by all methods. Note that these benchmarking results are
not directly comparable to the results in [5], since these results were obtained
under a different experimental set-up (e.g. a different search strategy was used).

Overall, the results indicate that the use of weighted automata to solve
rostering problems shows potential. A combination of weighted automata and
necessary constraints dramatically increase propagation compared to using un-
weighted automata. Our results on unsatisfiable instances suggest that such a
combination can be very useful in finding optimum solutions for rostering prob-
lems. Another advantage of our approach is that it can be easily implemented
in open-source constraint solvers.

Table 1. NSPLib benchmark results.

WA CWA UA
Case N Status Known #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk

7 25 sat 129 122 23.8 1866 123 21.9 1509 103 21.1 2400
unsat 30 30 0 0 30 0 0 0 0 0

7 50 sat 60 58 16.6 693 60 19.5 708 34 20.0 1227
unsat 31 31 0.1 0 31 0.3 0 1 0.2 0

7 75 sat 29 25 22.0 742 27 25.6 737 17 22.1 929
unsat 38 38 0 0 38 0 0 0 0 0

7 100 sat 34 29 30.9 1733 34 29.8 1437 13 38.5 2196
unsat 19 19 0.2 0 19 0.2 0 1 0.3 0

8 25 sat 138 131 11.5 776 133 10.6 646 114 9.1 1123
unsat 6 6 0 0 6 0 0 0 0 0

8 50 sat 90 83 13.1 606 88 9.4 294 71 15.0 1512
unsat 8 8 0.1 0 8 0.1 0 1 0.2 0

8 75 sat 61 58 13.3 412 62 10.4 233 45 12.6 505
unsat 19 19 0 0 19 0 0 0 0 0

8 100 sat 65 60 17.9 308 65 13.4 143 45 16.3 439
unsat 5 5 0.1 0 5 0.1 0 1 0.3 0

6 Conclusions

We studied the propagation of the RegularGcc matrix constraint. We showed
that propagation is NP-hard, even under some strong restrictions, and also
showed two cases in which propagation is fixed parameter tractable. Addition-
ally, we showed how to improve propagation over a decomposition into separate
Regular constraints on the rows and Gcc constraints on the columns by iden-
tifying some necessary but insufficient conditions. We showed how the use of
weighted automata for the row constraints can be beneficial. Experimental re-
sults on nurse scheduling problems demonstrate the potential for this method.
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