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Abstract. Bagging ensemble selection (BES) is a relatively new en-
semble learning strategy. The strategy can be seen as an ensemble of the
ensemble selection from libraries of models (ES) strategy. Previous exper-
imental results on binary classification problems have shown that using
random trees as base classifiers, BES-OOB (the most successful variant of
BES) is competitive with (and in many cases, superior to) other ensemble
learning strategies, for instance, the original ES algorithm, stacking with
linear regression, random forests or boosting. Motivated by the promising
results in classification, this paper examines the predictive performance
of the BES-OOB strategy for regression problems. Our results show that
the BES-OOB strategy outperforms Stochastic Gradient Boosting and
Bagging when using regression trees as the base learners. Our results also
suggest that the advantage of using a diverse model library becomes clear
when the model library size is relatively large. We also present encour-
aging results indicating that the non-negative least squares algorithm is
a viable approach for pruning an ensemble of ensembles.

1 Introduction

The problem of constructing an ensemble from a library of base learners has
always been of interest to the data mining community. Usually, compared with
individual learners, ensemble strategies are more accurate and stable. In a typical
regression setting, a given training set D consists of m instances, such as D =
{(x1, y1), ..., (xm, ym)}, where xi is an instance and yi is a target, the task is
to learn an approximate function f : X → R of the true function f0 from D.
Let fj, j = 1...k, be a set of base regression learners that output predictions
fj(xi). The output of a simple regression ensemble F (xi) for instance xi can be
expressed as:

F (xi) =

k∑

j=1

wjfj(xi), (1)

where wj is the weight of base learner fj . In this particular form, ensemble learn-
ing strategies can be seen as methods for calculating optimal weights for each
base learner in terms of a regression goal. Since the mid-70s, many ensemble
strategies have been proposed. We first review a few state-of-the-art ensemble



strategies for regression. Gradient Boosting [9] is a classical ensemble learning
algorithm. It produces an ensemble of base learners (e.g., decision trees) based
on a stage-wise procedure to optimise an arbitrary differentiable loss function.
Stochastic Gradient Boosting [8] is an extension of the Gradient Boosting algo-
rithm, where at each iteration, a base learner trains on a subset of the training
set drawn at random without replacement. Bagging (bootstrap aggregating) [2]
is based on the instability of base learners, which can be exploited to improve
the predictive performance of such unstable base learners. The basic idea is that,
given a training set T of size n and a learner A, bagging generatesm new training
sets with replacement, Ti. Then, bagging applies A to each Ti to build m models.
The final output of bagging is based on simple averaging [2]. For instance, in a
regression setting using Eq. 1, the weight wj for fj is

1
k
. MultiBoosting [16] is an

ensemble algorithm designed to reduce both variance and bias simultaneously,
in which Boosting is used as the base learner for Bagging. For a more detailed
review of recent developments on ensemble learning strategies please refer to [14,
19]. Next, we discuss the motivations for proposing and studying the bagging
ensemble selection (BES) strategy.

Before introducing the BES strategy, we briefly review the ensemble selection
(ES) algorithm proposed in [6]. ES is a method for constructing ensembles from
a library of base learners. Firstly, base models are built using many different
machine-learning algorithms. Then a construction strategy such as forward step-
wise selection, guided by some scoring function, extracts a well performing subset
of all models. The simple forward step-wise model selection based procedure
proposed in [6] works as follows: (1) start with an empty ensemble; (2) add to
the ensemble the model in the library that maximizes the ensemble’s performance
using some given error metric on a hillclimb set; (3) repeat Step 2 until all models
have been examined; (4) return that subset of models that yields maximum
performance on the hillclimb set. One advantage of ES is that it can be optimised
for many common performance metrics or even a combination of metrics. To
exemplify this ability, a number of different metrics including mean absolute
error, correlation coefficients, root mean squared error, and relative root squared
error, will be used to present results in the graphs and tables of this paper. For
variants of the ES algorithm, the reader is referred to [5, 6].

Experimental results in [6, 15] show that in the classification setting, the sim-
ple ES strategy sometimes overfits the hillclimb set, reducing its predictive per-
formance. Our preliminary experimental results for employing ES on regression
problems also identified a similar phenomenon. Figure 1 (a) shows an example of
the hillclimb set overfitting problem of ES on the Boston housing price data. The
red curve (top) is the hillclimb set performance; the blue curve (bottom) is the
test set performance. We can see that as the size of the model library increases,
the hillclimb set performance also improves gradually. However, the test set per-
formance does not always improve. In this case, the local optimal performance
is achieved when the model library size is about 700. Another practical issue
is that users have to estimate the optimal hillclimb set ratio for a given data
set. Figure 1 (b) shows an example on the CPU data based on cross-validation



(a) Boston housing-price data (b) CPU performance data

Fig. 1. Examples of the hillclimb set overfitting and the hillclimb set ratio problems
of the Ensemble Selection strategy

based performance estimation. We can see that the local optimal performance
is achieved when the hillclimb ratio is about 0.35; after that, the performance
starts to drop. Although we could use cross-validation to estimate the hillclimb
set ratio, this would substantially increase the practical training cost of ES.
To overcome these problems and improve the predictive performance of the ES
strategy, three BES strategies have been proposed in [15]. Experimental results
show that, under the classification setting, the BES-OOB strategy is the most
successful variant in terms of predictive performance. In this paper, we focus on
examining the predictive performance of the BES-OOB strategy for regression
problems.

2 The BES-OOB Strategy

TheBES-OOB strategy uses the full bootstrap sample as the build set for model
generation, and the respective out-of-bag sample as the hillclimb set for ensemble
construction. The bootstrap sample is expected to contain about 1−1/e ≈ 63.2%
of the unique examples of the training set [1, 2]. Therefore the hillclimb set
(out-of-bag sample) is expected to have about 1/e ≈ 36.8% unique examples of
the training set for each bagging iteration. Figure 2 shows the pseudocode for
training the BES-OOB strategy. Please note that the term “classifier” in the
pseudocode is used to refer to both classification and regression classifiers. An
advantage of BES-OOB is that the user does not need to choose the size of the
hillclimb set as in the ES algorithm. Bagging and ES are both generic strategies
for supervised learning. When they are used for the regression setting, we can
simply use regression algorithms as the base classifiers. BES-OOB combines the
two strategies, therefore it is also a generic ensemble learning strategy for both
classification and regression.

In the original ES algorithm, Step 6 in Figure 2 uses the forward step-wise
selection method for ensemble construction. For the details of the method, we
refer readers to [6]. In this paper, we also use the same method. Our emphasis
here is to show that any “greedy” (active set) ensemble construction method that



BES-OOB(S, E, T )
S is the training set
E is the Ensemble Selection classifier
T is the number of bootstrap samples

1: H ← empty ensemble
2: for i← 1 to T {
3: Sb ← bootstrap sample from S

4: Soob ← out of bag sample
5: train base classifiers in E on Sb

6: Ei ← do ensemble selection based on
base classifiers’ performance on Soob

7: add Ei to H

8: }
9: return H

Fig. 2. Pseudocode of the BES-OOB algorithm.

utilizes the out-of-bag sample for performance estimation can be used in Step 6
of BES-OOB. Although in recent years, the ES algorithm has been highlighted in
winning solutions of many data mining competitions [15], there is no theoretical
work on explicitly examining the convergence property of the ES algorithm. Here
we attempt to give a brief discussion on the theoretical aspect. If we see the
forward step-wise method used in ES as a “greedy” feature selection algorithm,
then the predictions of each base regression classifier can be seen as the “feature”
values. Based on the theoretical work on forward feature selection [4], when
certain conditions are met, such as sufficient conditions for convex optimization,
use of squared error loss and in absence of noise, the theoretical convergence
rate of the forward step-wise method used in ES is sublinear at m−

1
2 , where m

is the number of base classifiers. A comprehensive theoretical analysis of the ES
algorithm is beyond the scope of this paper and we leave it for future research.

3 Experiments

In this section, we conduct a series of experiments and statistical tests to examine
the performance of the BES-OOB ensemble strategy for regression.

3.1 Comparison to Other Ensemble Strategies

Firstly we compare BES-OOB to three state-of-the-art ensemble strategies for re-
gression: Stochastic Gradient Boosting (SGB) [8], standard Bagging (BG) [2] and
an ensemble of Bagging and Stochastic Gradient Boosting, denoted by BSGB.
BSGB can be seen as a variant of the MultiBoosting algorithm [16], in which
SGB is used as a base learner for Bagging. The experiments are based on 42
regression data sets from UCI repository1 and StatLib2. We use 10 times 10-fold

1 http://archive.ics.uci.edu/ml
2 http://lib.stat.cmu.edu



Dataset BES-OOB SGB BG BSGB

quake 0.12 0.06 • 0.12 0.12
cholesterol 0.19 0.07 • 0.18 0.19
detroit 0.22 0.03 • 0.24 0.24
breastTumor 0.22 0.16 • 0.22 0.22
meta 0.38 0.14 • 0.36 • 0.38
veteran 0.42 0.26 • 0.42 0.42
schlvote 0.45 0.10 • 0.46 0.43
sensory 0.53 0.48 • 0.53 0.52
longley 0.54 0.43 • 0.54 • 0.50 •

strike 0.55 0.41 • 0.55 0.55
kidney 0.55 0.38 • 0.53 • 0.58 ◦

baskball 0.55 0.43 • 0.55 0.56
newton-hema 0.57 0.54 0.58 ◦ 0.59 ◦

pbc 0.57 0.52 • 0.56 • 0.58 ◦

stanford 0.60 0.43 • 0.63 0.63
sleep 0.64 0.52 • 0.64 0.62
hungarian 0.65 0.63 • 0.65 • 0.66 ◦

winequality-red 0.66 0.61 • 0.66 • 0.68 ◦

echoMonths 0.67 0.69 ◦ 0.69 ◦ 0.68
winequality-white 0.68 0.62 • 0.67 • 0.70 ◦

cleveland 0.69 0.63 • 0.69 0.70 ◦

pollution 0.75 0.51 • 0.73 • 0.75
vineyard 0.76 0.67 • 0.75 • 0.76
lowbwt 0.79 0.78 • 0.79 0.79
elusage 0.82 0.81 0.82 0.84 ◦

vinnie 0.86 0.85 • 0.86 ◦ 0.86 ◦

bolts 0.86 0.83 0.83 • 0.86
gascons 0.88 0.76 • 0.84 0.83
cloud 0.91 0.84 • 0.90 • 0.91
autoMpg 0.91 0.92 0.91 • 0.93 ◦

servo 0.92 0.91 0.91 • 0.93 ◦

pwLinear 0.92 0.92 0.92 0.93 ◦

housing 0.92 0.90 • 0.91 • 0.93 ◦

boston 0.92 0.91 • 0.92 • 0.93 ◦

socmob 0.92 0.92 0.91 • 0.94 ◦

autoHorse 0.93 0.91 • 0.90 • 0.93
autoPrice 0.93 0.92 • 0.93 • 0.94 ◦

cpu 0.97 0.93 • 0.96 • 0.98
strikes 0.98 0.97 • 0.96 • 0.98 •

fishcatch 0.98 0.96 • 0.97 • 0.97 •

visualizing-galaxy 0.99 0.98 • 0.98 • 0.99 ◦

bodyfat 0.99 0.98 • 0.98 • 0.98 •

• ◦, BES-OOB is significantly better or worse

BES-OOB against
SGB BG BSGB

win/tie/loss 34/7/1 23/16/3 4/21/17

Table 1. Estimated correlation coefficients of BES-OOB, SGB, BG, and BSGB; and
Win/tie/loss counts of paired t-test.

cross-validation to estimate the performance of each strategy. Then, several sta-
tistical significance tests are conducted, including the non-parametric Friedman-

test and the Bonferroni-Dunn test as described in [7]. This approach utilises the
ranking information of each learner in comparison, which is suitable for compar-
ing multiple learners on multiple data sets. The total numbers of win, tie and
loss for the paired t-test (with significance level 0.05) are also recorded. To fairly
compare the four strategies, REPTree (a CART-like regression tree) [10] is used
as the base learner. The ensemble size is set to 1,500 for all these strategies. For
SGB, the shrinkage parameter is set to 0.5 and the subsample size parameter
is set to 50%. For BES-OOB, the number of base learners per “bag” is set to
30, and the number of bagging iterations is set to 50. Also, BES-OOB is set
to optimise the correlation coefficient metric. For BSGB, the number of base
learners for SGB (shrinkage is set to 0.5; subsample size is 50%) is set to 30, and
the number of bagging iterations is set to 50. Table 1 presents the paired t-test

results. Correlation coefficient scores are reported. Figure 3 is the graphical rep-
resentation of the Friedman-test for the four strategies. We can see that both
BES-OOB and BSGB significantly outperform BG and SGB, and BG signifi-
cantly outperforms SGB. There is no significant difference between BES-OOB
and BSGB’s performance over the 42 data sets.



Fig. 3. Visualization of the Friedman-test results for BES-OOS, SGB, BG, and BSGB
with REPTree as base learners over 42 data sets. The middle point of each bar indicates
the average rankings, and the bars indicate the critical values of the Bonferroni-Dunn

test (two-tailed test at significance level 0.05). Strategies having non-overlapped bars
are significantly different.

3.2 Diverse Model Libraries

In the previous experiments, we have been testing on a single type base learner.
However, one distinguishing feature of BES-OOB is that it can use different
types of base learners. In this section, BES-OOB with a diverse model library
consisting of three types of base learners (REPTree, SVM regression and M5P
model tree [13]), denoted by BES-diverse, is compared to BES-OOB with only
one of the three base learners, denoted by BES-reptree, BES-svm, and BES-m5p,
respectively. Three different model library sizes are tested: 3, 30 and 300. The
experimental setup is as follows: the number of bagging iterations for all BES
strategies in comparison is set to 30; for BES-diverse, when the model library
size is 3, only one of each type of base learners is used; when the model library
size is 30, 10 of each type of base learners are used; so 100 of each type of the
base learners are used for a model library size of 300. The correlation coefficient
is set as the goal metric for all strategies.

Diversity is one of the key factors for ensemble learning. To simplify the
procedure for generating diverse base learners, we adopt the “random subspace”
idea [3] for each base learner in the library. That is, each base learner trains
on a random subset (33% is used for all experiments) of the original variables.
For REPTree, Weka default parameters are used, and we also randomly set its
random seed; for SVM regression, we use the LibSVM default parameters for
epsilon-SVM regression and RBF kernel, except the gamma value is randomly
set to be between 0 and 1. We use the Weka default parameters for M5P model
tree. Table 2 shows the paired t-test results of BES-OOB-diverse against BES-
OOB-reptree, BES-OOB-svm and BES-OOB-m5p under three different model
library sizes: 3, 30, and 300, respectively. Please note that the number of bagging
iterations is set to 30. Therefore, the numbers of base learners that are allowed
to be built for the three model library sizes are: 90, 900, and 9,000, respectively.

Figure 4 shows the average Friedman-test rankings of each strategy under
the three model library sizes. We can see that the ranking of BES-OOB-diverse



Model library size = 3

BES-OOB-diverse against
A1 A2 A3

win/tie/loss 4/20/18 32/8/2 5/13/24

Model library size = 30

BES-OOB-diverse against
A1 A2 A3

win/tie/loss 19/15/8 34/6/2 9/20/13

Model library size = 300

BES-OOB-diverse against
A1 A2 A3

win/tie/loss 5/37/0 14/28/0 4/38/0

Table 2. Win/tie/loss counts of paired t-test for BES-OOB-diverse against BES-OOB-
reptree (A1), BES-OOB-svm (A2) and BES-OOB-m5p(A3).

Fig. 4. Friedman average rankings under different model library sizes.

improves (from the third to the second, and finally to the first) when the model
library size increases. The result implies that the advantage of using a diverse
model library becomes clear when the model library size is relatively large. To
the best of our knowledge, this is a novel result in the regression setting.

3.3 Pruning an Ensemble of ES Ensembles

Until now, we have been using the standard output aggregation method for
BES-OOB. That is, the final prediction of BES-OOB is simply the average of
all individual ES learners. The final ensemble size of BES-OOB is therefore the
number of bagging iterations. In this section, we consider methods for ensemble
pruning. Usually, there are two main reasons for doing ensemble pruning. The
first is to reduce the prediction cost (e.g., runtime or memory requirements)
without sacrificing too much predictive performance. The second is to obtain a
more accurate model. Based on the theoretical work of [20] in the study of neu-
ral networks, we know that theoretically “many could be better than all”. This
implies that the performance of an optimal subset of base learners may outper-
form the population average. Since the default BES-OOB strategy uses simple
averaging, appropriate ensemble pruning may improve BES-OOB’s performance
in terms of both accuracy and prediction cost. We compare simple averaging to
two pruning methods: pruning with the cocktail ensemble (CE) algorithm, and
pruning with the stacking strategy using the non-negative least-squares (NNLS)



BES-OOB-CE(S, E, T )
S is the training set
E is the Ensemble Selection (ES) learner
T is the number of bootstrap samples

1: H ← BES-OOB(S,E,T) // an ensemble of T ES
ensembles

2: fc

1 ← the ensemble in H with the smallest out-of-bag
estimate of error

3: emin = +∞
4: for i← 2 to T

5: fi ← null

6: for each f ∈ H

7: e← estimated error of combing f and fc

i−1

8: if e < emin then fi ← f and emin ← e

9: }
10: if fi is null then fc

N
← fc

i−1 and break

11: fc

i
← pif

c

i−1 + (1− pi)fi, where pi is obtained by
Eq.2 for the mean squared error

12: }
13: return fc

N

Fig. 5. Pseudocode of the CE method for BES-OOB ensemble pruning.

algorithm as the meta-level learner. The three methods in this comparison are de-
noted by BES-OOB-avg, BES-OOB-ce, and BES-OOB-nnls, respectively. Next,
we briefly introduce the BES-OOB-ce and the BES-OOB-nnls methods.

Cocktail ensemble (CE) [18], is a novel method of ensemble learning. One
reason for using CE as an ensemble pruning method for BES-OOB is that the
authors explicitly mentioned that the method is proposed for learning ensem-
ble of ensembles. Since combination of multiple ensembles (equivalent to finding
the optimal weights for each base learner) is an NP-hard problem [11], the au-
thors of [18] proposed using the pair-wise combination for multiple ensembles. In
addition, CE has an appealing mathematical foundation, which we will briefly
discuss here. For a full account of the method, we refer readers to [18]. The basic
idea is that, given two ensembles f1 and f2, a linear ensemble of ensembles f1
and f2 can be expressed as:

f c = pf1 + (1− p)f2, wrt p ∈ [0, 1]

where p is the weight for f1 and 1 − p is the weight for f2. Then, the optimal
weight of f1 is:

p∗ =
E2 − E1

2△
+ 0.5, (2)

where E1 and E2 are the generalization errors of f1 and f2, and △ = Ex[(f1 −
f2)

2] is the squared output difference of the two ensembles. Here E1, E2 and
△ can be estimated from data (in BES-OOB, we use the out-of-bag sample).
Figure 5 shows the pseudocode for the CE method, which has been adapted for
BES-OOB pruning.

Stacking, or stacked generalisation [17], is a popular ensemble learning strat-
egy, where the weights of the base classifiers are the regression coefficients of the
meta-level regressor. Usually linear regression (LR) is used at the meta-level.



Since our goal is to prune an ensemble, simply using LR would not reduce the
ensemble size. Here, we propose using stacking with the NNLS algorithm. To
the best of our knowledge, this is the first time that stacking with NNLS is
considered as an ensemble pruning approach. Eq. 5 shows the basic form of the
NNLS optimisation problem.

min
w≥0

‖Xw − y‖22. (3)

Here, X is the data matrix, w is the regression coefficient vector, and y is the
target matrix. We can see that it is the same as the linear least-squares regression
form, but with extra constraints on the values of the coefficient vector. For
our experiment, we use the NNLS algorithm proposed in [12]. The BES-OOB
ensemble strategy constructs an ensemble of ES ensembles. Each individual ES
is trained on a corresponding bootstrap sample, and its ensemble selection is
guided by its performance on the out-of-bag sample. The basic steps of using
stacking with NNLS for BES-OOB pruning are as follows: Suppose S is the
training set, and H is an ensemble of ES ensembles (same as line 1 in Figure 5).
A meta-dataset can be constructed by using the predictions of each ES in H on
S. The targets in S are used as the targets of the meta-dataset. Then, we use
NNLS to build a model on the meta-dataset. The NNLS regression coefficients
are used as the weights for each ES. Therefore, the final ensemble consists only
of ES ensembles with greater than zero weight.

The experimental setup is as follows: the number of bagging iterations is set
to 30 for all three methods (BES-OOB-avg/ce/nnls). For each bagging iteration,
one REPTree-based ES learner is trained. The number of trees used for each ES
is 10. As in the previous experiment, each REPTree is built using a random 33%
of the original attributes. So in total 300 REPTree learners are built for each of
the three methods in the comparison. At the individual bagging iteration level,
all three BES-OOB methods are set to optimise the mean squared error (MSE)
metric. At the pruning level, BES-OOB-ce is also set to optimise the MSE metric
based on Eq. 2. Also, based on Eq. 5, we know that BES-OOB-nnls optimises
square error by default. In total 42 data sets are used for this experiment.

Table 3 shows the corrected paired t-test results. The reported root relative
squared errors are estimated from 10 times 10-fold cross-validation. The final
ensemble sizes, and the final number of trees, are also reported. Figure 6 shows
the Friedman-test results. Based on the corrected paired t-test results, we can
see that both of the two pruning methods, BES-OOB-ce and BES-OOB-nnls,
show competitive predictive performance compared to BES-OOB-avg, but with
smaller final ensemble sizes and final number of trees. There are no significant t-
test -based performance differences between BES-OOB-avg and the two pruning
methods on most of the 42 data sets (39 for BES-OOB-ce; 37 for BES-OOB-
nnls) in this experiment. Based on the Friedman-test and the Bonferroni-test,
we can see that the performance of BES-OOB-avg and BES-OOB-nnls has no
significant differences over the 42 data sets.

The final ensemble size for BES-OOB-avg is 30 (equal to the number of
bagging iterations). Over the 42 data sets, the average final ensemble size of



Data set
Root Relative Squared Error Ensemble Size Number of Trees

nnls ce avg nnls ce avg nnls ce avg

autoHorse 34.60 36.87 34.78 5.7 5.6 30 22.0 22.2 118.8
autoMpg 37.53 38.48 37.58 8.7 4.6 30 38.4 21.3 138.6
autoPrice 34.99 38.52 35.91 6.2 4.3 30 23.3 17.2 114.1
baskball 84.46 85.26 83.69 4.9 4.2 30 15.0 12.5 98.2
bodyfat 14.79 ◦ 27.53 17.13 5.3 3.4 30 13.3 9.7 75.2
bolts 31.39 36.12 35.50 5.4 4.5 30 14.7 14.4 91.0
boston 41.85 44.99 43.02 7.4 5.3 30 28.7 23.4 124.9
breastTumor 97.40 97.75 96.50 4.5 4.1 30 15.9 15.7 104.2
cholesterol 101.31 100.47 99.15 3.7 3.9 30 13.6 15.0 108.1
cleveland 74.15 75.01 73.78 5.9 4.0 30 22.0 17.0 119.0
cloud 44.80 47.19 44.09 5.6 5.3 30 20.3 19.5 109.5
cpu 19.46 ◦ 29.41 22.10 4.8 4.1 30 21.3 16.7 115.0
detroit 151.11 283.02 151.73 3.6 19.3 30 11.5 61.9 94.2
echoMonths 72.99 71.40 70.55 3.8 3.8 30 11.7 10.9 89.3
elusage 49.91 49.52 48.76 6.0 7.2 30 16.0 21.0 83.2
fishcatch 19.84 24.40 21.24 7.5 3.7 30 26.9 13.0 106.7
gascons 25.50 30.09 25.24 5.2 9.1 30 19.5 35.8 115.2
housing 41.57 45.03 43.16 7.3 5.2 30 28.5 21.2 123.7
hungarian 74.99 75.10 74.36 4.7 5.2 30 15.3 17.8 102.2
kidney 78.38 82.08 81.29 4.6 5.2 30 12.9 16.0 91.2
longley 47.35 61.70 49.97 5.0 12.5 30 16.4 39.8 102.1
lowbwt 63.02 64.00 61.62 4.4 3.9 30 13.8 11.6 92.3
meta 149.15 147.21 112.30 1.6 3.9 30 4.8 14.3 94.2
newton-hema 85.56 85.20 82.78 3.9 5.4 30 13.2 17.4 97.1
pbc 84.45 85.07 84.24 4.9 6.1 30 18.2 24.5 116.6
pollution 71.70 77.01 72.06 5.8 4.6 30 18.8 16.2 101.5
pwLinear • 48.92 55.53 53.93 5.0 3.8 30 14.0 12.9 96.8
quake 100.00 99.78 99.54 3.5 6.2 30 18.0 28.3 132.6
schlvote 84.32 ◦ 110.16 79.01 2.9 12.6 30 8.4 36.4 84.8
sensory • 84.82 86.99 86.97 5.4 5.8 30 16.7 20.7 103.7
servo 37.66 44.59 43.44 3.9 7.0 30 10.9 23.3 94.0
sleep 82.01 80.57 77.49 4.3 4.5 30 11.9 13.3 90.0
socmob • 37.24 41.23 39.81 6.5 4.4 30 19.9 15.7 100.0
stanford 92.16 95.82 88.37 4.1 6.9 30 12.6 21.8 91.7
strike 88.44 87.79 80.79 3.3 4.8 30 11.8 16.9 111.8
strikes • 0.41 8.95 4.42 1.4 10.0 30 2.9 21.9 66.0
veteran 97.46 93.98 91.51 3.3 4.3 30 10.3 13.5 94.8
vineyard 62.82 63.97 62.57 4.5 8.1 30 14.2 24.1 95.1
vinnie • 50.89 52.39 51.30 7.7 4.5 30 23.5 13.3 88.4
visualizing-galaxy 15.60 16.31 15.65 10.5 5.7 30 42.7 23.6 126.0
winequality-red 77.08 77.98 77.39 7.4 9.8 30 40.2 57.8 166.1
winequality-white 76.13 76.75 76.39 9.0 15.4 30 63.4 106.1 215.1

Average 63.53 69.79 62.65 5.2 6.2 30 19.0 23.2 106.7

(win/tie/loss); avg vs. nnls: 0/37/5; avg vs. ce: 3/39/0;

• ◦, BES-OOB-avg is significantly worse or better, respectively; at significance level 0.05

Table 3. The Root Relative Squared Error values, the ensemble sizes, and the number
of trees in the final ensemble for BES-OOB-avg, BES-OOB-ce and BES-OOB-nnls,
over 42 data sets.

BES-OOB-ce is 6.2, corresponding to a 70% reduction in terms of ensemble
size; the average final ensemble size of BES-OOB-nnls is 5.2, corresponding to
a 83% reduction in terms of ensemble size. The average final number of trees of
BES-OOB-avg is 106.7, which is about 36% of the total 300 trees. The average
final number of trees of BES-OOB-ce is 23.2, corresponding to a 78% ((106.7 -
23.2)/106.7) reduction in terms of number of trees; the average final number of
trees of BES-OOB-nnls is 19.0, corresponding to a 82% reduction in terms of
number of trees. Figure 7 shows the boxplot visualization for the ensemble sizes
and the numbers of trees of BES-OOB-avg, BES-OOB-ce and BES-OOB-nnls.
Notably, the BES-OOB-nnls method significantly outperforms the BES-OOB-
avg method on 5 data sets (about 12% of the 42 data sets). This is a significant
empirical result indicating that BES-OOB-nnls not only works well for ensemble
pruning, but also could be used for further improving the predictive performance
of the BES-OOB strategy.



Fig. 6. The result of the Friedman-test over 42 data sets with two-tailed Bonferroni-

Dunn test at significance level 0.05. Strategies having non-overlapped bars are signifi-
cantly different.

(a) Final Ensemble Size (b) Number of trees

Fig. 7. The boxplot visualization for the final average ensemble sizes and the final
average tree sizes.

4 Conclusions

Bagging ensemble selection using the out-of-bag sample for hillclimbing (BES-
OOB), is a relatively new ensemble learning strategy. In this paper, we studied
the predictive performance of BES-OOB in the regression setting. The main
contributions of this paper are:

– Previous studies focused on using BES-OOB for classification problems only.
In this paper, through a series of experiments and statistical tests, we have
shown that, in the regression setting, the BES-OOB strategy is competi-
tive to MultiBoosting, and is superior to Bagging and Stochastic Gradient
Boosting when using CART-like regression trees as the base learners.

– We have shown that using a diverse model library could further boost BES-
OOB’s predictive performance when the model library size is relatively large.

– Our results also have shown that both the cocktail ensemble and the stacking
with NNLS methods work well for BES-OOB ensemble pruning. Particularly,
the latter method can be also used to improve the predictive performance of
the BES-OOB strategy.

One reason for the good predictive performance of the BES-OOB strategy is
that it can optimise a user-specified error metric directly in the base learner



selection stage. Out-of-bag samples seem to work well for ES’s ensemble selection
in practice. Another notable feature of BES-OOB is its simplicity and ease of
implementation. The success of the BES-OOB ensemble strategy over a broad
range of data sets examined in this study strongly suggests the applicability of
the method to a wide range of problems.
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