Fmeter: Extracting Indexable Low-level System
Signatures by Counting Kernel Function Calls

Tudor Marian', Hakim Weatherspoonz, Ki-Suh Lee?, and Abhishek Sagaur3

I Google
2 Cornell University
3 Microsoft Corp.

Abstract. System monitoring tools serve to provide operators and developers
with an insight into system execution and an understanding of system behavior
under a variety of scenarios. Many system abnormalities leave a significant im-
pact on the system execution which may arise out of performance issues, bugs,
or errors. Having the ability to quantify and search such behavior in the system
execution history can facilitate new ways of looking at problems. For example,
operators may use clustering to group and visualize similar system behaviors. We
propose a monitoring system that extracts formal, indexable, low-level system
signatures using the classical vector space model from the field of information
retrieval and text mining. We drive an analogy between the representation of ker-
nel function invocations with terms within text documents. This parallel allows
us to automatically index, store, and later retrieve and compare the system sig-
natures. As with information retrieval, the key insight is that we need not rely
on the semantic information in a document. Instead, we consider only the sta-
tistical properties of the terms belonging to the document (and to the corpus),
which enables us to provide both an efficient way to extract signatures at runtime
and to analyze the signatures using statistical formal methods. We have built a
prototype in Linux, Fmeter, which extracts such low-level system signatures by
recording all kernel function invocations. We show that the signatures are natu-
rally amenable to formal processing with statistical methods like clustering and
supervised machine learning.

Keywords: information retrieval, term-frequency inverse document frequency,
indexable system signatures

1 Introduction

System monitoring is key to understanding system behavior. Developers and operators
rely on system monitoring to provide information necessary to identify, isolate, and po-
tentially fix performance bottlenecks and hidden bugs. Unfortunately, as computer sys-
tems become increasingly complex, understanding their execution behavior to identify
such performance bottlenecks and hidden bugs has become more difficult. Furthermore,
large scale system deployments, like the present-day datacenters that power cloud ser-
vices, require increasingly complex automatic system monitoring infrastructures [1-3].

One issue is that existing monitoring solutions have not been designed to enable the
extraction of low-overhead, low-level, system signatures that are sufficiently expressive

2 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

to be used in automatic analysis by formal methods. For example, instruction level mon-
itoring in software and breakpoint debugging incur prohibitive overheads; system call
tracing is both expensive and not expressive enough; hardware counters by themselves
provide little amounts of specialized information while hardware counter assisted profil-
ing is not expressive enough since it relies on sampling. By contrast, high-level metrics,
like the number of completed transactions per second are overly general and application
specific, and are unable to capture with sufficient fidelity low-level system behavior.

Another issue is that few monitoring solutions provide a systematic and formal way
to leverage past diagnostics in future problem detection and resolution [4]. Instead, sys-
tem monitoring has traditionally been performed in an ad-hoc fashion, using anything
from print £f/printk statements, debuggers, operating system process tracers, run-
time instrumentation [5], to logging libraries, kernel execution tracing [6], low-level
hardware counters [7, 8], generalized runtime statistics [9, 10], and system call monitor-
ing [11] to name a few.

In this paper we introduce Fmeter—a novel monitoring technique that efficiently
extracts indexable low-level system descriptions, or signatures, which accurately cap-
ture the state of a system at a point in time. Every low-level signature is essentially a
feature vector where each feature roughly corresponds to the number of times a par-
ticular operating system’s kernel function was invoked. Fmeter draws inspiration from
the field of information retrieval, which showed that counting words in a document is
sufficiently powerful to enable formal manipulations of document corpora. Likewise,
Fmeter does not rely on any additional contextual information, like call stack traces,
function parameters, memory location accesses, and so on.

By construction, embedding kernel function calls into the vector space model [12]
yields formally indexable signatures of low-level system behavior. Developers and op-
erators can automatically analyze system behavior using conventional statistical tech-
niques such as clustering, machine learning, and similarity based search against a data-
base of previously labeled signatures. For example, Fmeter enables operators to instru-
ment entire datacenters of production-ready machines with the flip of a switch, and
provides a way to automatically diagnose problems. At the very least, Fmeter enables
operators to prune out the space of potential problems. By contrast, expending human
expertise to perform forensic analysis in such an environment on a large number of
individual systems is intractable.

Fmeter occupies a new point in the design space of monitoring systems that yield
low-level system signatures. Unlike low level statistical profilers (e.g., Oprofile [7])
which only capture the most frequent events in their event space, Fmeter records ev-
ery single kernel function invocation, therefore there are no events that fly under the
radar—as long as they belong to Fmeter’s event space to begin with. This is an impor-
tant feature of Fmeter since bugs typically reside in cold code. (Section 2.1 formally
defines what is the precise contribution of each kernel function invocation count to a
signature.) Moreover, Fmeter signatures are insensitive to nondeterminism and are ma-
chine independent.

Since Fmeter does not need to collect any detailed contextual information (like
entire stack traces), generating and retrieving signatures can be more efficient than
general-purpose function tracers. As we demonstrate in Section 4, we leverage this

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 3

le+07

le+06 |

100000 F

10000 ¢

1000 ¢

100

Kernel function call count

10 £

3

1

1 10 100 1000 10000
Kernel function rank

Fig. 1. Kernel function call count during boot-up.

knowledge of the problem domain to render the Fmeter prototype more efficient than
the default Ftrace [6] kernel function tracer. Like Ftrace, Fmeter has virtually zero run-
time overhead if it is not enabled. However, unlike the Ftrace function tracer, Fmeter
does not collect any additional semantic information with each function call. The Fme-
ter runtime overhead introduced by signature generation is sufficiently low that signa-
ture generation can be turned on at production time for long continuous periods of time.
Generating and logging signatures over such long continuous time intervals increases
the likelihood of success of post-mortem analysis of crashed systems.
Our contributions are as follows:

— We provide a novel method for extracting indexable low-level system signatures
by embedding kernel function calls into the vector space model. The signatures are
naturally amenable for formal statistical manipulations, like clustering, machine
learning / classification, and similarity based search.

— We introduce Fmeter—an efficient prototype implementation of a monitoring sys-
tem capable of generating and retrieving the low-level system signatures continu-
ously over long periods of time, in real-time, and with little overhead.

— We show that the signatures are sufficiently powerful to capture meaningful low-
level system behaviors which can be accurately classified by conventional unsu-
pervised and supervised machine learning techniques. Furthermore, the signatures
are also sufficiently precise for automatic classifiers to unambiguously distinguish
even between system behaviors that differ in subtle ways.

The rest of the paper is structured as follows. Section 2 discusses our motivation,
insight, approach, and challenges for creating an indexable signature via embedding
kernel function calls into a classical vector space model. We describe our Fmeter design
and implementation in 3. In Section 4, we evaluate Fmeter and our proposed approach.
We discuss limitations to our approach and design in Section 5. Finally, we discuss
related work and conclude in Sections 7 and 8.

2 Methodology

To extract meaningful, low-level system signatures that are also formally indexable, we
turned to the discipline of information retrieval (IR) and text mining for inspiration. The

4 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

information retrieval community has had a long and proven track record of developing
successful statistical techniques for automatic document indexing and retrieval. In par-
ticular, the IR discipline has shown that simple statistics computed over the document’s
terms are sufficiently powerful to yield information which can be formally analyzed.
For example, search engines typically throw away semantic information (e.g., they do
not parse sentences and paragraphs) and use term frequencies mechanically for scoring
and ranking a document’s relevance given an input query.

Like the frequency of words in documents, function invocations appear to follow a
power-law like distribution. Figure 1 shows invocation counts of 3815 functions of the
Linux kernel version 2.6.28 invoked on a Dell Power Edge R710 four way quad core
x86 Nehalem platform from the late boot-up stage until the login prompt was spawned.
It shows that some functions are called more frequently than others. This behavior is
also consistent with the role of instruction-caches in exploiting temporal locality of
code. Such heavy-tailed distributions have been observed often in the real-world. A
classic example of such a power-law is the distribution of wealth in the world, the
distribution in rankings of U.S. cities by population, and the distribution of document
terms in a large corpus of natural language [13]. For example, the word frequency in
the whole of Wikipedia [14], reported on November 27, 2006, follows a shape similar
to that of Figure 1. Such distributions have been thoroughly analyzed by statisticians,
economists, computer scientists and mathematicians alike, and various analytical modes
have been proposed—e.g., power-laws can be mathematically modeled by preferential
attachment, also referred to as the “rich get richer” effect.

2.1 Low-level System Signatures

Our key insight is that we extract low-level system signatures by mapping the concepts
of information retrieval and text mining to system behavior. In our model, the infor-
mation retrieval concept of a “term” corresponds to a kernel function call, while the
concept of a “document” corresponds to a period of low-level system activity, or func-
tion calls, over a predetermined period of time. (The kernel function calls should rot
be confused with the system calls exported by the kernel through it’s application binary
interface.) The “corpus” then corresponds to a collection of low-level system activities.
Like in the classical vector space model [12], we disregard the semantic information
in a document and consider only the statistical properties of the terms belonging to the
document (and to the corpus). In our case, we disregard the sequence of kernel func-
tion calls (the “call stack™ trace), the function parameters, memory location accesses,
or hardware device state manipulation. Instead, we rely solely on counting the kernel
function invocations, which is significantly cheaper and introduces less overhead.

We use the term frequency-inverse document frequency (t £-idf) model to repre-
sent documents, and thus system signatures, as weight vectors. The weight vector for
a document j is vj = [wy j,w2,j, ..., wN,j]T where N is the number of “terms,” i.e., the
total number of kernel functions. Each weight w; ; =1 f; ; X id f;, or the product of the
term frequency, and the inverse document frequency. The term frequency is given by:

tfii= %ﬂ’“ where n; ; is the number of times the term (function) i appears (was called)

in document (during the monitoring run) j. Essentially the term frequency counts the

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 5

number of times a term appears in a document, and normalizes it by the size of the
document. Normalization is required to prevent bias towards longer documents (or in
our case towards longer runs) which would implicitly have a higher term count by sheer
virtue of their length (duration of execution).

The inverse document frequency is used to diminish the weight of terms that occur
very frequently in the entire corpus, which is the case for example with prepositions in
text documents, or multiplexed functions like the ioctl, ipc and execve system
calls, or virtual memory management internal routines during the boot-up phase (the
top ranked kernel functions as seen in Figure 1). The inverse document frequency is
computed as: id f; = log % where |D| is the size of the corpus, or in our case the

number of monitored low-level system activities, and the term |{d : i € d}| represents
the number of documents containing the term i.

Fmeter collects low-level system signatures as weight vectors v;j (for each signature
J), by counting the number of times each kernel function was called during a given
time-interval. More precisely, the set of distinct kernel functions induce the orthonormal
basis for the weight vectors v;. Each distinct kernel function corresponds to one of the
unit-vectors, i.e., versors, that together span the space in which every system signature
is defined to be a point.

Since each signature is represented as a vector belonging to the same vector space,
we can express signature similarities as the similarity between the vectors. One such
measure is the cosine similarity between two vectors—the cosine of the angle between
the two vectors: cos @ = 1+ -|| is a vector norm and x - y the dot product between

IEIRIEN
the two vectors. Alternatively, one may specify a distance metric, like the Minkowski

distance induced by the L, norm: d,(x,y) = (¥;|xi — yil?)[L] Unless specified other-
wise, throughout this paper we compare vectors using the Euclidean distance, i.e., the
distance metric induced by the L, norm. Furthermore, certain formal methods require
we normalize the vectors, in which case we rely on the L, norm as well.

Fmeter retrieves such formal, indexable, low-level system signatures by embedding
kernel function invocations into the classical vector space model [12]. Our approach was
inspired by the information retrieval and text mining literature. By broadly ignoring the
semantics of “documents,” we balance the delicate act of constructing effective low-
level signatures while incurring low signature retrieval overhead, and in the process we
gain the opportunity to manipulate the signatures using conventional statistical tools.

2.2 Statistical Data Analysis

The low-level system signatures collected by Fmeter are indexable, hence they can be
manipulated by formal data analysis methods like unsupervised and supervised machine
learning, similarity based search, and so on.

Clustering is a typical unsupervised learning technique that groups together vectors
(and therefore low-level system signatures) that are naturally close to each other, or sim-
ilar, based on a given distance metric. When used in conjunction with system signatures,
clustering can identify similar low-level behaviors. A typical clustering algorithm also
returns the centroid of each grouping assignment. The centroid of a cluster of signa-
tures can then be used as a syndrome which characterizes a manifestation of a common

6 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

behavior, e.g., an undesired behavior. Clustering can therefore be used to detect system
behaviors which are similar to past pathological behaviors or previously encountered
problems. A key property of clustering is that it allows for unknown behaviors to be
classified as similar to some syndrome S, even though the unknown behaviors may be-
long to a distinct class of their own (i.e., clustered together, the unknown signatures
yield a centroid which is closest to §). Section 4.2 contains our evaluation of Fmeter
signature clustering.

Unlike unsupervised learning methods like clustering, supervised learning requires
labeled training data to construct a predictive model. The model is subsequently used
to make predictions about unlabeled data. For example, if an operator has access to
a labeled training data set containing both signatures of buggy / compromised device
driver behavior and signatures of normal behavior exercised by a correct device driver,
future unlabeled instances of buggy device driver behavior may be identified by a clas-
sifier. Section 4.2 contains a detailed evaluation of such machine learning using Fmeter
signatures as training, validation, and test data.

We envision an environment in which an operator has access to a database of la-
beled low-level system signatures describing many instances of normal and abnormal
behavior, and perhaps the necessary steps to remedy problems. The signatures are re-
trieved and stored from systems whose behavior has been forensically identified and
labeled. For example, signatures can be retrieved from systems that operate within nor-
mal parameters, as well as from systems that have been identified to exert certain bugs,
performance issues, and any unwanted behavior (like the system reacting to a denial
of service attack or a system being compromised and acting as a spam-bot and so on).
Once the root cause of the problem is found for some abnormal behavior, Fmeter can
then be used to generate a large number of t £-idf signatures with low overhead.
These signatures are subsequently labeled appropriately, and stored in the database for
future training references by classifiers. Likewise, signatures can be clustered to obtain
syndrome centroids. By labeling similar vectors and syndrome centroids with semantic
meaning, an operator may later determine automatically whether a system has some
property or is behaving in an undesired fashion.

Interestingly, clustering may also be applied recursively. Applying meta-clustering
on the retrieved cluster centroids, we can determine which entire classes, not just in-
dividual signatures of behaviors, are similar to one another. If two classes of system
behaviors are similar with respect to their t £-idf signatures, it means they are similar
in the way they invoke the kernel’s functions. We can therefore schedule concurrently
executing tasks that rely on the same kernel code-paths (and implicitly the same in-
kernel data-structures) on cores that share a cache domain (e.g., the L3 cache for an
Intel Nehalem microarchitecture). For a monolithic kernel (the only kind we instrument
with Fmeter) such an assignment boosts performance due to improved cache locality
while executing in kernel-mode [15]. For example, Fmeter logging over large time in-
tervals would enable such a cache-aware task assignment feedback loop; as shown in
Section 4.1, Fmeter signature retrieval and logging is sufficiently cheap to render such
logging feasible (and can be switched on and off at runtime).

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 7

3 Extracting Signatures

Instrumenting every existing application to count all possible function calls is unre-
alistic. Instead, we only instrument the operating system kernel, since all applications
depend on it to varying degrees. User-mode applications typically request services from
the kernel through a well defined application binary interface (ABI). Fmeter reduces the
size of the possible feature-space by limiting its dimensionality to a subset that is both
manageable and contains significant low-level information. However, unlike statisti-
cal (kernel and otherwise) profilers, Fmeter triggers upon every kernel function call.
Fmeter keeps track of how many times each kernel function is called, and exports this
information to user-space through the debugfs [16] file system interface.

Since function names are not sufficient as unambiguous identifiers (e.g., a kernel
may have duplicate static functions), we identify kernel functions by their start address.
Absolute addresses work since unlike relocatable code, the kernel symbols are loaded at
the same address across reboots, however, using addresses means that the signatures are
not valid across different kernel versions. We consider this limitation to be minor given
the target Fmeter environment, namely that of compute clouds which run a small num-
ber of managed virtual machine / bare-metal kernels. Function symbols that reside in
runtime loadable modules introduce further complications since modules are relocated
at load time. Initially Fmeter identified functions in modules using a tuple comprising
of the module name, version, and function offset within the module. However, we ob-
served that different version drivers may contain mostly the same code (confirmed after
we compared disassembled modules one function at a time) but adding even the slight-
est modifications at some point in the module changes all subsequent offsets. Therefore
we decided that Fmeter does not instrument functions that live within runtime loadable
kernel modules, and signatures will only capture the behavior of modules by virtue of
the calls the modules make into the core-kernel. This means that Fmeter effectively
reduces the dimensionality of the feature space, a technique that is commonly used
throughout machine learning (e.g., to select only the most meaningful features based
on principal component analysis, and prune out the otherwise low-impact features).

The Linux kernel already provides several facilities to intercept and execute ad-hoc
handlers when kernel functions start or finish executing. For example, the Kernel Dy-
namic Probes (Kprobes) [5] subsystem may be used to graft breakpoint instructions at
runtime, and call into implanted handler routines (these routines may live in runtime
loadable modules as well, hence new ones can be coded as needed). Unlike Kprobes,
which incur the runtime overhead of inserting a breakpoint, executing the handler, and
single-stepping through the breakpointed instruction, the Ftrace [6] infrastructure shifts
most of the overhead at kernel compile time and during the kernel boot-up phase. In par-
ticular, when compiled with gcc’s —pg flag, all kernel functions are injected with a call
to a special mcount routine, a technique similar to the way in which the ATOM [17]
platform converted a program into its own profiler. The mcount routine must be imple-
mented in assembly because the call does not follow the conventional C—ABI. During
kernel boot-time, the mcount call sites are iterated over and recorded in a list, and
are subsequently converted into noops. The saved list can later be used at runtime to
dynamically and selectively convert any of the call-sites back into trace calls.

8 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

Currently, Ftrace implements several tracers in this manner, e.g., a function call
tracer to trace all kernel functions, a function graph tracer that probes functions both
upon entry and exit hence providing the ability to infer call-graphs, a tracer of context
switches and wake-ups between tasks, and so on. Since the Ftrace subsystem supports
a large variety of tracers, it encompasses a general purpose machinery that generically
logs retrieved data to user-space through the debugfs interface. More precisely, Ftrace
relies on large fixed size circular buffers to store traced information, and individually
recorded information has variable size (e.g., function traces and call-graphs). Moreover,
the circular buffer management is fairly complex since it has to be accessed in an SMP-
safe fashion to protect against concurrent updates since the kernel executes concurrently
on all available processors. Although the Ftrace circular buffer available in the kernel
version we started with (version 2.6.28) was deemed to be somewhat lock-heavy [18]
with impact on performance, there have since been various attempts to replace it with
a wait-free alternative [18, 19]. Wait-free FIFO buffers [20, 21] are difficult to prove
correct and are prone to subtle race-conditions and errors, which is why their adoption
into the mainline Linux kernel has been slow.

Since Ftrace is not extensible, i.e., new tracers cannot be added in a non-invasive
way, we implemented the Fmeter tracing to rely only on the mcount kernel function-
ality and did not make use of the conventional ring-buffers. Instead, we constructed an
efficient data structure which takes advantage of the structure of the monitored data to
further reduce overheads. Conceptually, Fmeter requires only a small, fixed size array
that maps kernel function address to an integer value denoting invocation count. Fmeter
creates this mapping at boot-time, right after the kernel introspects itself and records the
mcount sites for all traced kernel functions. To access and update the mapping during
normal operation, we provide a specialized mcount routine.

The function-to-invocation map is slightly more involved. Fmeter actually maintains
a set of per-CPU indices, each index mapping a kernel function to a cache aligned 8 byte
integer value. The integer value is incremented each time the corresponding function is
invoked while running on the current CPU. Each per-CPU index is allocated as a series
of free pages, and each page contains an array of “slots.” Before a kernel function
executes for the first time, the mcount routine is invoked. Our specialized mcount
routine replaces the call site that triggered its call with a call to a custom-built stub for
the original kernel function whose preamble invoked mcount in the first place. There
will be one such stub dynamically created by the specialized mcount routine for every
instrumented function. All subsequent calls to the instrumented kernel function will
execute the custom, personalized stub from then on.

The custom stub for each kernel function is generated by embedding two indices
into the stub code itself. The first index identifies the page in the page list which con-
stitutes the per-CPU data buffer. The second index identifies the corresponding slot on
the selected page corresponding to the invoked function. The indices are generated at
boot-time, when the mappings between function addresses and invocation counts are al-
located. When invoked, each individual stub disables preemption to prevent the current
task from being scheduled out and potentially moved on a different CPU, follows the
mapping by way of the two embedded indices, increments the corresponding invocation
count, and re-enables preemption before returning.

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 9

Enabling and disabling preemption is a cheap operation that amounts to integer
arithmetic on a value in the current task’s process control block. It is cheaper than
atomic operations like the 1ock; inc instructions used by the Linux kernel spinlocks
and cheaper than compare-and-swap instructions used, for example, by wait-free circu-
lar buffers. Note that lock-free constructs do not absolve such atomic operations from
generating expensive cache-coherency traffic over the cross-core interconnect.

A user-space daemon periodically reads the function invocation counts from de-
bugfs and logs them to disk. The normalizing step during the t f-idf score computa-
tion ensures that the collection period does not have a major influence on the signatures;
though it can be configured. The logging daemon reads all kernel function invocation
counts twice (before and after the time interval) and computes the difference which is
later transformed into t £—1df scores, once an entire corpus is generated.

4 Evaluation

We begin our evaluation by measuring the overhead introduced by Fmeter. To quantify
the overhead, we perform a set of micro- and macro-benchmarks. We then proceed to
show the efficacy of statistical data analysis methods. We employ unsupervised (cluster-
ing) and supervised (classification) machine learning techniques to retrieve information
and to monitor system behavior.

Throughout our experiments we use a Dell PowerEdge R710 server equipped with a
dual socket 2.93GHz Xeon X5570 (Nehalem) CPU. Each CPU has four cores and SMB
of shared L3 cache, and is connected through its private on-chip memory controller to
6GB of RAM, for a total of 12 GB of cache-coherent NUMA system memory. The
Nehalem CPUs support hardware threads, or hyperthreads, hence the operating system
manages a total of 16 processors. The R710 machine is equipped with a Serial Attached
SCSI disk and two Myri-10G NICs, one CX4 10G-PCIE-8B-C+E NIC and one 10G-
PCIE-8B-S+E NIC with a 10G-SFP-LR transceiver; the server is connected back to
back to an identical twin R710 server (the twin server is only used during experiments
involving network traffic). The R710 server runs a vanilla Linux kernel version 2.6.28
in three configurations: with the Ftrace subsystem disabled, with the Ftrace function
tracer turned on, and patched with Fmeter instead of Ftrace respectively.

4.1 Micro- and Macro-benchmarks

This section demonstrates the overhead of using Fmeter while deployed to monitor sys-
tems in-production. We compare against a vanilla kernel with Linux Ftrace function
tracer turned both on and off. When Ftrace is turned off the overhead is zero, whereas
if it is turned on, recording every kernel function call incurs additional overhead. Ker-
nel functions are behind all system calls which applications use, they are responsible
for handling events, like interrupts, and they are also directly called by kernel threads.
Fmeter implements its own technique of utilizing the mcount call to record data in
dedicated per-CPU data slots while incurring low overhead. By contrast, the Ftrace col-
lection mechanism is more involved, since more information is recorded, e.g. function
call-traces, and passed to user-space.

10

Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

Test Baseline Ftrace Fmeter Slowdown

s s us Ftrace |Fmeter| Ratio
AF_UNIX sock stream latency| 4.828 +0.585 27.749 +2.649 7.393+0.867 |5.748 | 1.531 |3.753
Fentl lock latency 1.219+0.209 6.639+0.039 3.024+0.649 | 5.446 | 2.481 [2.195
Memory map linux.tar.bz2 206.7504+0.590 | 1800.5204+4.486 | 317.125+1.368 | 8.709 | 1.534 |5.678
Pagefaults on linux.tar.bz2 0.677+0.008 3.678 +0.008 0.866+0.009 |5.433 | 1.279 [4.249
Pipe latency 2.492+0.010 12.421£0.042 3.201 £0.081 |[4.985| 1.285 |3.881
Process fork+/bin/sh -c 1446.800 £ 18.678(6421.000 = 11.124|1831.590 £7.546| 4.438 | 1.266 |3.506
Process fork+execve 672.266+6.663 [3094.380 £ 14.093 | 847.289+3.227 | 4.603 | 1.260 |3.652
Process fork+exit 208.914+6.951 [1116.800+ 10.880| 268.275+1.910 | 5.346 | 1.284 |4.163
Protection fault 0.185+0.009 0.607+£0.011 0.286£0.006 |3.280 | 1.544 [2.125
Select on 10 fd’s 0.231+£0.001 1.410+£0.001 0.277+£0.001 | 6.110 | 1.199 |5.096
Select on 10 tcp fd’s 0.261+0.001 1.798 £0.004 0.326£0.001 | 6.897 | 1.251 |5.512
Select on 100 fd’s 0.897 £0.002 9.809+0.001 1.321+£0.008 [10.941| 1.474 |7.424
Select on 100 tep fd’s 2.189£0.002 26.616+0.242 3.308£0.023 [12.160| 1.511 |8.046
Semaphore latency 2.8904+0.072 6.117+0.236 2.084+0.062 |2.117 | 0.721 [2.936
Signal handler installation 0.113+£0.000 0.280+0.000 0.127+£0.001 |2.473 | 1.119 |2.209
Signal handler overhead 0.909+0.010 3.124+£0.009 1.072+£0.005 |3.435| 1.179 |2.914
Simple fstat 0.100+£0.001 0.852+0.006 0.145+£0.002 | 8.550 | 1.458 |5.864
Simple open/close 1.193 +£0.004 11.222+0.019 1.873+£0.014 |9.410 | 1.571 |5.991
Simple read 0.101 +0.000 1.196 £0.007 0.171+£0.000 |11.893] 1.701 {6.990
Simple stat 0.721£0.002 7.008 +£0.021 1.067+£0.012 |9.720 | 1.480 [6.567
Simple syscall 0.041£0.000 0.210+0.000 0.053+£0.000 |5.156 | 1.303 [3.958
Simple write 0.086+0.000 1.012+£0.004 0.130+0.001 |11.723| 1.511 |7.759
UNIX connection cost 15.328 £0.057 81.380+0.260 | 21.919+1.339 |5.309 | 1.430 |3.713

Table 1. LMbench: Linux kernel in vanilla configuration, with Ftrace function tracer on, and with
Fmeter on.

Table 1 shows the overhead incurred by Ftrace and Fmeter with respect to a vanilla
un-instrumented kernel during the Imbench [22] micro-benchmark (the results represent
average latencies in (s along with standard error of the mean). Overall, Fmeter incurs
significantly less overhead than Ftrace. At best, Ftrace is as little as 2.125 times slower
than Fmeter, whereas in the worst case Ftrace it is as high as 8.046 times slower than
Fmeter. On average, Fmeter is 1.4 times slower than a vanilla kernel, whereas Ftrace
is about 6.69 times slower than the un-instrumented kernel. It is important to note that
Imbench tests exert unusual stress on very specific kernel operations by executing them
in a busy-loop which is uncommon and typically considered an anomaly in real-world
production-ready environments.

[Conﬁguration[Requests per second[Slowdown] Unmodified| Ftrace Fmeter

vanilla 14215.24+69.6931 | 0.00 % real | 57m8.961s |89m56.821s|56m43.264s

fmeter 10793.3+77.7275 | 24.07 % | |user|47m50.175s| 49m5.492s |46m24.890s

ftrace 5524.93+33.4601 | 61.13 % sys | 7m59.642s [41m31.300s| 9m45.817s
(a) (b)

Table 2. (a) apachebench scores, vanilla (un-instrumented) kernel, Ftrace kernel function
tracer on, and with Fmeter on; (b) Linux kernel compile time.

Table 2(a) displays the results of a HTTP server macro-benchmark. We used the
standard apachebench tool, which was configured to send 512 concurrent connec-
tions (1000 times in closed-loop for a total of 512000 requests) and we used a single
1400 byte HTML file as the target served by the apache httpd web server. The apache
HTTP server and the apachebench client ran both on the same machine to eliminate
any network-induced artifacts. All tests were conducted 16 times for each configura-

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 11

tion, and we report the average along with the standard error of the mean. The Table
shows a 24% slowdown in the number of requests completed per second for Fmeter and
a 61% slowdown for Ftrace. As with Imbench, the test stresses the system to magnify
overheads by issuing a large number of concurrent connections.

Finally, Table 2(b) depicts the time elapsed while compiling the Linux kernel, as re-
ported by the t ime utility (not the bash t ime command), atop various configurations.
As expected, the time spent in user-mode (under the row labeled user) is roughly the
same irrespective if a vanilla kernel is used, or whether one of the Ftrace function tracer
or the Fmeter subsystems are enabled instead. However, unlike user-mode code which
is not instrumented, the kernel code is, and the numbers shown in the Table (under the
row labeled sy s) reveal that while Fmeter slows down the kernel compilation by about
22%, Ftrace slows it down by no less than 420%), i.e. it is 5.2 times slower. The numbers
are consistent with the Fmeter and Ftrace design which only rely on the instrumenta-
tion of the kernel code-paths. In general, applications that rely little on the operating
system’s kernel functionality, e.g., those applications that issue few system calls (like
the scientific programs that crunch numbers), would show a lower overhead. However
it also implies that there are less opportunities for meaningful system signatures to be
collected by Fmeter when such applications are running, thereby reducing the efficacy
of our system profiling methodology altogether.

4.2 Clustering and Supervised Machine Learning

Next we show the amenability of signatures retrieved with Fmeter towards statistical
data analysis techniques. We extract the signatures while performing workloads in a
controlled environment. First, we show that supervised machine learning can be applied
to distinguish with high accuracy amongst the signatures extracted while performing
three different workloads. Second, we evaluate the efficacy of the same machine learn-
ing classifiers in distinguishing between highly similar behaviors, as induced by subtle
modifications in the code of a network interface device driver. The device driver resides
in an un-instrumented kernel module, hence the signatures retrieved only account for
the core-kernel functions the driver calls info (i.e., none of the functions of either driver
are instrumented). Our assumption is that such subtle device driver modifications are
characteristic of compromised or buggy systems which are otherwise exceedingly hard
to forensically analyze.

And third, we show that signatures retrieved during the same workloads can be auto-
matically clustered together and accurately distinguished from signatures belonging to
different workloads. We employ the same set of signatures used to previously evaluate
the supervised machine learning. Since clustering is an unsupervised learning method,
system operators may rely on it to identify specific behaviors without having access to
labeled signatures. Operators may categorize whether a particular behavior of interest
is similar to a previously observed syndrome by comparing the behavior’s signatures
with syndrome signatures.

Throughout the evaluation we employ conventional, though state-of-the-art, ma-
chine learning algorithms and information retrieval measurement techniques.

12 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

Supervised Machine Learning First we show how supervised machine learning can
distinguish with high accuracy between Fmeter signatures corresponding to different
system behaviors. We then proceed to evaluate the efficacy of machine learning classi-
fiers in distinguishing between highly similar system behaviors—as induced by subtle
modifications in the code of a network interface controller’s device driver which resides
in an un-instrumented kernel module. For the former experiment, we collected a set of
signatures from three different tasks in a controlled fashion. The tasks in question were:

— kernel compile (kcompile)
— secure copy of files over the network (scp)
— dbench disk throughput benchmark (dbench)

All three tasks ran on the same system—our Dell PowerEdge R710 server—without
interference from each-other. The Fmeter logging daemon collected the signatures ev-
ery 10 seconds. For every workload type we retrieved roughly 250 distinct signatures,
which we subjected to our machine learning methods.

There are many available types of supervised classifiers one can use, e.g. decision
trees, Neural Networks, Support Vector Machines (SVMs), Gaussian mixture models,
and naive Bayes, not to mention ensemble techniques that combine one or more classi-
fiers of the same (e.g., bagging and boosting of decision trees) or different type to per-
form classification. Based on our previous experience, we chose to use the SV M/ [23,
24] classifier, which is an implementation of Vapnik’s Support Vector Machine [25]. We
are considering experimenting with a hand-crafted C4.5 decision tree package that sup-
ports high dimension vectors and is capable of performing boosting and bagging.

In a nutshell, SVMs construct a hyperplane that separates the vectors in the training
set such that the separation margin is maximized (i.e., the hyperplane is chosen such
that it has the largest distance to the nearest training data points of any class). Since
the vectors in the training example may not be linearly separable by a hyperplane in
the vector-space defined by the features, SVMs rely on kernel-functions (not to be con-
fused with the operating system’s in-kernel functions traced by Fmeter) to construct
the hyperplane in a higher dimensional space. Classifying is performed in a straight-
forward manner, simply by determining on which “side” of the hyperplane an example
point/vector resides.

A common practice for evaluating the performance of a machine learning algorithm
when one does not have a large data set is to use a technique called K-fold cross valida-
tion. As we only collected signatures for 30 or 60 minutes every 10 seconds, we did not
create a very large data set, therefore we performed K-fold cross validation. We split
the positive and negative signatures into K sets of equal sizes (modulo K). We merge
the positive signatures of set i with the negative signatures of set i, Vi € {0,K — 1},
thus creating K folds. For each fold i, we set it aside and mark it as the test data. Fold
((i+1) mod K) is marked as the validation data, and the remaining folds are concate-
nated together and marked as the training data. Then we proceed to repeatedly train the
SV M'ght classifier on the training data while using the validation data to incrementally
tune the parameters of the classifier, if any. Once the classifier parameters are chosen
based on the performance on the validation data (e.g., choosing the parameters that
maximize accuracy), the classifier is evaluated a single time on the test data. (Note that

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 13

Signature grouping Baseline Test set (average= std. dev., over all folds)
Accuracy (%)|Accuracy (%) | Precision (%) | Recall (%)
dbench(+1), kcompile(—1) 51.797 100.00 £0.00{100.00 = 0.00{100.00 £ 0.00
scp(+1), kcompile(—1) 51.177 99.39+0.99 | 99.28 £1.54 | 99.56 +1.38
scp(+1), doench(—1) 50.619 100.0040.00{100.00 £ 0.00{100.00 £ 0.00

dbench(+1), kcompile Uscp (—1) | 65589 [100.00+0.00]100.000.00|100.00 % 0.00
scp (+1), kcompile Udbench (—1)| 66432 | 99.5740.69 | 99.17+1.76 | 99.56 + 1.38
kcompile (+1), scp Udbench (—1)| 67.977 | 99.57£0.69 | 99.56+1.38 | 99.09 +1.92

Table 3. Clustering: SVM!8" averaged accuracy, precision, and recall over all 10-folds.

Signature comparison Baseline Test set (average= std. dev., over all folds)
Accuracy (%)|Accuracy (%) | Precision (%) | Recall (%)
myrilOge 1.4.3 (+1), 1.5.1(—1) 50.765 100.00+0.00{100.00 +0.00{100.00 £ 0.00

myrilOge 1.5.1 (+1), 1.5.1 LRO off(—1) 50.25 100.0040.00{100.00 £ 0.00{100.00 £ 0.00
myrilOge 1.4.3 (+1), 1.5.1 LRO off(—1) 51.015 100.0040.00{100.00 4 0.00{100.00 £ 0.00

Table 4. myrilOge: SVM!8" averaged accuracy, precision, and recall over all 8-folds.

to ensure correctness, the test set should be used only once, to assess the performance
of a fully trained classifier.) We report the average metrics obtained by evaluating the
classifier on the test data for each of the K folds—without further training the model.

We did not spend significant time searching the parameter space for either of the
experiments. Instead, we simply set the SVM’s kernel parameter to the default polyno-
mial function, and we searched the parameter space of the trade-off between training
error and margin, also known as the C parameter. Note that the signature vectors were
scaled into the unit-ball using the L, norm—a common SVM classification practice.

We begin by evaluating the performance of the SVM classifier while distinguish-
ing between the same three distinct workloads. Our classifier expects only two dis-
tinct classes labeled +1 and —1 respectively, therefore, since we have a total of three
workloads we perform the following experiments. First, we apply the SVM classifier
to datasets containing signatures from all possible combinations of two distinct classes,
which yields the following groupings: scp (+1) vs. kcompile (—1), scp (+1) vs.
dbench (—1), and kcompile (41) vs. doench (—1). Next, we apply the SVM clas-
sifier to groupings in which we label the signatures from one of the workloads to be of
class +1 and the remaining signatures from the other two workloads to be of class —1.
We repeat the groupings for every workload, yielding three possible combinations (e.g.,
the first one being scp of class +1 and kcompile U dbench of class —1).

Table 3 depicts the SVM performance in terms of accuracy, precision, and recall on
the test set, averaged over all 10-folds. The SVM has been previously calibrated on the
validation set. We also report the accuracy baseline, which is computed by reporting
on the accuracy of a pseudo-classifier that always chooses the class with the label of
the majority signatures. For example, if a dataset contains 100 data points of class +1
and 150 data points of class —1, then the baseline accuracy would be % = 0.6 (or
60%). Table 3 shows the SVM classifier to perform remarkably well. In particular,
it is able to perfectly distinguish the workloads in three of the signature groupings,
and performs almost as good for the remaining groupings. (To get a better intuition of
the classifier’s performance it is important to compare the reported accuracy with the
baseline accuracy.)

Next, we evaluate how well can machine learning tell apart signatures generated by
systems that only differ in subtle ways. For this experiment, the core kernel remains the

14 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

same, and we only alter the myrilOge device driver for the Myril0G NIC. Further, the
device driver resides in a runtime loadable module, which Fmeter does not instrument,
therefore the possible set of kernel functions that are being counted by Fmeter does
not change. Instead, Fmeter records the signatures that contain the driver’s behavior by
virtue of the core-kernel symbols (i.e., functions) the driver calls info.

We chose the following three scenarios for the monitored system: (i) running with
the myrilOge driver version 1.5.1 and default load-time parameters, (ii) running with
the myrilOge driver version 1.4.3 and default load-time parameters, and (iii) running
with the myrilOge driver version 1.5.1 but with the load-time parameter set to disable
the large receive offload (LRO) capability. The first scenario provides a baseline for
“normal” mode of operation, while the second and third scenarios provide various de-
grees of diverging modes of operation. For example, the scenario in which the LRO
is disabled may correspond to a compromised system that maliciously loaded a run-
time module/extension which increases the propensity of the machine to DDOS attacks.
Likewise, the scenario in which we use an older version of the driver may be indicative
of a buggy or a compromised vital subsystem. As a matter of fact, we disassembled the
two driver versions (with ob jdump) and compared the un-relocated binary representa-
tion of the functions code. With respect to the older version of the driver, 24 functions
were altered in the newer version, one function (myrilOge_get_frag_header) was
removed, and 11 new functions were added. Of the newly added functions, only one was
ever called during our workloads, namely myrilOge_select_queue. (Recall that
none of these functions, or any other functions defined within the loadable drivers for
that matter, belong to the Fmeter vector space.)

We ran Netperf [26] TCP stream tests between the two twin servers with the receiver
machine running the Fmeter instrumented kernel and the three myrilOge driver variants.
During the Netperf runs, we were able to achieve 10Gbps line rate. By contrast, if
the conventional Ftrace kernel function tracer is on, we were able to only achieve a
throughput of little more than half the line rate, which indicates that the overall overhead
introduced by Fmeter was acceptable. Table 4 shows the results of the SVM classifier
on all folds of the test set (we used eight-fold cross validation), after the C parameter
was calibrated on the validation set. Our classifier achieves perfect accuracy, prediction,
and recall in all cases. (The case in which we compared the version 1.4.3 of the driver
against version 1.5.1 with LRO disabled was supposed to be a baseline indicator that is
easier to classify than the other two.)

Signature Clustering Next we subject the Fmeter signatures to an unsupervised learn-
ing method such as clustering. We use the same three workloads we already evaluated
our supervised machine learning against in Section 4.2, namely scp, kcompile and
dbench. This choice of workload also allows us to directly compare how the unsuper-
vised clustering stacks against the supervised machine learning.

We implemented two standard well-known clustering algorithms, namely agglom-
erative hierarchical clustering, and K-means respectively. Both clustering algorithms
use the Euclidean distance (as induced by the L, norm), while the agglomerative hi-
erarchical clustering is of the complete-, single-, and average-linkage flavors. We only

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 15

14 | ‘ ‘ ‘scp,kco‘mpilmdl‘)eneh zzzza 1 14 T é2655mbleé wzzzz 1
- scp, kcompile 21 ’ 140 sampled vectors [NV
= 127 scp, dbench | = 12| 60 sampled vectors ZZZZ70 |
E)) kcompile, dbench [ENNNY Z -
z z
= 1+ < 1+ o PrON PR PRD 7RO PO PR PR PR PR A
2 o2 V1IN N1 V)) T T TR TR TR TR TR 7R TR TR
: . : L. nmmnanRanAnAann
S 08t S 08V OV OV V1 I) oV N A v v)) v e
z z N ATV AV Y A Y N A
]] i VNI AV V1IN V) N1 I) et o) et o)
3 06 3 06 W o\ I 1 Y O Y1 O Y1) Y) T Y]
a - a A/ VAV N N V) A Y1 e V)) e) E v)
b b M N ’\{f\éﬂ Y N AV A Y (1 AV 11 (1 1V
] V) V1 A AV Y TV Y 1)) 1Y v v)
g g AL A A
Z 047 Z 041y AN VT V1Y) AV) a1 AV) V)) Y
) 3] i VIOV VAV AR L Y Y Y
i OV V1IN TV T I Y Y Y) VA
02 02 Y I VA VA AV N V) V1 1 (W 1A V1 1 1 1M1 1WA 4
N VI) A V) e 1 e) e v N s)
AN A A
0 97\) o LAY AL AV AV VL Y AV AV A AV 1A) 41 AV AV
20 60 100 140 180 220 234567 891011121314151617181920
of sampled vectors # of target clusters (2 actual clusters)
() (b)

Fig. 2. (a) K-means cluster purity (probability) given the number of (equally) sampled vectors
from each class; (b) K-means cluster purity for scp and dbench signatures with respect to
different number of target clusters (the K parameter).

report on the single-linkage variant throughout the paper since the results for complete-
and average-linkage are similar.

Although the hierarchical clustering algorithm is more precise than the K-means
algorithm, it is computationally more expensive, and it requires a notoriously hard to
choose “height-cut” for automatic evaluation given more than two distinct classes. By
contrast, the K-means algorithm converges significantly faster, and since the target num-
ber of resulting/expected clusters (i.e., the K parameter) is already given as an input
parameter, it is straightforward to automatically evaluate the quality of the clustering
result. We chose to use the K-means algorithm as our primary clustering unsupervised
learning mechanism.

There are various metrics for evaluating the quality of clustering, like purity, nor-
malized mutual information, Rand index, or the F-measure. We chose to use purity,
since it is both simple and transparent. In particular, to compute the purity of a clus-
tering, each resulting cluster is assigned to its most frequent class, and the accuracy of
the assignment is measured by counting the number of correctly assigned signatures
divided by the total number of signatures.

Figure 2(a) shows the cluster purity between all four permutations of the three work-
loads on the y-axis. We used the K-means algorithm, with the K parameter set for the ac-
tual number of clusters, i.e., K = 3 for the clustering of scp, kcompile, and dbench,
and K = 2 otherwise. On the x-axis, the Figure depicts the number of signatures ran-
domly selected, without replacement, from each workload class (the same number of
signatures were selected from the kcompi 1e workload as were selected from the scp,
and dbench workloads). The results are averaged over 12 runs, with the error bars de-
noting standard error of the mean. There are three observations. First, the purity scores
are high, denoting good clustering. Second, the clustering performance increases only
slightly as the number of signatures increases, hence a small number of signatures are
sufficient to properly determine each cluster’s centroid. And third, the quality of the
clusters for K = 3 and vectors sampled from each of the workloads available is lower
than the quality of clusters yielded by K-means with K = 2 and vectors sampled only
from two separate workloads, irrespective of which two workloads were sampled. This

16 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

means that clustering effectiveness appears to decrease as more classes (corresponding
to different workloads) are considered.

At this point it is important to note that high purity is easy to achieve by simply
increasing the number of expected clusters; in the case of K-means by increasing the
value of the parameter K. In particular, if there are as many clusters as there are vectors
(signatures), then the purity evaluates to 1.0. We proceed to leverage this property to
show the quality of the clustering results. Figure 2(b) shows the purity of clustering
signatures from the scp and dbench workloads, by increasing the number of target /
expected clusters (we simply varied the parameter K of the K-means algorithm). As the
Figure shows, the purity scores converge rapidly to the maximum value of 1.0 while
the standard error of the mean decreases at the same time. The intuition is that there are
very few (1, 2, or 3) additional clusters that capture the clustering “mistakes” made by
the ideal clustering (where K is set to the actual number of classes, K = 2 in this case).
The additional separate clusters group together these incorrectly classified signatures.

Compared to supervised machine learning, clustering on the same sets of signatures
performs worse. Nevertheless, clustering is still a useful statistical analysis method,
since it can naturally group signatures belonging to many classes. Furthermore, we can
apply meta-clustering on the retrieved cluster centroids to determine which classes of
behaviors, and hence not just individual signatures which are instances of behaviors,
are closer to one another. Determining which system behaviors are similar in the way
they use the operating system kernel functions can then be leveraged for low-level op-
timizations (e.g., improve cache locality).

5 Limitations

Fmeter uses the Ftrace infrastructure, as such, it only traces kernel function calls. We
recognize that the kernel makes extensive use of function inlining and pre-processor
macros (e.g., common list, hash-table, and even page table traversals) which we are
unable to capture with our current methodology. Likewise, processes that require very
little kernel intervention, like scientific applications, are likely to be all assigned sim-
ilar signatures that are very close to the null/zero vector, which makes them harder to
distinguish from one another, irrespective of the learning machinery.

Moreover, we recognize that the process of performing a measurement introduces
uncertainty itself by interfering with the collected data. For example, the user-space
daemon that logs signatures to disk interferes with the monitored system by virtue of
using the kernel’s pseudo file system and the kernel’s proper file and storage subsystem
(buffer cache, VFS, ext3, block layer, and so on). However, all retrieved signatures are
perturbed uniformly by the logging.

6 Future Work

Currently, the overhead introduced by Fmeter is much higher than the overhead of sta-
tistical profiling tools like oprofile. Nevertheless, the Fmeter overhead is also sig-
nificantly lower than that of the precise profiling tools like the ones relying on the
conventional Ftrace kernel function tracer. Since the kernel function invocations follow

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 17

a power-law distribution (see Figure 1), a straightforward optimization to the Fmeter
counting infrastructure would be to maintain a fast cache that holds the call counts for
the top N hottest functions. Using a sufficiently small cache to account for the most
popular kernel functions could lower the overheads, e.g., by decreasing the cache pol-
lution incurred while following the Fmeter stubs. The value of N can be experimentally
chosen based on the size of the processor caches.

We also plan to explore using Fmeter signatures to perform meta-clustering on al-
ready retrieved cluster centroids. Being able to apply clustering methods in such a re-
cursive fashion would allow us to determine which entire classes, not just instances
of behavior, are similar in the way they invoke the kernel functionality. We can thus
leverage this information to better schedule concurrently executing tasks that rely on
the same kernel code-paths (and implicitly the same in-kernel data-structures) on pro-
cessor cores that share a cache domain (e.g., the L3 cache for an Intel Nehalem mi-
croarchitecture). Such assignments have the potential to boost the overall performance
of monolithic kernels due to improved cache locality while executing in kernel-mode.

7 Related Work

System Monitoring Based on Indexable Signatures There have been several prior ap-
proaches that monitored system calls [11,27, 28] to build some model which can be
used to detect deviations from normal behavior. Furthermore, recent work [4,29] has
shown how indexable signatures can be used to capture essential system characteris-
tics in a form that facilitates automated clustering and similarity based retrieval. Formal
methods, like K-means clustering and the L, norm are then used to compare similarities
among system states. Our work uses the statistical vector space model [12] to represent
the system execution in a given time frame. Fmeter demonstrates how indexable sig-
natures in low-level system monitoring (based on all kernel function calls, as opposed
to just the system calls) can be generated with low overhead and used in a running
high performance system. Like prior work, we too use existing information retrieval
techniques to facilitate formal manipulation of Fmeter’s signatures.

System Monitoring using Performance Counters The most commonly used monitoring
tools record system variables for performance tuning and failure diagnostics. Opro-
file [7] and DCPI [30] use hardware performance counters, and ProfileMe [31] uses
instruction-level counters to periodically collect long-term system usage information.
Such powerful post-processing utilities aid in visualizing and identifying potential per-
formance bottlenecks. With such statistics, it is possible, for example, to understand and
analyze the behavior of Java applications [32]. Since these tools focus on a small and
limited set of predefined performance counters, it becomes impossible to look up arbi-
trary system behavior of interest in the logs. Fmeter differs from these tools by allowing
execution sequences (low-level system signatures) to be indexed and later retrieved.
Chopstix [8] expands the use of individual counters by monitoring a diverse set of
system information. These “vital signs” provide a wider picture of system execution at
a given point in time. Along the same lines are tools such as CyDAT, Ganglia, CoMoN
and Artemis [9, 10,33, 34] which focus on monitoring distributed systems and cater to

18 Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

the fast growing cloud computing environments. The visualization methods for such
tools are important for understanding interactions amongst the nodes in a cluster due to
the large volumes of logs and heterogeneity in platforms.

System Monitoring Based on Logging System logging is used in another area of sys-
tem monitoring. System operators, developers and automatic trainers can extract error
conditions in the logs and use machine learning techniques to predict indicated er-
rors [35-38]. Alternatively, system state signatures can be recorded and searched for
automatic diagnosis [39]. There is also a dedicated set of tracers which allows isolat-
ing non-deterministic system behavior and heisenbugs [40, 41] and replaying execu-
tion from the logs [42] to reproduce error conditions or perform fault correction on
the fly [43,44]. In addition, statistical induction techniques exist for automated perfor-
mance diagnosis and management at the server application level [45]. Fmeter differs
from these tools since it is able to generate indexable low-level signatures in a running
system with low overhead (see Section 4.2).

System Monitoring Based on Indexing Logs Signature based system monitoring has
also inspired methodologies which focus on post-processing of logs to generate useful
inferences. This class of methods attempts to generate inferences based either on iden-
tifying some signatures in the log data or finding anomaly-based aberrations [46,47].
Our method is a generalization of such analysis which can be used for both signature-
based retrieval and anomaly detection. Alternatively, use of fine-grained control flow
graphs as signatures has also been proposed as a useful malware detection strategy [48].
Moreover, similarity based measures working at the application level on a diverse set
of system attributes have shown to be successful [49]. Latest work shows a novel path
of combining source code analysis and runtime feature creation into console log min-
ing for anomaly detection [50, 51]. Our approach explores a similar way of applying
machine learning and information retrieval techniques, yet using a different class of
low-level signatures (and an efficient, specific signature extraction method).

8 Conclusion

We present Fmeter, a monitoring infrastructure that extracts formal, indexable, low-
level system signatures by embedding kernel function calls into the classical vector
space model. Fmeter represents system signatures as t £—idf weight vectors by disre-
garding the semantic information in a document and consider only the statistical prop-
erties of the terms belonging to the document (and to the corpus). In our case, we
disregard the sequence of kernel function calls (the “call stack™ trace), the function
parameters, memory location accesses, hardware device state manipulation and so on.
Instead, we rely on as little information as possible, namely counting the kernel function
calls. This approach is sufficient to provide meaningful and effective system signatures,
while incurring low system overhead. Further, the signatures are naturally amenable for
statistical information retrieval manipulations, like clustering, machine learning, and
information retrieval. We demonstrate the efficacy of Fmeter by yielding near-perfect
results during clustering and supervised classification of various system behaviors.

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 19

Availability

The Fmeter source code is published under BSD license and is freely available at
http://fireless.cs.cornell.edu/fmeter.

References

1. Hellerstein, J.L.: Engineering autonomic systems. In: ICAC *09

2. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale field study.
In: SIGMETRICS *09

3. Dean, J.: Designs, Lessons and Advice from Building Large Distributed Systems. Keynote
talk: LADIS *09

4. Cohen, L., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing, indexing,
clustering, and retrieving system history. In: SOSP *05

5. Mavinakayanahalli, A., Panchamukhi, P., Keniston, J., Keshavamurthy, A., Hiramatsu, M.:
Probing the guts of kprobes. In: Linux Symposium ’06

6. : Ftrace - Function Tracer. http://lwn.net/Articles/322666/

7. : Oprofile. http://oprofile.sourceforge.net

8. Bhatia, S., Kumar, A., Fiuczynski, M.E., Peterson, L.: Lightweight, high-resolution moni-
toring for troubleshooting production systems. In: OSDI *08

9. Cretu-Ciocarlie, G.F., Budiu, M., Goldszmidt, M.: Hunting for problems with artemis. In:
Proceedings of WASL. (2008)

10. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: De-
sign, Implementation, and Experience. In: Proceedings of Parallel Computing. (2004)

11. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for de-
tecting anomalous program behaviors. In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy (SP). (2001) 144-155

12. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-
cations of the ACM 18(11) (1975) 613-620

13. Booth, A.D.: A “law” of occurrences for words of low frequency. Information and Control
10(4) (1967) 386-393

14. Grishchenko. http://wikipedia.org/wiki/File:Wikipedia-n-zipf.png

15. Boyd-Wickizer, S., Morris, R., Kaashoek, M.F.: Reinventing scheduling for multicore sys-
tems. In: HotOS’09

16. : Debugfs. http://lwn.net/Articles/115405/

17. Srivastava, A., Eustace, A.: ATOM - A System for Building Customized Program Analysis
Tools. In: PLDI *94

18. Edge, J.: A lockless ring-buffer. http://lwn.net/Articles/340400/

19. Edge, J.: One ring buffer to rule them all? http://lwn.net/Articles/388978/

20. Brandenburg, B.B., Anderson, J.H.: Feather-trace: A light-weight event tracing toolkit. In:
OSPERT 07

21. Kirieger, O., Auslander, M., Rosenburg, B., Wisniewski, R.W., Xenidis, J., Da Silva, D., Os-
trowski, M., Appavoo, J., Butrico, M., Mergen, M., Waterland, A., Uhlig, V.: K42: building
a complete operating system. In: EuroSys. (2006)

22. Staelin, C.: Imbench: Portable Tools for Performance Analysis. In: USENIX ATC °96

23. Joachims, T.: Svm’®" http://svmlight.joachims.org/.

24. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Dissertation.
Springer (2002)

25. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (1995)

http://fireless.cs.cornell.edu/fmeter
http://lwn.net/Articles/322666/
http://oprofile.sourceforge.net
http://wikipedia.org/wiki/File:Wikipedia-n-zipf.png
http://lwn.net/Articles/115405/
http://lwn.net/Articles/340400/
http://lwn.net/Articles/388978/
http://svmlight.joachims.org/

20

26.
217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar

Netperf. http://netperf.org/

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes.
In: IEEE Symposium on Security and Privacy. (1996)

Li, P., Gao, D., Reiter, M.K.: Automatically adapting a trained anomaly detector to software
patches. In: RAID 09

Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting the data-
center: automated classification of performance crises. In: EuroSys *10

Anderson, J.M., Berc, L.M., Dean, J., Ghemawat, S., Henzinger, M.R., Leung, S.T.A., Sites,
R.L., Vandevoorde, M.T., Waldspurger, C.A., Weihl, W.E.: Continuous profiling: where have
all the cycles gone? In: SOSP "97

Dean, J., Hicks, J.E., Waldspurger, C.A., Weihl, W.E., Chrysos, G.: Profileme: hardware
support for instruction-level profiling on out-of-order processors. In: MICRO *97

Sweeney, P.F., Hauswirth, M., Cahoon, B., Cheng, P., Diwan, A., Grove, D., Hind, M.: Us-
ing hardware performance monitors to understand the behavior of java applications. In:
Proceedings of the 3rd Virtual Machine Research and Technology Symposium (VM). (2004)
DiFatta, C., amd Daniel V. Klein, M.P.: Carnegie mellon’s cydat: Harnessing a wide array of
telemetry data to enhance distributed system diagnostics. In: Proceedings of WASL. (2008)
Park, K., Pai, V.S.: Comon: a mostly-scalable monitoring system for planetlab. SIGOPS
Oper. Syst. Rev. 40(1) (2006) 65-74

Salfner, F., Tschirpke, S.: Error log processing for accurate failure prediction. In: WASL °08
Sandeep, S.R., Swapna, M., Niranjan, T., Susarla, S., Nandi, S.: Cluebox: A performance
log analyzer for automated troubleshooting. In: WASL ’08

Fulp, E.W., Fink, G.A., Haack, J.N.: Predicting computer system failures using support
vector machines. In: Proceedings of WASL. (2008)

Hauswirth, M., Sweeney, PF., Diwan, A., Hind, M.: Vertical profiling: understanding the
behavior of object-priented applications. In: OOPSLA *04

Redstone, J., Swift, M.M., Bershad, B.N.: Using computers to diagnose computer problems.
In: Proceedings of HotOS. (2003) 91-86

Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing heisenbugs in concurrent programs. In: OSDI "08

Ronsse, M., Christiaens, M., Bosschere, K.D.: Cyclic debugging using execution replay. In:
Proceedings of the International Conference on Computational Science-Part I *01

Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z., Wu, M., Kaashoek, M.F., Zhang, Z.: R2: An
application-level kernel for record and replay. In: OSDI °08

Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y.: Triage: diagnosing production run
failures at the user’s site. In: SOSP *07

Qin, F, Tucek, J., Zhou, Y., Sundaresan, J.: Rx: Treating bugs as allergies - a safe method to
survive software failures. ACM Trans. Comput. Syst. 25 (2007) 7

Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instrumentation
data to system states: a building block for automated diagnosis and control. In: OSDI *04
Sequeira, K., Zaki, M.: Admit: anomaly-based data mining for intrusions. In: KDD *02
Ghosh, A.K., Schwartzbard, A.: A study in using neural networks for anomaly and misuse
detection. In: Proceedings of the 8th conference on USENIX Security Symposium *99
Bonfante, G., Kaczmarek, M., Marion, J.Y.: Control flow graphs as malware signatures. In:
Proceedings of the International Workshop on the Theory of Computer Viruses. (2007)
Lane, T., Brodley, C.E.: Temporal sequence learning and data reduction for anomaly detec-
tion. ACM Trans. Inf. Syst. Secur. 2(3) (1999) 295-331

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.L.: Detecting large-scale system prob-
lems by mining console logs. In: SOSP *09

Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system
problem detection. In: USENIX ATC *10

http://netperf.org/

	Fmeter: Extracting Indexable Low-level System Signatures by Counting Kernel Function Calls
	Introduction
	Methodology
	Low-level System Signatures
	Statistical Data Analysis

	Extracting Signatures
	Evaluation
	Micro- and Macro-benchmarks
	Clustering and Supervised Machine Learning
	Supervised Machine Learning
	Signature Clustering

	Limitations
	Future Work
	Related Work
	Conclusion

