Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 7400))

Abstract

To provide privacy protection, cryptographic primitives are frequently applied to communication protocols in an open environment (e.g. the Internet). We call these protocols privacy enhancing protocols (PEPs) which constitute a class of cryptographic protocols. Proof of the security properties, in terms of the privacy compliance, of PEPs is desirable before they can be deployed. However, the traditional provable security approach, though well-established for proving the security of cryptographic primitives, is not applicable to PEPs. We apply the formal language of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various privacy properties of PIEMCP using state space analysis techniques. This investigation provides insights into the modelling and analysis of PEPs in general, and demonstrates the benefit of applying a CPN-based formal approach to the privacy compliance verification of PEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat humble pie rather than further inflate the Pi hype. BPTrends, 1–11 (May 2005)

    Google Scholar 

  2. Al-Azzoni, I., Down, D.G., Khedri, R.: Modeling and verification of cryptographic protocols using Coloured Petri nets and Design/CPN. Nordic Journal of Computing 12(3), 201–228 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied Pi-calculus and automated verification of the direct anonymous attestation protocol. In: IEEE Symposium on Security and Privacy, pp. 202–215 (May 2008)

    Google Scholar 

  4. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2-3), 131–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)

    Google Scholar 

  6. Billington, J., Han, B.: Modelling and analysing the functional behaviour of TCP’s connection management procedures. STTT 9(3-4), 269–304 (2007)

    Article  Google Scholar 

  7. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: 14th IEEE CSFW, pp. 82–96. IEEE Computer Society (2001)

    Google Scholar 

  8. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation of security protocols. J. Comput. Secur. 13(3), 347–390 (2005)

    Google Scholar 

  9. Christensen, S., Mortensen, K.H.: Design/CPN ASK-CTL Manual - Version 0.9. University of Aarhus, Aarhus C, Denmark (1996)

    Google Scholar 

  10. Cremers, C.J.F.: The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–207 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilmore, S.: Programming in standard ML ’97: A tutorial introduction. Tech. rep., The University of Edinburgh (1997)

    Google Scholar 

  13. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer (2009)

    Google Scholar 

  14. Koblitz, N., Menezes, A.: Another look at ”provable security”. J. Cryptology 20(1), 3–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press (June 1999)

    Google Scholar 

  16. Ngo, L., Boyd, C., Nieto, J.G.: Automating Computational Proofs for Public-Key-Based Key Exchange. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 53–69. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Pointcheval, D.: Contemporary cryptology - Provable security for public key schemes. Advanced Courses in Mathematics, pp. 133–189. Birkhäuser (2005)

    Google Scholar 

  18. Suriadi, S.: Strengthening and Formally Verifying Privacy in Identity Management Systems. Ph.D. thesis, Queensland University of Technology (September 2010)

    Google Scholar 

  19. Suriadi, S., Foo, E., Josang, A.: A user-centric federated single sign-on system. Journal of Network and Computer Applications 32(2), 388–401 (2009)

    Article  Google Scholar 

  20. Suriadi, S., Foo, E., Smith, J.: Private information escrow bound to multiple conditions. Tech. rep., Information Security Institute - Queensland University of Technology (2008), http://eprints.qut.edu.au/17763/1/c17763.pdf

  21. Suriadi, S., Ouyang, C., Foo, E.: Privacy compliance verification in cryptographic protocols. Tech. Rep. 48484, Queensland University of Technology, Brisbane, Australia (2012), http://eprints.qut.edu.au/48484/

  22. Suriadi, S., Ouyang, C., Smith, J., Foo, E.: Modeling and Verification of Privacy Enhancing Protocols. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 127–146. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Tatebayashi, M., Matsuzaki, N., Newman Jr., D.B.: Key Distribution Protocol for Digital Mobile Communication Systems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 324–334. Springer, Heidelberg (1990)

    Google Scholar 

  24. WP 14.1: PRIME (Privacy and Identity Management for Europe) - Framework V3 (March 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suriadi, S., Ouyang, C., Foo, E. (2012). Privacy Compliance Verification in Cryptographic Protocols. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds) Transactions on Petri Nets and Other Models of Concurrency VI. Lecture Notes in Computer Science, vol 7400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35179-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35179-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35178-5

  • Online ISBN: 978-3-642-35179-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics