Skip to main content

Systematicity, Accessibility, and Universal Properties

  • Conference paper
  • 3406 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Abstract

Human cognition is a mixture of the systematic and the non-systematic. One thing we can do systematically can be described as follows. If we know about multiplication, and the facts of basic multiplication, and we know conceptually what division is, then we can utilise the facts of multiplication that we know in order to solve division problems that correspond to those facts. For example, once children know that 4 ×7 = 28, and once they understand about division, they can work out that 28 / 4 = 7. Aizawa has defined standards for what counts as an explanation of systematicity. In this paper, in accordance with Aizawa’s framework, we apply concepts from category theory to this problem, and resolve it by identifying the unique natural transformation that underpins this example of systematicity, and others in the same class.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: A critical analysis. Cognition 28, 3–71 (1988)

    Article  Google Scholar 

  2. Smolensky, P.: The constituent structure of mental states: A reply to Fodor and Pylyshyn. The Southern Journal of Philosophy 26(suppl.), 137–161 (1987)

    Google Scholar 

  3. McLaughlin, B.: Systematicity redux. Synthese 170, 251–274 (2009)

    Article  Google Scholar 

  4. Phillips, S., Wilson, W.H.: Categorial compositionality III: F-(co)algebras and the systematicity of recursive capacities in human cognition. PLoS ONE 7(4), e35028 (2012)

    Google Scholar 

  5. Aizawa, K.: The systematicity arguments. Kluwer Academic, New York (2003)

    Book  Google Scholar 

  6. Phillips, S., Wilson, W.H.: Categorial compositionality: A category theory explanation for the systematicity of human cognition. PLoS Computational Biology 6(7), e1000858 (2010)

    Google Scholar 

  7. Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational complexity: Implications for comparative, developmental and cognitive psychology. Behavioral and Brain Sciences 21(6), 803–831 (1998)

    Google Scholar 

  8. Bird, R., de Moor, O.: Algebra of programming. Prentice-Hall (1997)

    Google Scholar 

  9. Arbib, M.A., Manes, E.G.: Arrows, structures, functors: the categorical imperative. Academic Press, New York (1975)

    Google Scholar 

  10. Goldblatt, R.: Topoi: the categorical analysis of logic, revised edn. Dover, New York (2006); Original ed. Elsevier (1984)

    Google Scholar 

  11. Suppes, P., Zinnes, J.L.: Basic measurement theory. In: Luce, R.D. (ed.) Handbook of Mathematical Psychology, pp. 1–76. Wiley (1963)

    Google Scholar 

  12. Halford, G.S., Wilson, W.H.: A category theory approach to cognitive development. Cognitive Psychology 12, 356–411 (1980)

    Article  Google Scholar 

  13. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Springer, New York (2000)

    Google Scholar 

  14. Barr, M., Wells, C.: Category theory for computing science, 1st edn. Prentice Hall, New York (1990)

    MATH  Google Scholar 

  15. Awodey, S.: Category theory, 2nd edn. Oxford University Press (2010)

    Google Scholar 

  16. Phillips, S., Wilson, W.H.: Categorial Compositionality II: Universal Constructions and a General Theory of (Quasi-) Systematicity in Human Cognition. PLoS Computational Biology 7(8), e1002102 (2011)

    Google Scholar 

  17. van Gelder, T.: Compositionality: A connectionist variation on a classical theme. Cognitive Science 14, 355–384 (1990)

    Article  Google Scholar 

  18. Phillips, S., Wilson, W.H., Halford, G.S.: What do Transitive Inference and Class Inclusion have in common? Categorical (co)products and cognitive development. PLoS Computational Biology 5(12), e1000599 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, W.H., Phillips, S. (2012). Systematicity, Accessibility, and Universal Properties. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics