Skip to main content

Information-Theoretic Based Feature Selection for Multi-Voxel Pattern Analysis of fMRI Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7670))

Abstract

Multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data is an emerging approach for probing the neural correlates of cognition. MVPA allows cognitive representations and processing to be modeled as distributed patterns of neural activity, which can be used to build a classification model to partition activity patterns according to stimulus conditions. In machine learning, MVPA is a very challenging classification problem because the number of voxels (features) greatly exceeds the number of data instances. Thus, there is a need to select informative voxels before building a classification model. We introduce a feature selection method based on mutual information (MI), which is used to quantify the statistical dependency between features and stimulus conditions. To evaluate the utility of our approach, we employed several linear classification algorithms on a publicly available fMRI data set that has been widely used to benchmark MVPA performance [1]. The computational results suggest that feature selection based on the MI ranking can drastically improve the classification accuracy. Additionally, high-ranked features provide meaningful insights into the functional-anatomic relationship of neural activity and the associated tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)

    Article  Google Scholar 

  2. Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of functional MRI data analysis. Cambridge University Press (2011)

    Google Scholar 

  3. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Tsai, A., John, W., Fisher, I., Wible, C., William, M., Wells, I., Kim, J., Willsky, A.S.: Analysis of functional mri data using mutual information. In: Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 473–480 (1999)

    Google Scholar 

  6. Michel, V., Damon, C., Thirion, B.: Mutual information-based feature selection enhances fmri brain activity classification. In: IEEE International Symposium on Biomedical Imaging, pp. 592–595 (2008)

    Google Scholar 

  7. Gómez-Verdejo, V., Martínez-Ramón, M., Florensa-Vila, J., Oliviero, A.: Analysis of fmri time series with mutual information. Medical Image Analysis 16(2), 451–458 (2012)

    Article  Google Scholar 

  8. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 986–1004 (2003)

    Article  Google Scholar 

  9. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2005)

    Article  MathSciNet  Google Scholar 

  10. Tourassia, G.D., Frederick, E.D., Markey, M.K., Carey, E., Floyd, J.: Application of the mutual information criterion for feature selection in computer-aided diagnosis. Medical Physics 28(12), 2394–2402 (2001)

    Article  Google Scholar 

  11. Afshin-Pour, B., Soltanian-Zadeh, H., Hossein-Zadeh, G.A., Grady, C.L., Strother, S.C.: A mutual information-based metric for evaluation of fmri data-processing approaches. Human Brain Mapping 32(5), 699–715 (2011)

    Article  Google Scholar 

  12. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  13. Haynes, J.D., Rees, G.: Decoding mental states from brain activity in humans. Neuroscience 7, 523–534 (2006)

    Google Scholar 

  14. Mourão-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data. Neuroimage 28(4), 980–995 (2005)

    Article  Google Scholar 

  15. Mourão-Miranda, J., Reynaud, E., McGlone, F., Calvert, G., Brammer, M.: The impact of temporal compression and space selection on svm analysis of single-subject and multi-subject fmri data. Neuroimage 33(4), 1055–1065 (2006)

    Article  Google Scholar 

  16. Martino, F.D., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns. NeuroImage 43, 44–58 (2008)

    Article  Google Scholar 

  17. Kuncheva, L.I., Rodréguez, J.J.: Classifier ensembles for fmri data analysis: An experiment. Magnetic Resonance Imaging 28, 583–593 (2010)

    Article  Google Scholar 

  18. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fmri data. RENDS in Cognitive Sciences 10(9), 424–430 (2006)

    Article  Google Scholar 

  19. Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turner, R.: Event-related fmri: characterizing differential responses. NeuroImage 7, 30–40 (1998)

    Article  Google Scholar 

  20. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fmri: A tutorial overview. NeuroImage 45, 199–209 (2009)

    Article  Google Scholar 

  21. Mitchell, T.M.: Machine learning. McGraw Hill (1997)

    Google Scholar 

  22. Jordan, A.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Advances in Neural Information Processing Systems 14, 841 (2002)

    Google Scholar 

  23. Hanson, S.J., Matsuka, T., Haxby, J.V.: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001); revisited: is there a “face” area? NeuroImage 23, 156–166 (2004)

    Article  Google Scholar 

  24. O’Toole, A.J., Jiang, F., Abdi, H., Haxby, J.V.: Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience 17, 580–590 (2005)

    Article  Google Scholar 

  25. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chou, CA., Kampa, K.“., Mehta, S.H., Tungaraza, R.F., Chaovalitwongse, W.A., Grabowski, T.J. (2012). Information-Theoretic Based Feature Selection for Multi-Voxel Pattern Analysis of fMRI Data. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35139-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35138-9

  • Online ISBN: 978-3-642-35139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics