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Abstract. Recent years have seen a resurgence of interest in evolving plastic
neural networks for online learning. These approaches have an intrinsic appeal
– since, to date, the only working example of general intelligence is the human
brain, which has developed through evolution, and exhibits a great capacity to
adapt to unfamiliar environments. In this paper we review prior work in this
area – including problem domains and tasks, fitness functions, synaptic plasticity
models and neural network encoding schemes. We conclude with a discussion of
current findings and promising future directions, including incorporation of func-
tional properties observed in biological neural networks which appear to play a
role in learning processes, and addressing the “general” in general intelligence by
the introduction of previously unseen tasks during the evolution process.
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1 Introduction

Recent years have seen a resurgence of interest in evolving plastic neural networks
for online learning. These approaches have an intrinsic appeal – since, to date, the
only working example of general intelligence is the human brain, which has developed
through evolution, and exhibits a great capacity to adapt to unfamiliar environments. In
this paper we review prior work in this area – including problem domains and tasks,
fitness functions, synaptic plasticity models and neural network encoding schemes. We
conclude with a discussion of current findings and possible future directions.

In this review, a plastic neural network is one in which the strengths of synapses
may change during the networks operational life. Online learning refers to the ability
of an agent to discover or learn about some property of its environment, typically by
exploration, which it has not been exposed to previously or which changes during its
life time, and then exploit this knowledge in order to achieve a goal. Online adaptation
refers to a robustness or ability to adapt to internal or external perturbations or changes
in input and output ranges; in other words, the ability to maintain homeostasis. These
latter two definitions are very similar to terms defined by Mouret and Tonelli [19]: an
agent is said to possess behavioural robustness, which is akin to online adaptation,
when it can maintain the same qualitative behaviour despite environmental or morpho-
logical changes; and an agent is said to exhibit behavioural change, which is akin to
online learning, when in a reward-based environment a change in reward causes it to
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adopt qualitatively new behaviours until a new optimal behaviour has been found. While
this review describes progress in evolving plastic neural networks for online learning,
work on evolving plastic neural networks for online adaptation has enough similarit-
ies to provide useful insights. We include work on online adaptation in the sections on
synaptic plasticity, scaling/competition and neuronal excitability regulation. Finally, it
should be noted that “adaptive network” is not synonymous with “plastic network”: a
network may be adaptive without having plastic synapses [11, 18, 25].

2 Problem Domains, Tasks and Fitness Functions

In the evolution of neural networks for online learning, evaluating the fitness of a can-
didate requires testing the ability of the neural network to learn something about its
environment and to then exploit that knowledge to achieve one or more goals. This
requires producing environments that are different in some way for each generation
and/or change in some way during a fitness evaluation [4, 20, 25, 27].

Initial work on online learning, carried out in the early 1990s, focused on a super-
vised learning paradigm [3, 4, 13]. Fitness evaluation typically took the form of a train-
ing phase during which sets of exemplars are presented to the network, and then an
evaluation phase where the network is presented all the input vectors from the training
set and the fitness is the percentage of correct corresponding output vectors produced
by the network [3, 4]. These studies were largely proof-of-concept in nature and used
simple network models and simple, for example single-bit or linearly-separable, binary
training examples. The main limitation with this method is that the generalisation per-
formance of the evolved learning algorithms is not tested (not to be confused with the
ability to learn all the members of any particular set of exemplars).

Research on evolving neural networks for online learning re-emerged in the early
2000’s – this time focusing on reinforcement learning domains. In most reinforcement
learning experiments the fitness of an agent has been the amount of reward it received
during its lifetime [20,25,27] or is at least strongly correlated with the reward received
[15, 23]. Use of multiple reward signals, corresponding to multiple goals, has not been
explored.

Most tasks studied to date have been designed to provide a simple reinforcement
learning environment in order to evaluate the ability of an agent to perform learning.
They have required learning a simple association that changes during the agents life
time, such as which type of flower provides the most reward in a simple bee foraging
task [20, 21, 26], which object types are food or poison in a slightly more complex
foraging task [27], or which arm of a T-maze contains a high-value reward [21, 22, 25].
Variations to increase the difficultly of the T-maze task include use of a double T-maze,
which has four arms instead of two, or requiring the agent to learn a possibly non-
linear association between the perception of objects and their reward value [22]. Risi
and Stanley [23] studied a significantly more difficult version of the T-maze task in
wihch the environment was continuous rather than discrete and the controller takes as
input only raw output from 5 rangefinder sensors (as well as a reward signal) rather than
signals from special sensors indicating arrival at key locations.



328 O.J. Coleman and A.D. Blair

Tonelli and Mouret [28, 29] studied a purely associative task, similar to those us-
ing a supervised learning paradigm, in which an agent is required to learn associations
between each possible input and output pattern. The input and output were vectors of
binary values, with a reward signal added to the input. To simplify the task only one
bit of the input and output vector each has value 1 while all others have value 0. The
difficulty of the task was increased by increasing the size of the vectors. This problem
domain is interesting because the number of associations that must be learned can be
large, while other problem domains studied have required only learning one or a few
associations, and also because it does not require simulation of an environment or learn-
ing fixed behaviours for invariant properties of the environment (other than the ability
to determine which output to set high for which input, of course). A much more com-
plex task in this problem domain would be to allow arbitrary input and output patterns,
instead of setting only one bit high per pattern.

Khan and Miller [15] introduced a modified version of Wumpus world, where pits
and the Wumpus only harm rather than kill the agent, as well as a competitive version
of Wumpus world where the Wumpus acts as a predator. Rather than a reinforcement
signal being provided, the agent can perceive its “energy” level, which is affected by
environmental factors and achieving goals.

It has been noted by several authors that most tasks requiring online learning also
require some fixed behaviours, and that often the fixed behaviours can be evolved much
more easily than the learning behaviours [20,21]. Indeed, if the goal is to test the ability
of an agent to perform online learning, then the experimenter must take care to ensure
that the task cannot be solved with purely fixed behaviours [3]. Preventing the evolution-
ary process from becoming stuck on the local optima of fixed behaviours has typically
been addressed by employing specially designed environments and fitness evaluation
functions that minimise the advantage of purely fixed behaviours and that strongly fa-
vour learning behaviour [3, 21, 23, 29]. In order for the approach of evolving neural
networks for online learning to be practical for a wider range of problem domains –
where a large number of behaviours may need to be fixed for a successful agent – the
minimisation of this requirement represents a significant future challenge.

One novel approach to alleviating the problem of local optima in evolutionary al-
gorithms is novelty search. Novelty search replaces the objective or goal-based fitness
function in an evolutionary algorithm with a function that measures the behavioural
novelty of an individual with respect to the behaviours exhibited by other individuals in
the current and all preceding generations. The main idea behind novelty search is that
behaviours that are different in interesting ways from other behaviours collapse to the
same objective-based fitness, so objective-based search essentially ignores them even
though they may be pathways to a solution. This method has shown promising results in
evolving neural networks for online learning [21], where it was able to evolve solutions
more quickly than objective-based search on two common benchmark tasks. It has also
been used successfully in conjunction with a traditional objective-based fitness function
using a multi-objective evolutionary algorithm [29]. However, some studies suggest that
novelty search may not scale well to more complex problems [6] and that in some cases
it is just as hard to find a good novelty metric as it is to find a good objective-based
fitness function [16].
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3 Synaptic Plasticity Models

The most common approach to synaptic plasticity in evolved neural networks thus far
has been to define either one or four plasticity rules. These may be applied to some
or all connections in the network. In the case of a single rule type, this rule has either
been evolved [3] or fixed [21]. Floreano and Mondada introduced a set of four rules
in 1996 which were then adopted by several subsequent authors [14, 18], with the gen-
ome encoding which of the rules is to be used by each connection. From Floreano and
Mondada, 1996 [10, pg. 3]: “The four types of synaptic change are as follows ... The
simplest learning mechanism is plain Hebb, whereby synapses can only be strengthened
... The postsynaptic rule is similar to the plain Hebbian rule, but also decreases the
synaptic efficacy when the postsynaptic unit is active and the presynaptic unit is not ...
in the presynaptic learning rule the decrement takes place when the presynaptic unit
is active, but the postsynaptic unit is inactive ... The covariance rule here takes the
form of a synchronous-activation detector: if the presynaptic and postsynaptic activity
levels differ by more than half the maximum node activation, the synaptic efficacy is
reduced in proportion to that difference, otherwise it is increased in proportion to the
difference.”

The second most common approach is to use a parameterised weight update rule
where the parameters are evolved either for a globally applied rule [25, 26, 30], for a
fixed number of rules [27], for each modular grouping of neurons [20], or per con-
nection [8, 9, 22, 23]. No work has compared the effects of these different levels of
granularity.

One of the first parameterised rules was introduced by Niv et al. in 2002 [20] and
has been used by several subsequent authors [22, 23, 25, 26, 28, 29]. It consists of a
correlation term, pre- and post-synaptic terms and a constant term for heterosynaptic
updates, with evolved coefficients for each term:

Δw = η(Axy +Bx+ Cy +D) (1)

where η is the learning rate and x and y are the pre- and post-synaptic activation.
Di Paolo et al. [8, 9] studied spike-timing dependent plasticity (STDP) models. The

weight update rule was asymmetric such that if a pre-synaptic spike occurred before
a post-synaptic spike then the weight is increased (potentiated), and conversely if a
pre-synaptic spike occurred after a post-synaptic spike then the weight is decreased
(depressed). Parameters for the time-window and amount of change were evolved per
connection.

Di Paolo [8] performed a direct comparison between rate-based and spiking models.
It is noted that a direct and fair comparison is not simple; efforts were made to make
the comparison as fair as possible, for example by modifying the weight update rule
such that the initial direction of weight change in the rate-based model is unbiased by
the initial random activation values of neurons, as it is in the spiking model. Evolved
rate-based networks had significantly lower performance than spiking networks in the
photo-taxis task studied. This was due to the rate-based networks being much slower to
converge to the required weight values: “STDP controllers are rapidly able to define a
direction of weight change depending on the relation between the plastic rules and the
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neural properties . . . whereas rate-based plastic controllers take much longer to settle
into a given range.” The practical significance of this result could be questioned: it
would be simple to encode initial weight values to overcome this problem. However, in
some cases (perhaps developmental network models), such encoding of initial weights
may not be possible, thus making the rapid convergence of the spiking networks desir-
able. Additionally, the STDP rule employed was found to produce more stable networks
even in the presence of noise introduced into neuronal activation.

The above approaches all use some kind of relatively fixed rule or rules to change
synaptic efficacy, albeit with some evolvable parameters. In contrast there have been
two proposed approaches to evolving arbitrary plasticity rules. Khan and Miller [15]
evolved genetic programs that controlled changes to synaptic efficacy, as well as sev-
eral other functional aspects of neurons. While this work is intriguing, and the model
developed was demonstrated to be able to evolve solutions to complex tasks, it is not
clear to what extent evolving arbitrary rules contributed to the results, positively or
negatively. The model developed was very complex and a significant departure from
anything that had gone before. The tasks chosen were different from any others used in
similar work. The rules that evolved have not been analysed in any studies to date.

Risi and Stanley [22] also developed a novel synaptic plasticity system able to evolve
arbitrarily complex rules. They performed a comparison between it and two paramet-
erised rules similar to that introduced by Niv et al. [20] (described above). These models
employed the HyperNEAT encoding scheme (see Section 5). The three models of syn-
aptic plasticity compared were:

Plain Hebbian: the update rule is
Δw = ηxy (2)

where η is the learning rate. The genome function has an output for a synapses
existence and for the plasticity learning rate if it exists.

Hebbian ABC: the update rule is

Δw = η(Axy +Bx+ Cy) (3)

The genome function has an output for each of a synapses existence, the learning
rate and the coefficients A, B and C.

Iterated: in this model the genome function is queried throughout the networks life
time for each synaptic weight value, instead of only for the initial synapse paramet-
ers, and has three inputs additional to the coordinates of the pre- and post-synaptic
neurons: the pre- and post-synaptic activation and the current weight value. Thus
instead of a fixed Hebbian-type rule, arbitrarily complex weight update rules can
be evolved based on location, activation levels and current weight value.

Risi and Stanley tested the networks on a double T-maze task where the complexity
of the task could be increased by introducing a non-linearly separable perception and
reward value mapping. Evolution using the Plain Hebbian rule could not find solutions
for the task at any complexity level, evolution using the Hebbian ABC and Iterated
models could find optimal solutions for the linearly separable reward signals task, but
only by using the Iterated model could optimal solutions be found for the non-linearly
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separable reward signals task. For the higher complexity task an optimal solution re-
quired a non-linear learning rule which could not be encoded by the Hebbian ABC
model. They conclude that although a different network topology may have allowed a
less general plasticity rule to solve the non-linear problem in this instance, it is never-
theless risky to make a priori assumptions about which plasticity rules will be suitable.
The rules that were evolved with the Iterated model were not analysed.

Both the evolved genetic program and evolved function plasticity rules developed by
Khan and Miller and Risi and Stanley, respectively, required significantly more com-
putation time than models using fixed rules, demonstrating a trade-off between compu-
tational requirements and generality. While Risi and Stanley demonstrate that in some
cases more generality may be required, it is not clear (nor necessarily suggested by the
authors) that the level of generality provided by these systems is necessary, or desirable,
due to the computational considerations and increased search space in an evolutionary
context. Indeed, Risi and Stanley found that the more general model took much longer
to find nearly optimal solutions than a parameterised fixed rule model.

Most studies have used either relatively fixed rules, for example the set of four fixed
rules popularised by Floreano and Mondada [10] and the parameterised rule introduced
by Niv et al. [20], or arbitrarily flexible rules such as the genetic programs introduced by
Khan and Miller [15] and the evolved functions studied by Risi and Stanley [22]. While
the study performed by Risi and Stanley directly compares simple parameterised rules
with arbitrarily flexible rules, a possibly interesting research direction could be to com-
pare plasticity rules that fall between these two extremes. This could especially be the
case in plasticity models such as STDP, where evolved parameters could control aspects
such as asymmetry, timing-direction, time-frames, plasticity modulation dependent on
pre- and post-synaptic firing rates, etc.

Another interesting question is what sorts of synaptic plasticity rules were evolved
by the models allowing arbitrary complexity. As noted, the studies performed by Khan
and Miller, and Risi and Stanley, did not analyse the evolved rules. Did the same sorts of
rules evolve many times? Were there any general properties of these rules that emerged?
Did they tend towards simple rules, or unique and/or complex rules for every evolution-
ary run and/or relatively fit individual in a run? How does modifying the complexity or
other properties of the task affect the kinds of rules evolved?

3.1 Synaptic Plasticity Neuromodulation Models

The first model of neuromodulation of synaptic plasticity was introduced by Niv et
al. [20]. The topology of the network was fixed and divided up into several modules.
The plasticity of synapses between these modules and an output neuron could be gated
by evolved dependencies on some of the other modules. If a module had a dependency
on another module then synaptic plasticity was only enabled when neurons in the latter
fired. They found that this gating of synaptic plasticity was required to evolve networks
able to perform a simple reinforcement learning task. While this result is interesting its
general applicability is not clear as the allowable dependencies were hand-crafted along
with the network topology.
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A more general model of neuromodulation of synaptic plasticity was introduced by
Soltoggio et al. [26]. In this model there are two neuron types, standard and modulatory.
Each neuron maintains values for both standard and modulatory activation, which are
the weighted sums of all inputs from the two respective subsets of neurons in the net-
work. Unlike a standard neuron model, the modulatory activation level modulates the
plasticity of all synapses leading into the neuron by being used as an overall multiplic-
ative term in the plasticity rule. Evolved solutions using this model outperformed, and
could handle more complex environments than, solutions using the model developed by
Niv et al. Additionally, solutions using models where neuromodulation was disabled or
fixed weights were used either performed very poorly or could not be found at all. Later
work showed similar results with a different task (double T-maze with reward moved at
random points during trials) [25]: evolution produced solutions with much higher aver-
age performance using models incorporating neuromodulation of plasticity compared
to models without this neuromodulation.

Similar to the model introduced by Soltoggio, Risi and Stanley [23] developed a
model in which some connections, rather than neurons, are modulatory. In this model
every neuron has a neuromodulatory activation level (as well as the standard activation)
which modulates the plasticity of all synapses leading into the neuron. This model could
be considered to more closely mimic biological networks as the same neuron can emit
standard signals as well as modulatory signals.

Similar to synaptic plasticity models in general, an open question is what impact
more flexible or complex neuromodulation properties would have on the evolution of
plastic neural networks for online learning. For example it is known that in biological
neural networks neuromodulators can invert the timing-dependency of STDP rules.
Specifically, other avenues of potential inquiry include studying the use of multiple
neuromodulators affecting different aspects of plasticity, less targeted neuromodulation
models such as a neuromodulator that can be dispersed into a region of a network that
is defined in some space, and the generation of modulation signals as a by-product of
any neuron rather than designated modulatory neurons, similar to the operation of those
in biological neural networks.

4 Synaptic Scaling/Competition Models and Neuronal Excitability
Regulation Models

Di Paolo [8] studied the effect of explicit activity-dependent synaptic scaling (ADS) and
“directional damping” applied to synaptic strength updates (DD). ADS induces homeo-
stasis by actively scaling synaptic strengths in order to maintain post-synaptic firing
rates within a pre-defined range. This is achieved by multiplying all weight values by
the same factor, introducing heterosynaptic competition. DD adds a factor to the syn-
aptic update rule such that if a change in strength of a synapse that is already near the
limit would push the strength closer to the limit then the change is dampened, whereas
a change that moves the strength away from the limit is not dampened. This type
of damping was chosen for two reasons: it tends to produce a uni-modal distribution
of weights centred around the point where potentiation and depression equilibrate, as
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opposed to other methods that either apply a simple hard limit or non-directional damp-
ing and which produce a bimodal distribution where most synapses either become fully
potentiated or depressed; and because this model is supported by empirical evidence
from studies of biological networks. The study compared the performance of evolved
solutions incorporating ADS and/or DD. It was found that DD made no observable dif-
ference in the final performance achieved, but that ADS slightly increased it. It is not
clear if the difference may have been reduced with longer evolutionary runs as only final
performance rather than plots of performance over generations are indicated. Addition-
ally, the reliability of the solutions using different models was assessed by introducing
relatively rapid synaptic strength decay factors. Only solutions using ADS were able to
perform reliably in this scenario; it is argued that this is a “consequence of the compens-
atory nature of the ADS mechanism, which is able to alter synapses as a consequence
of longer term changes in neural activity in ways that tend to maintain this activity.”

In later work Di Paolo [30] used another active neuronal excitability regulation mech-
anism to induce homeostatic firing rates. This mechanism enables synaptic plasticity
when neurons are firing outside two pre-defined ranges and modifies the plasticity rule
to push the firing rates back into the correct range by modifying the sign of plasticity
rule parameters. It was found that non-homeostatic networks made more errors, and
that the errors did not follow a predictable pattern, as compared to homeostatic net-
works which exhibited fewer errors, and for which the errors were more predictable.

Hoinville et al. [14] studied a method of heterosynaptic competition that keeps the
squared sum of synaptic strengths equal to unity. Additionally, a symmetric odd ac-
tivation function – which satisfies the centre-crossing condition and ensures that the
operating range of each neuron is centred on the most sensitive region of its activation
function [17] – was used to help induce neuronal excitability regulation. The aim was to
achieve homeostasis without using active parameter manipulation, that is “the neuronal
activity is not monitored and there is no mechanism that dynamically corrects any para-
meter. In fact, homeostasis is not ensured to be maintained in the short- or long-term.
However ... the chosen constraints would make homeostasis more likely ...” Unlike the
models introduced by Di Paolo, this approach avoids defining ranges for firing rates a
priori. Either of these mechanisms in isolation was found to improve the final perform-
ance of solutions and the convergence rate during evolution, and especially so when
used in tandem. Behavioural stability and robustness, measured by increasing the dur-
ation of the task to ten times longer than that used during evolution, was also found to
be improved by use of the heterosynaptic competition mechanism and again especially
so with both mechanisms. It is concluded that synaptic normalisation supports multi-
stability by “contributing to a global self-organization of individual plastic rules” and
that “homeostasis can evolve implicitly without any active homeostatic mechanisms
and be implemented through constrained hebbian plasticity.”

Di Paolo and Hoinville et al. have explored several synaptic scaling/competition and
neuronal excitability regulation mechanisms in the context of online adaptation. Future
research could study these mechanisms in the context of online learning, and explore
other mechanisms found in biological neural networks, such as spike adaptation, where
the firing threshold of a neuron is increased if high firing rates are maintained.
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5 Encoding of Neural Networks in Evolved Genomes

Methods to encode neural networks into genomes for evolution can be broadly categor-
ised into direct and indirect schemes. Direct encoding schemes employ a one-to-one
mapping from elements in the genome to components in the phenotype, and include
bit-string representations [3, 4, 10], vector-of-values [8, 9, 14, 20, 25, 26, 30], and graph-
based schemes [21,27,29], where vertices in the graph correspond to neurons and edges
to connections between them.

Indirect encoding schemes include a cellular encoding/grammar tree system [13], a
matrix rewriting system [11], a “neural map” scheme where a vertex can either become
a single neuron or a set of neurons and edges on the map vertex type may describe a
one-to-one connection or one-to-all connections [29], HyperNEAT [22] and Evolvable-
Substrate-HyperNEAT (ES-HyperNEAT) [23]. In HyperNEAT neurons exist in a geo-
metric space, and a function, which is the genome, maps from the coordinates of a pair
of neurons to the parameters of the synapse between them (including whether or not it
exists). Thus to decode a network the coordinates of each and every pair of neurons is
fed into the function and the outputs are used to determine the properties of the synapse
between each pair. In this way the evolved genome function can encode the parameters
of the network with respect to the geometry of the network, which can be advantage-
ous when the input and/or output of the network contain geometrically encoded regu-
larities [22, 23]. In ES-HyperNEAT the density and placement of connections, and so
neurons, is determined by the amount of information encoded in each region of the
hypercube represented by the genome function. Indirect encoding schemes can allow
searching a smaller genome space while still creating complex networks [23].

Two developmental schemes have been used to evolve neural networks with plastic
synapses. Gruau [13] developed a grammar tree system where the values of weights as
determined by plasticity rules could be passed onto new connections created by recurs-
ive expansion of the grammar tree during an individuals life. Khan and Miller [15] de-
vised a system where neurons, axons and dendrites situated in a Cartesian space could
replicate, migrate, grow/shrink and terminate during an individuals life, partially de-
pendent on environmental input. Each of these developmental functions was controlled
by programs evolved using Cartesian genetic programming.

Evolution is the method of choice, and perhaps the only known method, for gener-
ating artificial neural networks based on models other than the traditional rate-based,
fixed-weight variety (for which there are many methods, the most well known of which
is likely back-propagation). There is a wide variety of encoding schemes described here,
but relatively little information on the impact of using different encoding schemes on
evolving neural networks for online learning.

6 Discussion and Future Directions

While relatively little research has been performed in total over the last couple of dec-
ades, advances have been made in tackling increasingly difficult online learning prob-
lem domains, by way of increasing the functional capabilities of neural network models
and via improvements in methods of artificial evolution as a vehicle to generate neural
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networks for online learning. Of course, in the context of the goal of creating an agent
capable of general intelligence, there is still a long way to go.

Problem domains studied to date have been relatively simple, as compared to many
studied in the field of reinforcement learning, and also with respect to the goal of creat-
ing agents with some form of general intelligence. The environments typically represent
a small state-, percept- and action space, with a small change occurring in the environ-
ment during an agents life time (for example, the location of a reward occasionally
switches between two places in a fixed maze layout, or stimulus/reward associations
are modified). Significantly, this small change is the only kind of change that occurs
throughout an entire evolutionary run, and typically an entire set of experiments. These
kinds of simple dynamic tasks require evolving a specialised exploration strategy and
a specialised memory system to remember which fixed behaviour pattern is the current
correct one or to remember a few simple associations. Additionally, all of the studied
problem domains using a reinforcement learning paradigm have very clear exploration
and exploitation phases: it is clear when exploration can cease and exploitation begin,
either initially or upon the environment having changed; thus the specialised exploration
strategy is invoked only when the expected reward for the current behaviour pattern or
stimulus is not met. These have probably been desirable features, given available com-
putational resources or a focus on other aspects of evolving plastic networks. However,
an important question is whether plastic networks can be evolved to operate in more
complex environments and, perhaps more importantly, to operate in environments that
are significantly different to those seen at any other time during an evolutionary run. In
other words, is it possible to evolve plastic neural networks that implement more gen-
eral exploration strategies and can form and exploit internal models of more complex
environments which have not previously been encountered?

As far as the authors are aware there have been no comparative studies on encoding
schemes for plastic networks. An open question is what impact encoding schemes have
on the ability to evolve plastic networks for the task of online learning.

Several studies have found that introducing functional properties observed in
biological neural networks into the neural network models employed for online learn-
ing or adaptation, even in a very simplified form, has produced higher quality solu-
tions, enabled new capabilities, and/or improved evolvability in terms of speed and
reducing variance in performance. Examples include neuromodulation of synaptic
plasticity [25, 26], synaptic scaling/competition [8, 14] and spike-timing-dependent
plasticity [8].

Given these findings, and the many functional properties of biological neurons and
synapses that have been implicated in learning, memory and information processing,
an important question is what functional properties can be introduced to positive effect,
particularly in the domain of online learning, for which only a relatively simple form of
plasticity neuromodulation has been studied to date. Examples of functional properties
for which there is evidence of a role in performing various kinds or aspects of online
learning in biological neural networks include spike-timing-dependent synaptic plasti-
city [2, 5], synaptic scaling and competition [1], stochastic synaptic transmission [24],
meta-plasticity [2], and synapto- and neuro-genesis [7].
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On a similar note, both the neural map and the HyperNEAT-based schemes aim to
allow generating regular structures in the network that map to certain kinds of regu-
larities over multiple inputs and/or outputs [22, 23, 29]. Biological networks achieve
this goal by self-organisation processes [7, 12] which can continue to operate through-
out the networks life. Thus another interesting open question is whether emulations of
these life-time plasticity processes in evolved artificial neural networks can facilitate
online learning for such input or output spaces.

A factor of the success in tackling increasingly difficult online learning problem
domains is the availability of computational power. Specifically, the availability of in-
creasing computational power has made it possible to simulate more complex neural
network models, perform longer evolutionary runs, and simulate more complex envir-
onments that require online learning. This factor should not be underestimated: evolu-
tion of artificial neural network models can be particularly computationally intensive,
especially so for the task of online learning, which by its nature tends to require long
fitness evaluation times in the evolutionary algorithm and the simulation of neural net-
work models that are more complex than typical models. We are entering a period where
this approach is becoming increasingly practical.
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