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Abstract. Side-effecting constraint systems were originally introduced
for the analysis of multi-threaded code [21]. In this paper, we show how
formalism provides a unified framework for realizing efficient interproce-
dural analyses where the amount of context-sensitivity can be tweaked
and where the context-sensitive analyses of local properties can be com-
bined with flow-insensitive analyses of global properties, e.g., about the
heap. Side-effecting constraint systems thus form the ideal basis for build-
ing general-purpose infrastructures for static analysis. One such infras-
tructure is the analyzer generator Goblint, which we used to practically
evaluate this approach on real-world examples.

1 Introduction

Due to the complicated semantics of modern programming languages, analyzers
inferring non-trivial program invariants require auxiliary analyses for many dif-
ferent properties. When checking multi-threaded C for absence of data-races, for
example, one needs auxiliary analyses for disambiguating function pointers, may-
and must-alias analysis for ordinary pointers, and if control-flow is to be tracked
with higher precision, some form of value analysis is additionally required [28].

One choice, when combining various kinds of analyses, is to proceed in stages
where later stages have access to the invariants previously computed. The ad-
vantage of the staged approach is that each stage has to deal with a small set
of different concepts only and thus can be kept rather simple. The disadvan-
tage, though, is that an unnecessary loss of precision may be incurred, since
information only flows in one direction across stages.

Thus, when precision is crucial, an integrated approach is preferred. This is
the case in sound static analyzers, such as Astrée [5] or Goblint [22]. In these
frameworks, the different analyses are joined into one global analysis which deter-
mines all required invariants in one go, so that the distinct analyses reciprocally
benefit from one another. Additionally, Goblint allows the user to configure,
for each analysis, whether it should run context-, path-sensitively, or not at all:
the different analyses communicate through a query-system such that multiple
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analyses can complement each other in answering, e.g., aliasing queries. Such
flexible integration is only possible, however, when the algorithmics of the dif-
ferent analyses harmonize. The goal, therefore, is to abandon dedicated analysis
algorithms and instead provide one specification formalism together with a sin-
gle solver engine to compute the invariants. Proofs of soundness are then vastly
simplified as the verification task is separated into proving the constraint system
correct and independently proving the correctness of a generic fixpoint engine,
along the lines of [12].

We suggest that side-effecting constraint systems, introduced in [21] for the
analysis of multi-threaded code, is the ideal tool to achieve the desired harmo-
nization. Intuitively, in each constraint of a side-effecting constraint system, the
right-hand side does not only specify a sequence of reading accesses to some
constraint variables, whose values are queried and used to provide a contribu-
tion to the variable on the left-hand side, but may additionally disperse write
contributions to further constraint variables in-between. The key contribution
of this paper is to show that many analysis problems, whose solving seem to
require different algorithms, can all be expressed using this single formalism. In
particular, we show that this idea provides a uniform solution to the following
interprocedural analysis problems:

1. tabulation of procedure summaries for parts of the calling context only, also
in the presence of dynamic procedure calls;

2. integrated analysis which accumulates certain data flow information flow-
insensitively, while at the same time tracking other data, such as (an ab-
straction of) the local state, flow- as well as context-sensitively.

These problems can be expressed by ordinary constraint systems which thus
may serve as a formal specification of the analysis problem. For non-trivial anal-
yses, including constant propagation, these constraint systems are infinite. Local

fix-point solvers, which only solve those variables that are required for the anal-
ysis, can be used to solve infinite systems. However, these constraints are not
only infinite, but some variables of the constraint system may formally depend
on infinitely many other variables. Therefore, they do not lend themselves to
implementations by means of local solvers.

We show instead that these constraint systems can be reformulated by intro-
ducing side-effecting constraints. The side-effects are triggered during constraint
solving and may depend on the values of other variables. Side-effecting con-
straints thus cannot generally be replaced by an equivalent constraint system
with finite variable dependencies by factoring out side-effects as individual con-
straints. The reformulated constraint systems, however, can be solved efficiently
by means of generic local solvers adapted to side-effecting constraints. A local
solver will try to solve only variables that are required for the analysis. These
adapted generic local solvers together with side-effecting constraint systems may
thus serve as a Swiss army knife for efficient integrated whole-program analysis.

Related Work. The seminal paper by Kildall [14] can already be interpreted
as an attempt to provide a unifying framework for various program analysis
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techniques at his time. It did not incorporate, however, direct support for more
advanced language features such as procedures or threads. The approach of ab-
stract interpretation by Cousot and Cousot [3] not only provides the foundations
for reasoning about the correctness, but also serves as the basis for a variety of
program analyses which algorithmically translate into solving appropriate con-
straint systems [6] or directly interpreting the input program abstractly [5]. As
one instance, also a framework for analyzing programs with procedures has been
provided [4].

Various further approaches to interprocedural analysis are reviewed by Sharir
and Pnueli [24] — one based on call-strings while the other, similar to [4], relies
on (partially) computing abstract procedure summaries. Following Sharir and
Pnueli, later, restricted frameworks for interprocedural analyses have been pro-
vided [19] which, however, only work for specific simple domains and therefore
may not serve as general program analysis frameworks.

Partial contexts are important for scalability since it enables more composi-
tional approaches. It is particularly useful for heap analysis, though the analysis
designer must provide a way to isolate the procedure-relevant portion of the
heap and retrofit the partial effect of a procedure into the wider context at a call
site [2, 20]. For object-oriented languages, object-sensitivity, which distinguishes
call-contexts using only the receiver object at a method invocation site, rather
than the entire points-to information, is sufficiently precise [17].

Generic frameworks for program analysis and code optimization [15, 18, 26,
29] follow the multi-stage analysis paradigm and do not provide a unified solv-
ing algorithm that allows one to combine mutually dependent flow-sensitive and
flow-independent analyses. However, specific pointer-analyses have been pro-
posed which flow-sensitively track a subset of relevant pointers. The client-driven

pointer analysis by Guyer and Lin [11] monitors the performance of an initial
flow-insensitive analysis to decide which pointers to track flow-sensitively. Lhoták
and Chung [16], wishing to perform strong updates, track pointers with singleton
points-to sets flow-sensitively, while relying on fast flow-insensitive approaches
for points-to sets where precision is already lost.

Organization of the paper. Section 2 is meant as a gentle introduction to con-
straint systems for specifying program analyses. Basic notions are introduced for
the case of intra-procedural analyses. Section 3 extends the specification formal-
ism of constraint systems so that it also covers interprocedural analysis in the
sense of [4] and indicates how these systems can be extended to make reachability
information explicit. Section 4 extends these constraint systems to allow for fine-
tuning the amount of context by which procedure calls are distinguished. The
resulting constraint systems may be neither monotonic, nor finite. Even worse,
some variables of the constraint system may formally depend on infinitely many
other variables. Section 5 shows that constraint system is correct w.r.t. the col-
lecting semantics of the program. Section 6 provides further extensions to the
constraint system which supports a flow-insensitive treatment of global informa-
tion. Section 7 indicates how side-effects, added to the specification formalism
of constraints, allow for smooth reformulations of the constraint systems from
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Sections 4 and 6. The new constraint systems, however, have the advantage that
for every abstract lattice, the variables only depend on finitely many other vari-
ables — thus allowing to apply generic local fixpoint algorithms as universal
solver engines. Sections 8 and 9 provide further evidence of the usefulness of the
framework by indicating how dynamic procedure calls as well as the alternative
approach to interprocedural analysis of Sharir/Pnueli [24] can also be specified.
Section 10 demonstrates that this approach is not only expressive but also re-
sults in competitive realizations of analyzers. Section 11 presents a generic local
solver for side-effecting constraint systems as used introduced in Section 7.

2 Intra-Procedural Constraint Systems

We consider programs which consist of a finite set Proc of procedures. Each
procedure g is given by a distinct control flow graph (Ng, Eg), where Ng is the
set of program points of g and Eg ⊆ Ng × L × Ng the set of edges with labels
from a set L. An edge label s ∈ L represents either elementary statements or
conditional guards of the source language. Additionally, we have call edges with
labels f(). The call edge syntax does not allow explicit arguments to functions;
passing of arguments or returning results may be simulated, e.g., by means of
global variables. Each procedure g has one start node sg and one return node
rg, and we ensure that every program point v ∈ Ng, even when semantically
unreachable, can be formally (i.e., ignoring the semantics of edge labels) reached
from sg, and likewise, rg can be formally reached from v.

The goal of the analysis of such a program is to infer program invariants.
Following the approach of abstract interpretation, program invariants are repre-
sented by elements from a complete lattice (D, ⊑), where D is the set of program
invariants, and ⊑ the implication ordering between invariants. Let us for the
moment consider a program with just one procedure main and without proce-
dure calls. Analyzing such programs is referred to as intra-procedural analysis.
Assume that we are interested in inferring one invariant for each program point
of the analyzed program. Such an analysis is referred to as flow-sensitive. Flow-
sensitive intra-procedural invariants can conveniently be expressed as solutions
of a constraint system.

Let V denote a set of constraint variables or unknowns. For intra-procedural
analysis, the set of unknowns are simply program points V = Nmain. Any pair
(x, f) where x ∈ V and f is a function (V → D) → D is called a constraint,
were the right-hand side f is meant to provide a contribution to the value of x

depending on some other values of constraint variables. The variable x is called
the left-hand side of the constraint, whereas we refer to f as the right-hand side.
A set of constraints form a constraint system. A variable assignment σ ∈ V → D

is a solution of the constraint system C if for all (x, f) ∈ C, we have σ x ⊒ f σ.
Every constraint system has one trivial solution, namely, a function which maps
all variables to the top element ⊤ ∈ D. In practice, though, we aim at computing
least, or at least non-trivial, solutions of constraint systems.
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Assume that d0 ∈ D describes the program state before starting procedure
main and that for each statement or guard s occurring at an edge, we are given
the abstract semantics JsK

♯ ∈ D → D, which describes how the abstract state
after the execution of s is obtained from the abstract state before the execution.
As usual in program analysis, these functions are assumed to be monotonic.
Also, we assume the functions JsK♯ to be strict, i.e., preserve the value ⊥. In the
following, the value ⊥ ∈ D always represents the empty set of concrete program
states, i.e., can only be assumed at a program point which is unreachable. Then,
an initial abstract state ⊥ 6= d0 ∈ D for the start point smain together with the
edges of the control flow graph give rise to the following system of constraints:

[smain] ⊒ d0

[v] ⊒ JsK♯ (get [u]) ∀(u, s, v) ∈ Emain

(0)

For better readability, each constraint (x, fun get → e) is denoted as “x ⊒ e”;
that is, get will always be the name of the first parameter of functions represent-
ing right-hand sides.

Since all abstract functions JsK♯ are assumed to be monotonic, constraint
system (0) has a unique least solution. Moreover, the whole constraint system
uses finitely many unknowns only, where the evaluation of the right-hand side of
each constraint may also access finitely many unknowns. In case that the domain
D does not contain infinite strictly ascending chains, a solution of (0) can be
computed, e.g., with Round-Robin iteration or some variant of worklist solver
[13, 14, 27].

3 Analyzing Procedures

Sharir and Pnueli [24] describe two approaches to interprocedural program analy-
sis. The functional approach tries to summarize the abstract effect of a procedure
into a summary function. Many practical inter-procedural analyses, though, are
based on complete lattices D where no effective representations for procedure
summaries are known. This is already the case for inter-procedural full constant
propagation. For such cases, Sharir and Pnueli propose an approach which con-
ceptually represents procedure summaries by their value tables of which only
those entries are computed which may affect the analysis result. Formulated as
a constraint system, following Cousot and Cousot [4], the constraint variables
for this approach are pairs V = N × D where the second component records the
calling-context of the current instance of the procedure. The value for the un-
known [v, d], where v belongs to a function g, thus represents the abstract value
attained at program point v when g is called in context d. For the moment, we
just consider static procedure calls, i.e., call edges of the form (u, g(), v) where the
parameterless procedure g is called. We obtain the following constraint system
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for the variables [v, d]:

[sg, d] ⊒ d ∀g ∈ Proc

[v, d] ⊒ JsK
♯

(get [u, d]) ∀(u, s, v) ∈ E

[v, d] ⊒ comb♯
e (get [u, d]) (get [rg, enter♯

e (get [u, d])])

∀e = (u, g(), v) ∈ E

(1)

Here the functions enter♯
e ∈ D → D and comb♯

e ∈ D → D → D describe the
abstract semantics of procedure calls. Just as for the abstract semantics of state-
ments, we demand these functions to be monotonic and strict in each of their
arguments. For an abstract state d, the application enter♯

e d returns the abstract
state in which g is called. The function comb♯

e on the other hand, describes how
the abstract value d1 before the call must be combined with the abstract value
d2 returned by the call to obtain the abstract value after the call. The constraint
for calling a procedure g at program point u, where d is the context of the caller,
computes d1 = get [u, d] and the context d′ = enter♯

e d1 of the called procedure
g, and combines d1 with the return state of the call d2 = get [rg, d′].

Even if all abstract functions JsK
♯

and all enter♯
e and comb♯

e are monotonic,
the right-hand sides of the constraint system (1) are not necessarily monotonic
themselves. The second argument to combine is of the form get [x, get [y, d]], and
there is no guarantee that σ1 [x, a1] ⊑ σ2 [x, a2] just because a1 ⊑ a2 and σ1 ⊑
σ2. The expressions is, however, monotonic for variable assignments of which
at least one is a monotonic assignment. In our setting, a variable assignment σ

is monotonic, if for all program points v, we have σ [v, a1] ⊑ σ [v, a2] whenever
a1 ⊑ a2. This monotonicity is sufficient to enforce that constraint system (1) has
a unique least solution which is monotonic [9]. The least solution describes in
some sense the procedure summaries, i.e., the abstract effect of every function g

for every context a ∈ D – no matter whether the procedure g is called for a or
not. E.g. [sg, ⊤] equals ⊤ by the first constraint in (1), regardless if enter♯ for an
edge calling g will ever return ⊤.

Computing the least solution using an ordinary worklist algorithm, however,
is not generally possible. Adding contexts to variables makes the set of variables
infinite, given that D is infinite. And even if D is finite, the number of unknowns
depends on the number of elements in D, which might be large. Often proce-
dures are only called in few distinct abstract calling-contexts. In this case, local

fixpoint iteration may succeed by starting from a set X of interesting variables,
such as X = {[rmain, d0]}, and return a partial solution which contains the re-
turn values of the procedure summary for the required abstract calling-contexts
only. Assume that local fixpoint computation terminates with a partial solution
η ∈ X ′ → D where X ⊆ X ′. Then it follows that the entry point sg of a proce-
dure g can only be reached with abstract values from a ∈ D with [sg, a] ∈ X ′.
Accordingly, a program point v can only be reached by abstract values bounded
by

⊔
{ η [v, a] | [v, a] ∈ X ′}, as observed in [8, 9].

Thus, the least solution of constraint system (1) does not contain reachability
information, and it is only by local fixpoint iteration that a set of possibly
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occurring contexts is identified. Instead of referring to the operational behavior
of solvers, we prefer to express reachability directly by means of the constraint
system. In order to do so, we modify (1) by replacing the constraints [sg , a] ⊒ a

with

[smain, d0] ⊒ d0

[sf , a] ⊒
⊔

{ a | ∃a′ ∈ D, a = enter♯
e (get [u, a′]) }

∀e = (u, f(), v) ∈ E

(1’)

Note that for each potential entry state a ∈ D, the second constraint joins over
the same value a, so the result is either ⊥ or a. The entry point of the called
procedure f is constrained by the context a if there exists a call to f in some
context a′ (of the caller) that produces the entry state a (for the callee). This
explicitly encodes reachability into the system. Therefore, in contrast to the
constraint system (1), we require a dedicated constraint for the initial call of the
main procedure. Assuming that the initial local state is d0, the initial context is
also d0, as encoded by the first constraint.

The constraint system (1’), however, may have minimal solutions which are
not monotonic. Assume, e.g., the case where the procedure main consists just of
the program point smain. Then the unique least solution is given by [smain, b] = ⊥
for b 6= d0 and [smain, d0] = d0 — which is not a monotonic variable assignment.
For non-monotonic variable assignments, however, right-hand sides of constraints
need no longer be monotonic. As any constraint system over a complete lattice,
the constraint system (1’) has solutions, and if the domain is finite one may
compute it by an accumulating fix-point iteration, i.e., joining the new value of
an known with the one from previous iteration.

If the lattice D is infinite, however, then the constraint system (1’) not only
contains infinitely many variables, but also has constraints where the evaluation
of a single right-hand side may access infinitely many unknowns. This is the
case for the newly introduced constraints for the entry points of procedures. In
order to terminate, local solving requires that there be only finitely many right-
hand sides for each variable, and that each constraint depend on finitely many
variables only. Therefore, it cannot be applied to solve system (1’).

4 Partial Context-Sensitivity

Local solving has difficulties when reachability is explicitly encoded in the con-
straint. We now consider analyses where tracking reachability explicitly is nec-
essary not just for termination, but also for the result of the analysis. This is
the case, e.g., if only parts of the abstract state are used to distinguish between
different procedure calls. Consider a complete lattice D = D1 × D2 which is the
Cartesian product of complete lattices D1,D2, and assume that calls to proce-
dures f are disambiguated by means of the second component b of a reaching
abstract state (a, b) ∈ D, while the first components corresponding to the same
b are merged. Conceptually, the constraints for handling function calls then take

7



the following form:

[smain, 〈d0〉2] ⊒ d0

[v, b] ⊒ JsK
♯

(get [u, b]) ∀(u, s, v) ∈ E

[sg, b] ⊒
⊔

{d | ∃b′∈D2, d=enter♯
e (get [u, b′]), 〈d〉2 = b}

∀e = (u, g(), v) ∈ E

[v, b] ⊒ let d = enter♯
e (get [u, b])

in comb♯
e (get [u, b]) (get [rg, 〈d〉2])

∀e = (u, g(), v) ∈ E

(2)

Here, the operator 〈·〉i extracts the i-th component of a tuple. Technically, this
constraint system is a smooth generalization of constraint system (1’) — only
that now program points v are not distinguished by the full context d in which
the procedure of v has been called, but only the second component of d. Simi-
larly to constraint system (1’), the constraint system (2) explicitly keeps track
of reachability. In the particular case where D2 is the unit domain 1 = {•}, con-
straint system (2) generalizes a constraint system for callstring 0. In this case
no contexts are distinguished, and all right-hand sides of the constraint system
are monotonic. For nontrivial contexts, though, constraint system (2), just as
constraint system (1’), may have minimal solutions which are not monotonic.
Still, in the next section we prove that every solution of (2) provides a sound

analysis information.
Assume for a moment that the complete lattice D2 of partial contexts is

infinite. Then the same argument as in the last section for constraint system (1’)
can be applied to rule out local fixpoint iteration for solving the constraint system
(2). But even if the number of partial contexts is finite, use of general fixpoint
engines may be infeasible. According to the constraint of (2) for the starting
states of procedure g with the context b, the solver has to track contributions
from all call sites that may call g in context b. Also in complete absence of
context-sensitivity (i.e., where D2 = 1) but in presence of dynamic procedure
calls, a local solver, for instance, will explore all possible call sites in order to
determine the abstract value for the start node of g. The same already holds
true in presence of partial context-sensitivity (i.e., both D1 and D2 are different
from 1). We conclude that even in these simple cases, the number of variables
considered by the local solver on constraint system (2) might be excessively
large.

5 Proof of soundness

In the following, we prove that every solution of constraint system (2) is a sound
abstraction of the collecting semantics. For that proof, we assume that program
execution operates on a set S of concrete states whereas the analyzer operates
with abstract states from a complete lattice D = D1 ×D2. Moreover, we are given
a description relation ∆ ⊆ S × D between concrete and abstract states with the
property that s ∆ a implies s ∆ a′ for all a ⊑ a′. Such a description relation gives
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rise to a concretization γ ∈ D → 2S by γ(a) = {s ∈ S | s ∆ a}. Here, we assume
for the concretization that γ(⊥) = ∅, i.e., that no concrete state is described
by ⊥. The collecting semantics of the program then can specified as the least
solution of the following constraint system over sets of concrete states:

[smain, d0] ⊇ {d0}

[sg, d] ⊇ {d |d′ ∈S, d1 ∈get [u, d′], d∈entere d1} ∀e=(u, g(), v)∈E

[v, d] ⊇
⋃

{ JsK d′ | d′ ∈get [u, d]} ∀(u, s, v)∈E

[v, d] ⊇
⋃

{ combe d1 d2 | d1 ∈get [u, d],

d′ ∈entere d1, d2 ∈get [rg , d′]} ∀e=(u, g(), v)∈E

(C)

Each variable [u, d] represents the set of states possibly reaching program point
u of some procedure g when executing g in entering context d. The functions:

JsK ∈ S → 2S

entere ∈ S → 2S

combe ∈ S → S → 2S

formalize evaluation of basic statements or guards, concrete passing of param-
eters into calls and combining states before calls with returned states to the
state after the calls, respectively. Their effects are assumed to be described by
the corresponding abstract functions. This means that for all d ∆ a, d′ ∆ a′ the
following holds:

JsK d ⊆ γ(JsK
♯

a)

entere d ⊆ γ(enter♯
e a)

combe d d′ ⊆ γ(comb♯
e a a′)

Note that all right-hand sides of the concrete constraint system (C) are mono-
tonic. Therefore, constraint system (C) has a unique least solution. We have:

Theorem 1. Let σ denote the least solution of the concrete constraint system

(C), and σ♯ any solution of the abstract constraint system (2) over the domain

D = D1 × D2. Then the following holds for every program point v.

1. Assume that d ∆ (a, b) and (a, b) ⊑ σ♯ [sg, b]. Then for every program point

v of procedure g, σ [v, d] ⊆ γ(σ♯ [v, b]).
2. If σ [sg, d] 6= ∅ and v is a program point of g, then there exists some (a, b) ∈ D

such that d ∆ (a, b) and σ [v, d] ⊆ γ(σ♯ [v, b]).
3. For all program points v,

σ [v, d] ⊆
⋃

{γ(σ♯ [v, b]) | ∃ a ∈ D1. d ∆ (a, b)}

Proof. The joint proof of statements 1 and 2 is by fixpoint induction of the
concrete semantics. The base of the induction is trivial. For the inductive step,
we only consider values added along a call edge e = (u, h(), v) where u is from
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procedure g. Assume that d ∈ σ [sg, d], d ∆ (a, b) and d ∆ (σ [sg, b]). Assume that
d′′ has been added to σ [v, d] along the edge e, i.e., d′′ ∈ combe d1 d2 where
d1 ∈ σ [u, d] and d2 ∈ σ [rh, d′] for some d′ ∈ entere d1. By induction hypothe-
sis, d1 ∆ (σ♯ [u, b]). Moreover, d′ ∆ (a′, b′) for (a′, b′) = enter♯

e (σ♯ [u, b]). By con-
struction of the constraint system, then also (a′, b′) ⊑ σ♯ [sh, b′] and therefore,
d′ ∆ (σ♯ [sh, b′]). Consequently again by induction hypothesis, d2 ∆ (σ♯ [rh, b′]).
Since comb♯

e is a safe approximation of combe, we conclude that

d′′ ∆ comb♯
e (σ♯ [u, b]) (σ♯ [rh, 〈enter♯

e (σ♯ [u, b])〉2])

Statement 3 directly follows from statements 1 and 2. ⊓⊔

6 Flow-insensitive Analyses

One further challenge for general frameworks for automatic program analy-
sis is added when certain pieces of information are meant to be accumulated
flow-insensitively. Flow-insensitive analyses try to infer invariants which hold
throughout the program execution. Such invariants are used, e.g., to reason
about dynamic data-structures [1, 23, 25] or concurrently running threads [28].

Technically, flow-insensitive analyses can be constructed by introducing an
extra finite set G of entities for which values are accumulated. Depending on the
application, the elements of G can, e.g., be viewed as global variables, abstract
locations of heap objects or the components of the interface through which con-
currently running threads communicate. Thus, the effect of the statement s at an
edge in the control flow graph may now additionally depend on the values of the
globals in G as well as the predecessor state and may also return contributions
to the values of some of the globals. In the following we assume that global and
local information are represented by the same lattice D — if this is not the case,
one can, for example, use the Cartesian product (with product ordering) of the
domains and set the unused pair entry to ⊥. One way to describe the effects of
a statement s then is by modifying the abstract semantics JsK

♯
to a function:

JsK♯ ∈ D → (G → D) → D × (G → D)

which jointly specifies the contribution to the next program point as well as
to certain elements of G. Again, we assume this function to be monotonic in
its arguments and strict, at least in its first argument. This means that any
call JsK

♯ ⊥ τ should return a pair (⊥, ⊥) where ⊥ maps every global to ⊥. In
absence of procedures, we thus may put up the following constraint system for
approximating invariants for the globals in G:

[v] ⊒ 〈JsK♯
(get [u]) get〉1 ∀(u, s, v) ∈ E

[y] ⊒ 〈JsK♯
(get [u]) get〉2 y ∀y ∈ G, (u, s, v) ∈ E

(3)

In absence of procedures, this constraint system can be solved with Round-Robin
iteration or some kind of worklist algorithm. While it cannot easily be combined

10



int y = 0;
void up(int v){

y = v+1;
}
int main(){

up(11);
up(42);
return a;

}

smain

a1

a2

rmain

sup

rup

v = 11; up();

v = 42; up();

return a;

y = v + 1;

Fig. 1. An Example Program

with constraint system (1), it can be combined with the constraint system (2).
Assume the complete lattice D is of the form D = D1 ×D2 where elements b ∈ D2

may serve as contexts. Then we modify the constraint system (2) by replacing
the constraints for statements s with:

[v, b] ⊒ 〈JsK♯
(get [u, b]) get〉1 ∀(u, s, v)∈E

[y] ⊒
⊔

{〈JsK♯
(get [u, b]) get〉2 y | b∈D2} ∀y ∈ G, (u, s, v)∈E

(4)

Example 1. As an example, we generate constraints for inter-procedural con-
stant propagation analysis on the following small C program in Fig. 1. The
example program uses a global variable y, one helper procedure up and a main
procedure. We examine the case where globals are handled flow-insensitively;
variables and formal parameters flow-sensitively. As parameter passing is not
natively supported, we simulate it with a flow-sensitive global variable v. For
this program, we would obtain the following system of constraints:

[smain, 〈d0〉2] ⊒ d0

[a1, b] ⊒ get [rup, Jv = 11; K♯ (get [smain, b])] ∀b∈D2

[a2, b] ⊒ get [rup, Jv = 42; K
♯

(get [a1, b])] ∀b∈D2

[rmain, b] ⊒ Jreturn a; K♯ (get [a2, b]) ∀b∈D2

[sup, b] ⊒
⊔

{d |∃b′ ∈D2, d=Jv =11;K
♯
(get [smain, b′]), 〈d〉2 =b} ∀b∈D2

[sup, b] ⊒
⊔

{d |∃b′ ∈D2, d=Jv =42;K♯ (get [a1, b′]), 〈d〉2 =b} ∀b∈D2

[rup, b] ⊒ get [sup, b] ∀b∈D2

[y] ⊒ Jv + 1K♯ (get [sup, b]) ∀b∈D2

Just as for constraint system (2), a local fixpoint algorithm for the enhanced
constraint system will behave badly: in order to determine the value for some
global y, the algorithm would explore all unknowns [u, b] for which there is a
control-flow edge (u, s, v) which may contribute to the value of y. If the number
of potential contexts is infinite, we again obtain constraints where right-hand
sides access infinitely many constraint variables. In the next section, though, we
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provide alternative formulations of constraint systems (2) and (4) which can be
solved by means of partial tabulation.

7 Constraint Systems with Side-Effects

Ordinary constraints allow to specify precisely in which order variables are read
while the single writing occurs at the very end, namely, to the variable at the left-
hand side. Side-effecting constraints generalize this by allowing multiple writes
and also to specify precisely in which order constraint variables are not only
read, but also written to. In particular, which variable to read or write to next
can depend on the values previously read. Even the sets of accessed variables
may change. Each execution of a constraint thus yields a sequence of reads
and writes which is terminated with an assignment to a left-hand side. In side-
effecting constraint systems, a constraint is given by a pair (x, f) where the
right-hand side f now is a function f ∈ (V → D) → (V → D → unit) → D. A
call get y of the first argument function of f to some unknown y ∈ V is meant
to return the value of y in the current variable assignment. A call set y d of
the second argument function during the evaluation of f for y ∈ V , d ∈ D is
meant to provide the contribution d to the value of y in the current variable
assignment. A variable assignment σ ∈ V → D is a solution to the constraint
system C if for all constraints (x, f) ∈ C we have that σ x ⊒ f σ set where for
every call set y d arising from the evaluation of f we have σ y ⊒ d. If f is given
by fun get → fun set → e for an expression e, we again represent the constraint
(x, f) by “x ⊒ e”.

A generic local solver for side-effecting constraint systems lies at the heart of
the analyzer generator Goblint [22]. A slightly simplified version is provided
in Section 11. It uses self-observation for dynamically keeping track of variable
dependences.

Side-effecting constraint systems allow us to conveniently specify partially
context-sensitive interprocedural analyses. Instead of defining the constraints
for the starting point of some function g by means of the inverse of the enter♯

e

function as in constraint system (2), we attribute the contributions to the re-
spective call sites as side-effects. As in Section 4, consider an analysis where
the domain is the Cartesian product D1 × D2 of two complete lattices D1 and
D2. Assume again that calls to procedures should only be distinguished w.r.t.
the second component b ∈ D2 of reaching states. The constraints for statements
or guards are identical to the constraint system (2). We modify the constraints
generated for every procedure call edge (u, g(), v) ∈ E in the following way:

[v, b] ⊒ let d = enter♯
e (get [u, b])

() = set [sg , 〈d〉2] d

in comb♯
e (get [u, b]) (get [rg , 〈d〉2])

(5)

For an infinite complete lattice D2, the constraint system (5) requires infinitely
many constraint variables. This is identical to constraint system (2). In contrast,
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however, to system (2), the number of constraint variables accessed in the right-
hand side of every single constraint is finite, while there are still only finitely
many right-hand sides for each unknown. Moreover, we have:

Theorem 2. The constraint systems (5) and (2) are equivalent. This means

that every solution of the constraint system (2) is a solution of the constraint

system (5) and vice versa, every solution of the constraint system (5) is a solution

of the constraint system (2).

Proof. We prove equivalence by proving implication in both directions.

(5)⇒(2): Given a solution σ for (5) we have to show that σ is a solution to (2).
We are going to look at the two constraints explicitly mentioned in (2).
1. We have to show that

σ [sg, b] ⊒
⊔

{d | ∃b′ ∈D2, d = enter♯ (σ [u, b′]), 〈d〉2 = b} .

It is sufficient to show that [sg, b] is an upper bound of d=enter♯ (σ [u, b′])
for all b′ where 〈d〉2 = b. This we get from a side-effect of the following
constraint in (5):

σ [v, b′] ⊒ let d = enter♯
e (σ [u, b′])

() = set [sg, 〈d〉2] d

in . . .

2. We have to show that

σ [v, b] ⊒ let d = enter♯
e (σ [u, b])

in comb♯
e (σ [u, b]) (get [rg , 〈d〉2])

This is exactly the effect to [v, b] in (5) (ignoring the side-effect).
(2)⇒(5): Given a solution σ for (2) we have to show that σ is a solution to (5).

We only consider the constraint explicitly mentioned in (5). The crucial part
is to verify that all eventual side-effects are covered. For that, we have to
show that for d = enter♯ (σ [u, b]) it holds that σ [sg, 〈d〉2] ⊒ d. This is given
by the following constraint in (2):

[sg, b′′] ⊒
⊔

{d | d = enter♯ (get [u, b′]), 〈d〉2 = b′′}

if we take b′ = b.
⊓⊔

Since every solution of constraint system (2) is a sound abstraction of the con-
crete semantics,Theorem 2 implies that every solution of constraint system (5) is
a sound abstraction of the concrete semantics. In contrast to constraint system
(2), constraint system (5) now can be solved by means of local fixpoint iteration.

Side-effecting constraint systems also provide a way to realize flow-insensitive
invariants as considered in Section 6 — even in presence of procedure calls which
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are analyzed by means of partial tabulation of summaries. The corresponding
constraint system is obtained from the constraint system (5) by modifying the
constraints for statement or guard edges (u, s, v) ∈ E by taking the modified
abstract semantics JsK

♯
into account:

[v, b] ⊒ let (d, τ) = JsK♯ (get [u, b]) get

() = forall (y ∈ G with τ y 6= ⊥)

set y (τ y)

in d

(6)

The remaining constraints are as for (5). Due to this formulation, contributions
to globals y are only collected for contexts b which occur during fixpoint iteration.

Example 2. Using side-effecting constraints, we may now reformulate the con-
straints from Example 1 as follows:

[smain, 〈d0〉2] ⊒ d0

[rmain, b] ⊒ Jreturn a; K
♯

(get [a2, b]) ∀b ∈ D2

[a1, b] ⊒ let d = Jv = 11; K
♯

(get [smain, b])

() = set [sup, 〈d〉2] d

in comb♯
e d (get [rup, 〈d〉2])

∀b ∈ D2

[a2, b] ⊒ let d = Jv = 42; K
♯

(get [a1, b])

() = set [sup, 〈d〉2] d

in comb♯
e d (get [rup, 〈d〉2])

∀b ∈ D2

[rup, b] ⊒ let () = set [y] (Jv + 1K♯ (get [sup, b]))

in get [sup, b]
∀b ∈ D2

8 Dynamic Procedure Calls

Constraints for procedure calls can be extended to deal with dynamic calls, i.e.,
the procedure, to be called, may depend on the current program state. Let this
dependence be formalized by means of a modified functionality

enter♯
e ∈ D → Proc → D

of the abstract functions enter♯
e where enter♯

e d g = ⊥ indicates that procedure g

is definitely not called at the edge e when the concrete state is described with d.
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Here we only consider the extension of the side-effecting constraint system for
partial contexts with dynamic calls. Therefore, assume again that the complete
lattice D of abstract states is of the form D = D1 ×D2 where the elements in D2

are used to distinguish between different calls. We get the constraint system by
replacing the procedure call constrains in (5) with constraints for every procedure
g ∈ Proc:

[v, b] ⊒ let d = enter♯
e (get [u, b]) g

() = set [sg, 〈d〉2] d

in comb♯
e (get [u, b]) (get [rg, 〈d〉2])

(7’)

For efficiency reasons, we do not want to analyze procedures which are not called,
i.e., for which enter♯

e returns ⊥. In order to avoid that, an extra test first checks
whether enter♯

e d g has returned ⊥ or not. Only if that value is different from
⊥, a side-effect to the start point of g is triggered and the return value of g is
combined with the state before the call. This optimization results in:

[v, b] ⊒ match enter♯
e (get [u, b]) g with

|| ⊥ → ⊥

|| d → let () = set [sg, 〈d〉2] d

in comb♯
e (get [u, b]) (get [rg , 〈d〉2])

(7)

9 Forward Propagation

The algorithm of Sharir and Pnueli for partially tabulating procedure summaries
has proven to be surprisingly efficient in practice. It can also be applied to par-
tially tabulating partial contexts. Interestingly, its algorithmic characteristics are
quite different from locally solving ordinary constraint systems. Instead of recur-
sively descending into variable dependences starting from the return point the
initial call to main, i.e. [rmain, d′

0], it is based on forward propagation: whenever
the abstract state at an unknown [u, b] changes, the abstract effects correspond-
ing to all outgoing edges (u, s, v) are executed to trigger the necessary updates
for the end points v. This behavior is mandatory for the analysis of binary code
where the control-flow graphs are not given before-hand but are successively
built up while the program is decoded [10]. We show that this forward propa-
gation can be achieved if the following variant of the side-effecting constraint
system (5) is used:

[smain, 〈d0〉2] ⊒ d0

[u, b] ⊒ let () = set [v, b] (JsK
♯

(get [u, b])) in ⊥ ∀(u, s, v)∈E

[u, b] ⊒ let d = enter♯
e (get [u, b])

() = set [sg, 〈d〉2] d

() = set [v, b] (comb♯
e (get [u, b]) (get [rg, 〈d〉2]))

in ⊥

∀e=(u, g(), v)∈E

(5’)
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Theorem 3. The constraint systems (5) and (5’) are equivalent, which means

that every solution to constraint system (5) is also a solution to constraint system

(5’), and vice versa, every solution to constraint system (5’) is also a solution

to system (5).

Proof. We are going to show that the second constraint in (5’) has the same
semantics as the second constraint in (2) (that is inherited by (5)), and that the
last constraint from (5’) has exactly the same semantics as the constraint form
(5). All other cases are trivial.

1. The constraint (from (5’))

[u, b] ⊒ let () = set [v, b] (JsK
♯

(get [u, b]))

in ⊥

∀(u, s, v) ∈ E

has only a bottom contribution to [u, b], but it may have a contribution to
[v, b]. It can, clearly, without losing information, be rewritten as

[v, b] ⊒ JsK
♯

(get [u, b])

With this operation we got exactly the second constraint in (2) (that is
inherited by (5)). Note, that the rewriting can also be performed in the
other direction.

2. Similarly to the previous case, can the following constraint from (5’)

[u, b] ⊒ let d = enter♯
e (get [u, b])

() = set [sg, 〈d〉2] d

() = set [v, b] (comb♯
e (get [u, b]) (get [rg , 〈d〉2]))

in ⊥

∀e = (u, g(), v) ∈ E

be rewritten as

[v, b] ⊒ let d = enter♯
e (get [u, b])

() = set [sg, 〈d〉2] d

in comb♯
e (get [u, b]) (get [rg, 〈d〉2])

∀e = (u, g(), v) ∈ E
⊓⊔

Assume that local solving is applied to the constraint system (5’), and a variable
[u, b] has changed its value. Since for every constraint (but the very first one) the
variable of the left-hand side also occurs on the right-hand side, all constraints
for [u, b] will be evaluated and the change be propagated through the control-
flow graph and into calls via side effects. If then a variable [rg, b′] (corresponding
to the return point of the procedure g) changes its value, re-evaluation will be
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triggered for every constraint for a corresponding call to procedure g and produce
the required contributions to the end points of these calls. Thus, the operational

behavior of a local fixpoint solver applied to this system emulates the behavior of
the original algorithm of Sharir/Pnueli. The advantage, though, is that this effect
is not achieved by implementing a dedicated algorithm, but solely by changing
the specification of the constraints. Moreover, this formulation is flexible enough
to allow for an extension which deals with side effects to globals as well.

10 Experimental Evaluation

Side-effecting constraint systems are at the heart of Goblint — a analyzer gen-
erator for concurrent C programs. This implementation of our Swiss army knife
approach allows us to conduct experimental comparisons between configurations
for the same analysis. For this paper, we considered a lockset analysis, where
the goal is to guarantee absence of data races by accumulating for every global
g, sets of definitely held static locks when accessing g. This analysis requires a
detailed value analysis which provides points-to information for pointers as well
as constant values for variables and resolves function pointers on-the-fly. Given
that, the actual sets of definitely held locks are propagated and recorded at
each access to a shared variable. In order to increase precision, path-sensitivity
is added to relate conditional lock operations with corresponding conditional
unlock operations [7].

We considered a suite of the following concurrent programs using Posix

threads:

aget A multithreaded HTTP download accelerator, version 0.4.
automount Autofs kernel-based automounter for Linux, version 5.0.2.
ctrace C tracing library sample program, version 1.2.
knot Knot web-server, stable release from SOSP CD.
pfscan Parallel file scanner, version 1.0.
smtprc Smtp relay checker is a network open mail relay checker, version 2.0.3.
ypbind Linux NIS daemon: ypbind-mt, version 1.19.1.
zfs-fuse ZFS filesystem for FUSE/Linux: release 0.4.0_beta2.

The sizes of these benchmarks vary between 1280 LoC and 24097 LoC where
LoC counts the lines of post-processed and merged C code.

For these benchmarks, we compared the analysis based on Cousot-style con-
straint system (5) (extended with dynamic function calls and side effects) with
the analysis based on constraint system (5’) corresponding to Sharir/Pnueli’s
forward propagating algorithm. In both cases, we considered three instances
where procedures are analyzed with full context, with partial context or no con-
text, respectively. As partial context, we chose the information about the pointer
variables together with the lockset information.

For benchmarking we used an Ubuntu 11.04 machine with an Intel Core 2
Quad Q9650 3GHz processor, of which the analyzer currently utilizes a single
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Fig. 2. Timing results.

core, and 4.0GB DDR2(800 MHz) memory. For all benchmarks and all configu-
rations, the analyzer performs reasonably well — the full context analysis of the
24kloc program zfs-fuse takes 3.7 seconds only. For a fair comparison between
the different configurations, we counted the number of evaluations of right-hand
sides. Figure 2 displays these numbers for the given list of benchmarks, sorted
according to their sizes. The Table 1 shows, for each program, the number of
lines where a data race could not be ruled out. As expected, the analysis with-
out context is less precise. Less expected, we found no difference in precision
between full or half context in these benchmarks. Concerning precision, no dis-
tinction is made between dependency-driven solving and forward propagation,
as these approaches produce the same result for the same context configuration.

Surprisingly, an analysis without context was not the most efficient — for
larger programs and forward propagation, sometimes more right-hand sides had
to be evaluated. This shows that trading the number of updates against the num-
ber of constraint variables does not necessarily pay off. Secondly, the half context
configuration turned out to be the most efficient (with the notable exception of
benchmark smt_proc and forward propagation), while sacrificing no precision.
Generally, for these benchmarks forward propagation required the evaluation of
significantly more right-hand sides than the dependency-driven approach. This
confirms the intuition that forward propagation is prone to analyze the code,
after two branches have met, twice.

For reproducibility of our results, the benchmarks, the system Goblint to-
gether with scripts to run the system in the various configurations can be down-
loaded from http://goblint.github.com/side_effect .

11 A Generic local solver

A simplified generic local solver for side-effecting constraint systems is given in
Figure 3. The algorithm maintains a partial assignment σ of variables to values in
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Table 1. Precision Results.

Lines with Warnings

Name Size(LoC) No Ctx. Half Ctx. Full Ctx.

aget 1280 162 162 162
pfscan 1295 72 72 72
ctrace 1407 87 79 79
knot 2255 140 62 62
smtprc 5787 1068 636 636
ypbind 6596 251 244 244
automount 20624 505 480 480
zfs-fuse 24097 2319 2318 2318

the complete lattice D, together with a partial assignment I which maintains for
every encountered variable x the set of variables which have been accessed during
the last evaluation of right-hand sides of x. Since both assignments are changes
during a execution of the algorithm, we prefer to denote accesses to σ and I in
array notation. Initially, both partial assignments are empty. Additionally, the
algorithm maintains a set S of stable variables. Stable variables either satisfy
their constraints or have been started to be processed and are currently under
evaluation. Initially, the set S is also empty.

let rec solve x =
if x /∈ dom(σ) then begin

σ[x] := ⊥;
I [x] := ∅

end;
S := S ∪ {x};
set x (

⊔
{f (eval x) set | (x, f) ∈ C})

and eval x y =
if y /∈ S then solve y;
I [y] := I [y] ∪ {x};
σ y

and set x d =
if x /∈ dom(σ) then solve x;
if d 6⊑ σ[x] then begin

σ[x] := d ⊔ σ[x];
let X = I[x] in

S := S \ X;
I [x] := ∅;
solve_all X

end

and solve_all X =
foreach x ∈ X do solve x

Fig. 3. The local solving algorithm.

When calling the main function solve_all with a set X of interesting vari-
ables, the recursive worker function solve is called for each variable x ∈ X .

For a variable x, the worker function solve first checks whether σ is already
defined for x. If this is not the case, σ[x] and I[x] are initialized with ⊥ and ∅,
respectively. Then x is added to the set S of stable variables. In the next step,
the contribution to the new value for x is determined. For that, all right-hand
sides f of constraints for x are evaluated. The new value then is the least upper
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bound to their return values. This new value is combined with the old value of
x by means of the auxiliary function set .

The evaluation of a right-hand side f , however, is executed not for the as-
signment σ directly but for the partially applied function call eval x. In the end,
when called for another variable y, the value σ[y] will be returned. Before that,
however, first solve is called for y in order to determine the best possible value
for y, and then the variable dependencies of x on y is recorded in I[x].

The second argument passed to f , set is responsible for creating the side
effects. The function set, when called for a variable y and a value d, first checks
whether y is already in the domain of σ. If this is not the case, y is solved first.
Then the value d is compared with the value σ[y]. If d is not subsumed by σ[y],
then σ[y] is updated to σ[y] ⊔ d. Since then the current value of y has changed,
the variables influenced by y must be reevaluated. This means that they must
be removed from the set S of stable variables and scheduled for reevaluation by
means of solve . As soon as their reevaluation has been scheduled, they can be
removed from the set I[y].

12 Conclusion

We have shown that side-effecting constraint systems are well-suited to express
interprocedural program analyses with quite different characteristics such as flow
insensitivity for global properties, as well as flow sensitivity for locals where pro-
cedure summaries are tabulated for varying parts of the abstract state. Encoding
different well-known techniques using side-effecting constraint systems allows us
to freely combine different types of program analyses into a single analysis, while
preserving soundness guarantees. This combination into a single analysis is criti-
cal for precision because different analyses may mutually complement each other.
It also enables us to generically apply property simulation [7], which we used to
deal with conditional locking, by letting the user select which analyses should
be seen as the relevant property and which analyses are part of the simulation.

The approach through side-effecting constraint systems has been realized
in the analyzer generator Goblint. Any analysis that can be expressed using
side-effecting constraint system can be plugged into the analysis framework. An
experimental evaluation on practical programs shows that competitive run times
can be obtained for larger programs and quite complicated analyses.

Surprisingly, the constraint systems arising from interprocedural analysis
with tabulation of partial contexts are not monotonic. Still, we plan to extend the
widening/narrowing approach of Cousot and Cousot [3], that expects monotonic-
ity, to our setting in order to allow analyses also to build upon very expressive
lattices where ascending chains of elements may not be ultimately stable.
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