
Decision Procedures
Over Sophisticated Fractional Permissions

Le Xuan Bach Cristian Gherghina? Aquinas Hobor??

National University of Singapore

Abstract. Fractional permissions enable sophisticated management of
resource accesses in both sequential and concurrent programs. Entail-
ment checkers for formulae that contain fractional permissions must be
able to reason about said permissions to verify the entailments. We show
how entailment checkers for separation logic with fractional permissions
can extract equation systems over fractional shares. We develop a set de-
cision procedures over equations drawn from the sophisticated boolean
binary tree fractional permission model developed by Dockins et al. [4].
We prove that our procedures are sound and complete and discuss their
computational complexity. We explain our implementation and provide
benchmarks to help understand its performance in practice. We detail
how our implementation has been integrated into the HIP/SLEEK veri-
fication toolset. We have machine-checked proofs in Coq.

1 Introduction

Separation logic is fundamentally a logic of resource accounting [13]. Control of
some resource (i.e., a cell of memory) allows the owner to take certain actions
with that resource. Traditionally, ownership is a binary property, with full own-
ership associated with complete control (e.g., the ability to read, modify, and
deallocate the cell), and empty ownership associated with no control.

Many programs, particularly many concurrent programs, are not easy to
verify with such a coarse understanding of access control [2, 1]. Fractional per-
missions track ownership—i.e., access control—at a finer level of granularity. For
example, partial ownership might allow for reading, while full ownership might
in addition enable writing and deallocation. This access control scheme helps
verify concurrent programs that allow multiple threads to share read access to
heap cells as long as no thread has write access.

A share model defines the representation for fractions π (e.g., a rational
number between 0 and 1) and a three-place join relation ⊕ that combines them
(e.g., addition, allowed only when the sum is no more than 1). The join relation
must satisfy a number of technical properties such as functionality, associativity,
and commutativity. The fractional π-ownership of the memory cell `, whose value
is currently v, can then be written in separation logic as `

π7→ v. When π is full

? Supported by MoE Tier-2 grant MOE2009-T2-1-063
?? Supported by a Lee Kuan Yew Postdoctoral Fellowship (T1-251RES0902)

1

ownership we simply omit it. We modify the standard separating conjunction ?

to respect fraction permissions via the equivalence `
π1⊕π27→ v ⇔ `

π17→ v ? `
π27→ v.

Unfortunately, while they are very intuitive, rational numbers are not a good
model for fractional ownership. Consider the following attempt at a recursively
defined predicate for fractionally-owned binary trees:

tree(`, π) ≡ (` = null ∧ emp) ∨ (`
π7→ (`l, `r) ? tree(`l, π) ? tree(`r, π)) (1)

This tree predicate is obtained directly from the standard recursive predicate for
wholly-owned binary trees in separation logic by asserting only π ownership of
the root and recursively doing the same for the left and right substructures, and
so at first glance looks obviously correct. The problem is that when π ≤ 0.5,
then treeQ can describe some non-tree directed acyclic graphs.

Parkinson then developed a share model that avoided this problem, but at
the cost of certain other technical shortcomings and a total loss of decidability
(even for equality testing) [12]. Decidability is crucial for developing automated
tools to reason about separation logic formulae containing fractional permis-
sions. Finally, Dockins et al. then developed a tree-share model detailed in §3
that overcame the technical shortcomings in Parkinson’s model and in addition
enjoyed a decidable test for equality and a computable join relation ⊕ [4]. The
pleasant theoretical properties of the tree-share model led to its use in the de-
sign and soundness proofs of several flavors of concurrent separation logic [7,
8], and the basic computability results led to its incorporation in two program
verification tools: HIP/SLEEK [11] and Heap-Hop [15].

However, it is one thing to incorporate a technique into a verification tool, and
another thing to make it complete enough to work well. Heap-Hop employed a
simplistic heuristic to prove entailments involving tree shares [14], and although
HIP/SLEEK did better, the techniques were still highly incomplete [9]. Even
verifying small programs can require hundreds of share entailment checks, so in
practice this incompleteness was a significant barrier to the use of these tools to
reason about programs whose verification required fractional shares.

Our work overcomes this barrier. We show how to extract a system of equa-
tions over shares from separation logic formulae such that the truth of the system
is equivalent to the truth of the share portion of the formulae. This extraction
can be done with no knowledge about the underlying model for shares. These
systems of equations are then handed to our solver: a standalone library of sound
and complete decision procedures over fraction tree shares. Although the worst-
case complexity is high, our benchmarks demonstrate that our library is fast
enough in practice to be incorporated into practical entailment checkers.

Contributions.

– We demonstrate how to extract a system of equations over fractional shares
from separation logic formulae (§2).

– We prove that the key problems over these systems are decidable.
– We develop a tool that solves the problems and benchmark its performance.
– We incorporated our tool into the HIP/SLEEK verification toolset.
– Our prototype is available at:

www.comp.nus.edu.sg/∼cristian/projects/prover/shares.html

2

2 Extracting Shares from Separation Logic Formulae

Program verification tools, such as HIP, usually do not verify programs on their
own. Instead, a program verifier usually applies Hoare rules to verify program
commands and then emits the associated entailments to separate checkers such
as SLEEK. Entailment checkers usually follow in the footsteps of SMT solvers
by dividing the input formulae according to the background theories and in turn
rely on specialized provers for each theory, e.g. Omega for Presberger arithmetic.

We plan to follow the same pattern for fractional shares. The program veri-
fier itself needs to know almost nothing about fractional shares, because it will
simply emit entailments over formulae containing such shares to its entailment
checker. The entailment checker needs to know a bit more: how to separate share
information from formulae into a specialized domain, i.e., systems of equations
over shares. The choice of this domain is an important modularity boundary
because it allows the entailment prover to treat shares as an abstract type. The
entailment checker only knows about certain basic operations such as equality
testing, combining, and splitting shares. To check entailments over shares it calls
our new backend share prover (detailed in §4).

To demonstrate that the entailment checker can treat the shares abstractly,
we defer the share model until §3, and will first outline the extraction of systems
of equations over shares from separation logic formulae. Here we will just write
χ for share constants; if our domain were rationals between 0 and 1, then an
example χ would be 0.25. Our actual domain is more sophisticated and is given
in §3, but our point here is that extracting equations over shares can be done
without actually knowing the underlying share model.

Entailment checkers are complicated, in part because information discov-
ered in one subdomain can impact another (e.g., alias analysis can affect share
constraints). Due to the tight link between heap-specific reasoning and share rea-
soning, extra share constraints are generated while discharging heap obligations.
This information seepage prevents a modular and compositional description of
the share constraint generation process. For brevity, we will illustrate share con-
straint extraction from a core separation logic; interested readers are referred to
the description for a richer logic given in [9, §8.4]. Extracting share information
from more complex formulae depends on the exact nature of said formulae but
usually follows the pattern we give here in a straightforward way; the end result
is just larger systems of equations.

The logic formulae we will consider here are of the following form:

Φ := ∃ v.κ ∧ β | κ ∧ β κ := κ * κ | v π7→ v
β := β ∧ β | v = π | π ⊕ π = π π := v | χ

Here, v denotes variables (over shares, locations, and values) and v
π7→ v is the

fractional points-to predicate. Obtaining the share equation systems from the
entailment Φa ` Φc conceptually requires three steps.

First, the formulae are normalized in order to ensure that the heap component
does not contain two distinct points-to predicates when the pointers are provably
aliased. This reduction step can be described as:

v1
π17→ v2 * v3

π27→ v4 ∧ β
β`v1=v3−−−−−−→ ∃π3 . v1

π37→ v2 ∧ (β∧π3 = π1⊕π2∧v2 = v4)

3

Second, formulae are partitioned based on the domains (e.g., heaps, shares,
arithmetics, bags) and all non heap related expressions are floated out of the
heap fragment k. Share constants are floated out of the points-to relations by

introducing a fresh share variable. Thus v1
χ7→ v2 becomes ∃v′.v1

v′7→ v2 ∧ v′ = χ.
Third, heap related obligations are discharged and any share constraint gen-

erated in the process is added to the share constraints previously extracted.
SLEEK discharges heap constraints by pairing each points-to predicate pc

sc7→ cc
in the consequent with a corresponding predicate in the antecedent pa

sa7→ ca
when pa = pc. This pairing generates extra proof obligations over both the con-
tent of the memory (ca = cc) and the shares. For shares, SLEEK considers two
possibilities: either the owned share sa in the antecedent is equal to the one in
the consequent (sa = sc), or sa is strictly greater (∃sr . sa = sc ⊕ sr). This case
split leads to the generation of two proof obligations, with the original entailment
succeeding if at least one of the two new obligations is satisfied1.

Furthermore, it is common for separation logic entailment checkers to also
infer a frame or residue—the part of the antecedent not required to prove the
consequent. If sa is larger than sc, then there exists a non-empty share sr such
that sr ⊕ sc = sa. This share residue is captured by the instantiation of sr.

After the heap constraints are discharged, the share relevant portion of the
entailment consists of sets of formulae over non empty shares with the syntax:

φ ::= ∃v.φ | φ1 ∧ φ2 | π1 ⊕ π2 = π3 | v1 = v2 | v = χ

That is, share formulae φ contain share variables v, existential binders ∃, con-
junctions ∧, join facts ⊕, equalities between variables, and assignments of vari-
ables to constants χ. Unless bound by an existential, variables are assumed to
be universally bound, with universals bound before existentials (∀∃ rather than
∃∀); despite implementing a translation for the feature-rich separation logic for
SLEEK [9] we have not needed arbitrary nesting of quantifiers. We will view the
share formulae as equation systems Σ, i.e. as a pair of sets: (1) a set of equations
of the form a⊕ b = c or v = w, and (2) a set of existentially quantified variables.

To clarify the interaction between entailment checkers and the share solver,
we outline extraction of share equations from two entailments:

x
χ17→ va * x

χ27→ va ` ∃sc. x
sc7→ vc x

χa7→ va ` x
χc7→ vc

First, the two entailments need to be normalized and the shares floated out2:

x
sa7→ va ∧ χ1 ⊕ χ2=sa ` ∃sc. x

sc7→ vc x
sa7→ va∧sa=χa ` ∃sc. x

sc7→ vc∧sc=χc
Discharging the heap obligations occurs by pairing the x

sc7→ vc predicate with
x
sa7→ va, which generates the share obligations sa=sc or ∃sr. sa=sc ⊕ sr. These

obligations are combined with the rest of the share constraints, resulting in two
share proof obligations for each original entailment.{
χ1⊕χ2=sa ` ∃sc . sa=sc
χ1⊕χ2=sa ` ∃sc, sr. sc⊕sr=sa

{
sa=χa ` ∃sc . sc=χc ∧ sa=sc
sa=χa ` ∃sc, sr. sc=χc ∧ sa=sc⊕sr

1 We are almost always able to avoid a serious exponential search by using the search
prunings described in [9].

2 The antecedent ∃ is automatically interpreted as a ∀ over the entailment using
renaming when needed to avoid name clashes.

4

Although simple, the first original entailment often occurs when verifying a
method that requires only read access to a heap location; the existential allows
callers to be flexible regarding which specific share of x they have. One techni-
cal point is that many separation logics (including those used in HIP/SLEEK,
Heap-Hop, and coreStar) only allow positive (non-empty) fractional shares over
a points-to predicate (the empty share over a points-to is equivalent to ⊥); thus,
the above existential must be restricted to never choose the empty share.

We have now given two examples of extracting share equations from separa-
tion logic formulae. Once the translation is finished, a separation logic entailment
checker can ask our share prover two questions:

1. (SAT) A solution S of Σ is a (finite) mapping from the variables of Σ into
tree shares. We say that a solution S satisfies the equation system Σ, written
S |= Σ, when the mapping makes the equations and equalities in Σ true.
The SAT query asks if an equation system Σ is satisfiable, i.e., ∃S. S |= Σ?
SLEEK uses SAT checks to help prune unfeasible proof searches.

2. (IMPL) Given two systems Σa and Σc, does Σa entail Σc?
That is: Σa ` Σc iff ∀S. S |= Σa ⇒ S |= Σc.

In practice this is sufficient; in §4 we will detail how we answer these questions.

3 Binary Boolean Trees as a Fractional Share Model

Here we briefly explain the tree-share fractional permissions model of Dockins et
al. [4]. A tree share τ is inductively defined as a binary tree with boolean leaves:

τ ::= ◦ | • | τ τ
Here ◦ denotes an “empty” leaf while • a “full” leaf. The tree ◦ is thus the empty
share, and • the full share. There are two “half” shares: ◦ • and • ◦, and four

“quarter” shares, beginning with • ◦ ◦. Notice that the two half shares are not

identical; this is a feature, not a bug: this property ensures that the definition
of tree from equation (1) really describes fractional trees instead of DAGs.

Notice also that we presented the first quarter share as • ◦ ◦ instead of

• ◦ ◦ ◦. This is deliberate: the second choice is not a valid share because the

tree is not in canonical form. A tree is in canonical form when it is in its most
compact representation under the inductively-defined equivalence relation ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼= ◦ ◦ • ∼= • •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2
∼= τ ′1 τ

′
2

The canonical representation is needed to guarantee some of the technical prop-
erties described below. Managing the canonicality is a minor performance cost
for the computable parts of our system but a major technical hassle in the proofs.
Our strategy for this presentation is to gloss over some of these details, folding
and unfolding trees into canonical form when required by the narrative. We jus-
tify our informalism in the presentation because all of the operations we define
on trees have been verified in Coq to respect the canonicality.

5

Functional: x⊕ y = z1 ⇒ x⊕ y = z2 ⇒ z1 = z2
Commutative: x⊕ y = y ⊕ x
Associative: x⊕ (y ⊕ z) = (x⊕ y)⊕ z
Cancellative: x1 ⊕ y = z ⇒ x2 ⊕ y = z ⇒ x1 = x2

Unit: ∃u. ∀x. x⊕ u = x
Disjointness: x⊕ x = y ⇒ x = y
Cross split: a⊕ b = z ∧ c⊕ d = z ⇒ ∃ac, ad, bc, bd.

ac⊕ ad = a ∧ bc⊕ bd = b ∧ ac⊕ bc = c ∧ ad⊕ bd = d

a b ac
ad bd

bcc
d

Infinite Splitability: x 6= ◦ ⇒ ∃x1, x2. x1 6= ◦ ∧ x2 6= ◦ ∧ x1 ⊕ x2 = x

Fig. 1. Properties of tree shares

The join relation for trees is inductively defined by unfolding both trees to
the same shape and joining leafwise using the rules ◦ ⊕ ◦ = ◦, ◦ ⊕ • = •, and
•⊕◦ = •; afterwards the result is refolded into canonical form as in this example:

• ◦ ◦ ⊕ ◦ • • ◦
∼= • ◦ ◦ ◦ ⊕ ◦ • • ◦ = • • • ◦

∼= • • ◦

Because • ⊕ • is undefined, the join relation on trees is a partial operation.
Dockins et al. prove that the join relation satisfies a number of useful properties
detailed in Figure 1. The tree share model is the only model that simultaneously
satisfies Disjointness (forces the tree predicate—equation 1— to behave prop-
erly), Cross-split (used e.g. in settings involving overlapping data structures),
and Infinite splittability (to verify divide-and-conquer algorithms). In the do-
main of tree shares, Disjointness is equivalent to x⊕ x = y ⇒ x = ◦; the name
Disjointness comes from a related axiom at the level of formulae by Parkinson.

Unfortunately, while the ⊕ operation has many nice properties useful for
verifying programs, they fall far short of those necessary to permit traditional
algebraic techniques like Gaussian elimination. Dockins also defines a kind of
multiplicative operation ./ between shares used to manage a token counting
setting (as opposed to the divide-and-conquer algorithms we can verify), but
our decision procedures do not support ./ at this time.

4 Decision Procedures over Tree Shares

Here we introduce a decision procedure for discharging tree share proof obli-
gations generated by program verifiers. Recall from §2 that equation systems
contain equations of the form a⊕ b = c and v = w, plus a list of variables that
should be quantified existentially. Moreover, a solution S of Σ is a (finite) map-
ping from the variables of Σ into tree shares. We write S |= Σ to mean that the
system Σ is satisfied by solution S; the SAT query is then simply ∃S.S |= Σ.
Furthermore, we write Σa ` Σc to mean that every solution S that satisfies Σa
also satisfies Σc, i.e., ∀S. S |= Σa ⇒ S |= Σc; this is exactly the IMPL query.

6

REDUCE(Σ)
Σ′ = SIMPLIFY(Σ)
If (|Σ′| = 0)

Return FORMULA(Σ′)
Else

(Σl,Σr) = DECOMPOSE(Σ′)

Φ = REDUCE(Σl)∧REDUCE(Σr)
Return Φ

SAT(Σ)
Φ = REDUCE(Σ)
Return SMT SOLVER(Φ)

Fig. 2. SAT

REDUCEI(Σa,Σb)
Σ′

a = SIMPLIFY(Σa)
Σ′

c = SIMPLIFY(Σc)
If (|Σ′

a| = 0 ∧ |Σ′
c| = 0)

Return (FORMULA(Σ′
a),FORMULA(Σ′

c))
Else

(Σl
a,Σr

a) = DECOMPOSE(Σ′
a)

(Σl
c,Σr

c) = DECOMPOSE(Σ′
c)

(Φl
a,Φl

c) = REDUCEI(Σl
a,Σl

c)
(Φr

a,Φr
c) = REDUCEI(Σr

a,Σr
c)

Return(Φl
a ∧ Φr

a, Φl
c ∧ Φr

c)

IMPL(Σa,Σc)
(Φa,Φc) = REDUCEI(Σa,Σc)
Return ¬ SMT SOLVER(Φa ∧ ¬Φc)

Fig. 3. IMPL

The key reason SAT and IMPL are nontrivial is that the space is dense3.
That is, there exist trees of arbitrary height, seeming to rule out a brute force
search. If we cannot find a solution to Σ at height 5, how do we know that one
is not lurking at height 10,000? If we check Σa ` Σc when the variables are
restricted to constants of height 5, how do we know that the entailment will
continue to hold when the variables range over constants of arbitrary height?

Our key theoretical insight is that despite the infinite domain, both SAT and
IMPL are decidable by searching in the finite subdomain of trees with bounded
height. Define the system height |Σ| as the height of the highest tree constant
in Σ or 0 if Σ contains only variables4. For solutions S, let |S| be the highest
constant in its codomain. In §5, we will prove our key theoretical result: that for
both SAT and IMPL queries, if the height of the system(s) of equations is n,
then it is sufficient to restrict the search to solutions of height n.

Of course, we do not want to blindly search through an exponentially large
space if we can avoid it! Our goal for this section is to describe and prove sound
the algorithms for SAT and IMPL given in Figures 2 and 3. The core of our de-
cision procedures are the REDUCE and REDUCEI functions, which use the shape
of the tree constants in the system to guide their search. There are four subrou-
tines: SIMPLIFY, DECOMPOSE, FORMULA, and SMT SOLVER. SMT SOLVER
is just a call into an off-the-shelf SAT/SMT solver; our prototype attaches to
both MiniSat and Z3. The other three subroutines are discussed in detail below.

SIMPLIFY. SAT/SMT solvers can require a lot of computation time. Accord-
ingly, SIMPLIFY attempts reduce the size of the problem with a combination of
several techniques. First, each equation that contains two or three tree constants
is simplified into an equality (or >/⊥). To do so, SIMPLIFY sometimes uses the
inverse operation of ⊕, written 	, and which satisfies a⊕ b = c iff c	 a = b. To
calculate the (partial) operation a 	 b, unfold a and b to the same shape (just

3 This is by design: density is needed to enable the “Infinite Splitability” axiom, which
is needed to support the verification of divide-and-conquer algorithms.

4 Since we are computer scientists, we start counting with 0, so | ◦ | = | • | = 0.

7

as with ⊕); calculate the difference leafwise using the rules •	 • = ◦, •	 ◦ = •,
and ◦ 	 ◦ = ◦; and then fold the result back into canonical form, e.g.,

• ◦ ◦ ◦ •
	 • ◦ ◦

∼= • ◦ ◦ ◦ •
	
• ◦ ◦ ◦ ◦

=
◦ ◦ ◦ ◦ •

∼= ◦ ◦ ◦ •

	 is needed when one of the constants appears on the RHS of an equation, e.g.,5

• ◦ ◦ ⊕ a =
• ◦ ◦ ◦ •

 a = ◦ ◦ ◦ •

If an equation reaches a tautology (e.g., ◦ ⊕ v = v) then it is removed; if an
equation reaches a contradiction (e.g., •⊕• = v) then we mark the entire system
as equivalent to ⊥. Second, SIMPLIFY will rewrite equalities; e.g., if the equality
v = χ is in the system then SIMPLIFY will substitute χ for v in the remainder of
the system. Third, SIMPLIFY uses certain domain-specific knowledge to simplify
equations with zero or one tree constant(s), including the following examples:

v1 ⊕ v2 = ◦ v1 = ◦ ∧ v2 = ◦ v1 ⊕ ◦ = v2 v1 = v2
v1 ⊕ • = v2 v1 = ◦ ∧ v2 = • v1 ⊕ v2 = v1 v2 = ◦
v1 ⊕ v1 = v2 v1 = ◦ ∧ v2 = ◦

The result of SIMPLIFY is a new (in practice considerably smaller!) system of
equations Σ′ that has the same solutions, as expressed by the following Lemma:

Lemma 1. For all solutions S, S |= Σ iff S |= SIMPLIFY(Σ).

We will also need to know that SIMPLIFY does not increase the height of an
equation system. To prove this, we need the following fact about ⊕ and 	:

Lemma 2. If a⊕ b = c or a	 b = c then |c| ≤ max(|a|, |b|).
Given that fact, it is straightforward to prove the associated fact on SIMPLIFY:

Lemma 3. |SIMPLIFY(Σ)| ≤ |Σ|

Proper equation systems. An equation system Σ is proper when all of the equa-
tions and equalities in Σ have no more than one constant. SIMPLIFY(Σ) is
always proper, which simplifies some of our upcoming soundness proofs; accord-
ingly, hereafter we assume that all of our equation systems are proper.

DECOMPOSE. The heart of our decision procedure is DECOMPOSE, which takes
an equation system Σ of height n and produces two independent systems Σl and
Σr with heights at most n−1. We decompose equalities and equations as follows:

v (vl, vr) vars

◦ (◦, ◦) • (•, •) τ1 τ2 (τ1, τ2) consts

a (al, ar)
b (bl, br)
c (cl, cr)

 a⊕ b = c (al ⊕ bl = cl, ar ⊕ br = cr)

a = b (al = bl, ar = br)
eqs

5 In §4 we use the symbol to indicate a transformation taken by the subroutine cur-
rently under discussion, so here it is referring to one of the operations of SIMPLIFY.

8

In addition, DECOMPOSE also transforms the list of existentially bound vari-
ables so that if v was existentially bound in Σ then vl is existentially bound in
Σl and vr is existentially bound in Σr. Fresh variable names are chosen so that
the system can determine which “parent” variables are associated with which
“child” variables. We write x̂ for the parent variable function, e.g., v̂l = v̂r = v.

The key fact about DECOMPOSE is that the solution of the original system
is tightly related to the solutions of the decomposed systems, as follows:

Lemma 4. Given a system Σ and a solution S such that DECOMPOSE(Σ) =
(Σl, Σr) and DECOMPOSE(S) = (Sl, Sr), then S |= Σ iff Sl |= Σl and Sr |= Σr.

By DECOMPOSE(S) we mean the division of S into two independent solutions:

DECOMPOSE(S) ≡ (λv.DECOMPOSE(S(v̂)).1, λv.DECOMPOSE(S(v̂)).2)

Lemma 4 holds because the left and right subtrees of a binary tree are indepen-
dent from each other. Moreover, DECOMPOSE decreases height:

Lemma 5. If DECOMPOSE(Σ) = (Σl, Σr), then |Σ| > max(|Σl|, |Σr|) or we
were at height 0 to begin with, i.e., |Σ| = |Σl| = |Σr| = 0.

FORMULA. After repeatedly applying DECOMPOSE, |Σ| = 0, i.e., the embed-
ded constants are only ◦ and •. Tree constants at height zero have a natural
interpretation as booleans, with ◦ as ⊥ and • as >. Likewise, solutions at height
zero can be used as valuations (maps from variables to > and ⊥) for logic formu-
lae. Accordingly, FORMULA translates the equations and equalities in a system
of equations of height zero into logic formulae as follows:

a⊕ b = c (¬a∧¬b∧¬c) ∨ (¬a∧b∧c) ∨ (a∧¬b∧c)
a = b (¬a∧¬b) ∨ (a∧b)

Each resulting formula is ∧-conjoined together to get a single formula that rep-
resents the entire system, as indicated by the following lemma:

Lemma 6. Let |S| = |Σ| = 0 and v1, . . . , vn be the existentially bound variables
in Σ. Then S |= Σ iff S |= ∃v1 . . . ∃vn. FORMULA(Σ)

To connect to a pure SAT solver (e.g., MiniSat) we then compile the existential
into a disjunction; e.g., ∃v.φ (v=>∧φ)∨ (v=⊥∧φ). In contrast, SMT solvers
such as Z3 can handle existentials over booleans directly.

The proof of Lemma 6 is by simple case analysis, but critics will rightly
observe that the hypothesis |S| = 0, which is crucial to make the case analysis
finite, is in general not true. We will see below how to overcome this difficulty.

SAT. We are almost ready to prove the correctness of the SAT function. The last
puzzle piece we need is one of the two major theoretical insights of this paper:

Theorem 1. Σ is satisfiable if and only if Σ can be satisfied with a solution S
whose height is |Σ|, i.e., ∃S. S |= Σ iff ∃S. |S| = |Σ| ∧ S |= Σ.

9

We will defer the proof of Theorem 1 until §5.1; our task in this section is to
show how it fits into our correctness proof for SAT, i.e.,

Theorem 2. SAT(Σ) = > if and only if Σ is satisfiable, i.e., ∃S.S |= Σ.

Proof. Given Σ, we call REDUCE and feed the result into the SMT solver, so
Theorem 2 depends on REDUCE turning Σ into an equivalent logical formula.

The proof of REDUCE is by (complete) induction on |Σ|. Both the base
case and the inductive case begin by applying applying SIMPLIFY to reach Σ′.
By Lemma 1, Σ′ is satisfiable iff Σ was satisfiable; moreover, by Lemma 3,
|Σ′| ≤ |Σ|. After simplification, the base case and the inductive case proceed
differently.

In the base case, |Σ′| = 0 and REDUCE calls FORMULA to produce a logical
formula that by Lemma 6 is equivalent to Σ′ as long as the solution has height
0. Theorem 1 completes the base case by telling us that testing satisfiability at
height 0 is sufficient to determine satisfiability in general.

In the inductive case, we DECOMPOSE Σ′ into Σl and Σr. Lemma 5 tells
us that both new systems have lower height, so we can apply the induction
hypothesis to verify the recursive call and get two new formulae whose truth are
equivalent to Σ l and Σr. Lemma 4 completes the inductive step by telling us
that the conjunction of Σ l and Σr is equivalent to Σ′. ut

IMPL. We need the second major theoretical insight of this paper to verify IMPL.

Theorem 3. Σa ` Σc iff Σa ` Σc for all solutions S s.t. |S| = |Σa|, i.e.,
∀S. S |= Σa ⇒ S |= Σc iff ∀S. |S| = |Σa| ⇒ S |= Σa ⇒ S |= Σc.

We will defer the proof until §5.2; just as we did with Theorem 1 above, our task
here is to show how Theorem 3 fits into our correctness proof for IMPL, i.e.,

Theorem 4. IMPL(Σa, Σc) if and only if Σa ` Σc, i.e., ∀S. S |=Σa ⇒ S |=Σc.

Proof. The major effort is proving that REDUCEI correctly transforms Σa and
Σc into equivalent logical formulae Φa and Φc such that Σa ` Σc iff Φa ⇒ Φc;
afterwards we simply use the standard SAT/SMT solver trick of converting a
validity check for Φa ⇒ Φc into an unsatisfiability check for Φa ∧ ¬Φc.

The proof of REDUCEI is largely in parallel with the proof of REDUCE in
Theorem 2. We proceed by complete induction, this time on max(|Σa|, |Σc|).
Again the base and inductive cases begin in the same way. We apply SIMPLIFY
to reach Σ′a and Σ′c and again use Lemma 1 to guarantee that Σ′a ` Σ′c iff
Σa ` Σc; Lemma 3 ensures that max(|Σ′a|, |Σ′c|) ≤ max(|Σa|, |Σc|).

After simplification, the base and inductive cases diverge. In the base case,
max(|Σ′a|, |Σ′c|) = 0 and we call FORMULA to reach two logical formulae, the
first equivalent to Σ′a and the second equivalent to Σ′c, as long as the solutions
are of height zero (Lemma 6). Theorem 3 completes the base case by observing
that it is sufficient to check only the solutions of height |Σ′a|, i.e. zero.

In the inductive case, we DECOMPOSE Σ′a and Σ′c into Σ l
a, etc., decreasing

the maximum of their heights (Lemma 5), and thus letting us use the induction
hypothesis for the recursive calls. Afterwards, we have four formulae (Φl

a, etc.);
we then conjoin both antecedents and both consequents using Lemma 4. ut

10

Optimizations. The algorithms presented in figures 2 and 3 get the job done but
yield far from optimal performance. Our prototype incorporates a number of
additional optimizations including. Optimizations during SAT include dropping
equalities after substitution and a lazier on-demand version of DECOMPOSE.
In addition to utilizing the lazier version of DECOMPOSE, optimizations during
IMPL include dropping existentials from the antecedent, substituting equali-
ties from the antecedent into the consequent, and stopping decomposition when
the antecedent has reached height zero and performing a SAT check on the an-
tecedent if the consequent has not also reached height zero. Several optimizations
require some additional theoretical insight; e.g., the last requires the following:

Lemma 7. Let S be a solution of Σ. Then |S| ≥ |Σ|.

Proof. Recall that we assume that Σ is proper, i.e., each equation has at most
one constant. If |Σ| = 0, we are done. Otherwise, by definition of |Σ| = n, there
must be an equation σ containing a constant χ with height n. Since S |= Σ
we know that S |= σ. Assume both variables v1 and v2 ∈ σ have height lower
than n in S (i.e., max(|S(v1)|, |S(v2)|) < |χ|). By Lemma 2 we also know that
|χ| ≤ max(|S(v1)|, |S(v2)|), so by transitivity we have |χ| < |χ|, a contradiction.
Accordingly, at least one of the variables vi must have had height at least n. ut

Unsurprisingly, the actual code used in the prototype is much more compli-
cated than the algorithms presented above, and accordingly is much harder to
verify. For future work we would like to develop a verified implementation.

Complexity. One might wonder what complexity class SAT and IMPL belong to.
Tree-SAT when restricted to systems of height zero is already NP-COMPLETE.

Proof. We can use the following clause-by-clause reduction from 3-SAT, in which
new variables (X, Y , Z, M , and N) are chosen fresh for each disjunctive clause:

A ∨B ∨ C (A⊕X=•) ∧ (X⊕Y =Z) ∧ (B⊕M=Z) ∧ (M⊕N=C)
¬A ∨B ∨ C (A⊕X=Y) ∧ (B⊕Z=Y) ∧ (Z⊕M=C)
¬A ∨ ¬B ∨ C (A⊕X=Y) ∧ (B⊕Z=M) ∧ (C⊕X=M)
¬A ∨ ¬B ∨ ¬C (A⊕X=Y) ∧ (B⊕Z=M) ∧ (X⊕Z=C)

The clause on the LHS is satisfiable iff the clause on the RHS is satisfiable. ut

We hypothesize that tree-SAT on systems of arbitrary height is still “only”
NP-COMPLETE because our SAT algorithm seems to scale the formulae poly-
nomially with the description of the system. Going a bit further onto a limb,
we further hypothesize that tree-IMPL is no worse than NPNP-COMPLETE.
Happily, as we show in §7, performance seems to be adequate in practice.

5 Sufficiency of Finite Search over Tree Shares

The SAT and IMPL algorithms presented in §4 are basically doing a shape-
guided search through a finite domain. Our key theoretical insight is that a finite

11

search is sufficient, as formalized in the statement of Theorems 1 and 3 in §4. Our
next task is to prove these theorems, which is the focus of the remainder of this
section. The most technical parts—Lemmas 8 and 10—have been mechanically
verified in Coq. The remaining proofs have been carefully checked on paper.

5.1 The Sufficiency of Finite Search for SAT

We begin by explaining two related operations given a tree τ and natural n:
left rounding, written b←−τ cn; and right rounding, written b−→τ cn. Because of the
canonical form for tree shares, their associated formal definitions are somewhat
unpleasant, but informally what is going on is simple. First, the tree τ is unfolded
to height n. Second, we shrink the height of the tree by uniformly choosing the
left (respectively, right) leaf from each pair of leaves at height n. Finally, we
refold the resulting tree back into canonical form.

For illustration, here we left and right round the tree • ◦ • ◦ • to height 3.
To help visually track what is going on, we have highlighted the left leaf in each
pair with the color red and the right leaf in each pair with the color blue.⌊←−−−−−−−

• ◦ • ◦ •

⌋
3

∼=

←−−−−−−−−−−−−
• • ◦ ◦ • ◦ • •


3

= • ◦ • •
∼= • ◦ •

⌊−−−−−−−→
• ◦ • ◦ •

⌋
3

∼=

−−−−−−−−−−−−→
• • ◦ ◦ • ◦ • •


3

= • ◦ ◦ •
∼= • ◦ ◦ •

Lemma 8 (Properties of b←−τ cn and b−→τ cn).

1. If n > |τ | then b←−τ cn = b−→τ cn = τ

2. If n = |τ |, τl = b←−τ cn, and τr = b−→τ cn then max(|τl|, |τr|) < n

3. If τ1⊕ τ2 = τ3 and n = max(|τ1|, |τ2|, |τ3|), then b←−−τ1 cn⊕b
←−−τ2 cn = b←−−τ3 cn

and b−−→τ1 cn ⊕ b
−−→τ2 cn = b−−→τ3 cn

Proved in Coq. Lemma 8 states (1) that b←−τ cn and b−→τ cn do not affect τ if
n > |τ |; and (2) will decrease the height if n = |t|. Most importantly, (3) b←−τ cn
and b−→τ cn preserve the join relation when n is the height of the equation.

We extend
⌊←−· ⌋

n
and

⌊−→· ⌋
n

to work over solutions S pointwise as follows:

b
←−
S cn ≡ λv. b

←−−−
S(v) cn b

−→
S cn ≡ λv. b

−−−→
S(v) cn

The key point of the rounding functions is given by the next lemma, a corollary
of lemma 8 after using a solution S to instantiate variables in a system Σ.

Lemma 9. Let S |= Σ, n = |S| > |Σ|, Sl = b
←−
S cn, and Sr = b

−→
S cn. Then

Sl |= Σ, Sr |= Σ, and max(|Sl|, |Sr|) < n.

12

The key to this lemma is that since we are rounding only at a height n > |Σ|, all
of the constants in Σ are unchanged. Only the variables in S with height greater
than |Σ| are modified, but their new values are also solutions for Σ. With the
preliminaries out of the way, we are finally ready to prove Theorem 1.

Theorem 1. Σ is satisfiable if and only if Σ can be satisfied with a solution S
whose height is |Σ|, i.e., ∃S. S |= Σ iff ∃S. |S| = |Σ| ∧ S |= Σ.

Proof. ⇐: Immediate. ⇒: Suppose S |= Σ. By Lemma 7, we have |S| ≥ |Σ|,
i.e., |S| = |Σ|+n for some n. We proceed by strong induction on n. If n = 0 we
are done. Otherwise, by Lemma 9 we know that Sl = b

←−
S c|Σ|+n satisfies Σ and

|Sl| < |S|, letting us apply the induction hypothesis. ut

5.2 The Sufficiency of Finite Search for IMPL

IMPL is more complicated than SAT due to the contravariance. Suppose we
have computationally checked that all solutions S of height |Σa| that satisfy Σa
also satisfy Σc. Now suppose that S |= Σa for some S such that |S| = |Σa|+ 1,
and we wish to know if S |= Σc. Lemma 9 tells us that b

←−
S c|Σa|+1 |= Σa. Our

computational verification then tells us that b
←−
S c|Σa|+1 |= Σc, but then we are

stuck: on its own, b
←−
S c|Σa|+1 |= Σc is too weak to prove S |= Σc.

The root of the problem is that b←−τ cn does not contain enough information
about the original because half of the leaves are removed. Fortunately, the leaves
that were dropped when we round left are exactly the leaves that are kept when
we round right, and vice versa. We can define a third operation, written τl 5n τr
and pronounced “average”, that recombines the rounded trees back into the
original. Just as was the case with the rounding functions, although the formal
definition of τl 5n τr is somewhat unpleasant due to the necessity of managing
the canonical forms, the core idea is straightforward. First, τl and τr are unfolded
to height n − 1. Second, each leaf in τl is paired with its corresponding leaf in
τr. Finally, the resulting tree is folded back into canonical form.

We illustrate with another example, highlighting again with red and blue:

• ◦ • 53 • ◦ ◦ •
∼= • ◦ • • 53 • ◦ ◦ • =

• • ◦ ◦ • ◦ • •

∼=
• ◦ • ◦ •

Lemma 10 (Properties of τl 5n τr).

1. If n > |τ | then τ 5n τ = τ .

2. If n ≥ |τ |, then b←−τ cn 5n b
−→τ cn = τ .

3. If n > max(|τ1|, |τ2|, |τ3|, |τ ′1|, |τ ′2|, |τ ′3|), τ1 ⊕ τ2 = τ3, and τ ′1 ⊕ τ ′2 = τ ′3, then
(τ1 5n τ ′1)⊕ (τ2 5n τ ′2) = (τ3 5n τ ′3).

Proved in Coq. The key points are (1) τ is an identity with itself, (2) 5n is the
inverse of b←−τ cn and b−→τ cn, and (3) 5n preserves the join operation ⊕.

13

Given a system Σ, Lemma 10 contains the facts we need to prove that the
5n-combination of two solutions Sl and Sr as defined below is also a solution.

Sl 5n Sr ≡ λv. Sl(v) 5n Sr(v)

Lemma 11 (Properties of Sl 5n Sr).

1. For all S, if n ≥ |S| then b
←−
S cn 5n b

−→
S cn = S.

2. Let Sl, Sr be solutions of Σ and n > max(|Sl|, |Sr|). Then S = Sl 5n Sr is
a solution of Σ.

Direct from Lemma 10. We are now ready to attack the main IMPL theorem.

Theorem 3. Σa ` Σc iff Σa ` Σc for all solutions S s.t. |S| = |Σa|, i.e.,
∀S. S |= Σa ⇒ S |= Σc iff ∀S. |S| = |Σa| ⇒ S |= Σa ⇒ S |= Σc.

Proof. ⇒: Immediate. ⇐: We apply complete induction, starting from |Σa|, on
the height of solutions S of Σa. The base case (|S| = |Σa|) is immediate. For the
inductive case, we know S |= Σa and that all solutions S′ of Σa such that |S′| <
|S| are also solutions of Σc. By Lemma 9, we know that b

←−
S c|S| and b

−→
S c|S|

are both solutions to Σa with lower heights. The induction hypothesis yields

that b
←−
S c|S| and b

−→
S c|S| are also both solutions of Σc. Lemma 11 completes the

proof by telling us that b
←−
S c|S| 5|S| b

−→
S c|S| = S is also a solution of Σc. ut

6 Handling Non-zeros

For fear of cluttering the presentation we omitted showing how to restrict a
variable to non-zero shares in SAT and IMPL queries.

However, our methods are able to handle this detail: each system of equations
also contains a list of “non-zero” variables. This list is taken into account when
constructing the first-order boolean formula: for each non-zero variable, an extra
disjunctive clause over all the decompositions of that variable is generated. This
forces at least one of the boolean variables corresponding to the initial non-zero
variable to be true in each solution. In the tree domain, this clause ensures that
the non-zero variable has at least one • leaf.

The full algorithms have an extra call to the NON ZERO function, which
returns a conjunction of the clauses encoding the non-zero disjunctions (not
shown: sometimes we need to lift existentials to the top level). To force a variable
v to be strictly positive at least one of the variables decomposed from v needs
to be true (i.e., the tree value has at least one • leaf). If vi is the set of variables
obtained from decomposing v then positivity is encoded by

∨
i vi.

SAT(Σ)
Φ = REDUCE(Σ)
Φr = Φ ∧ NON ZERO(Σ)
Return SMT SOLVER(Φr)

IMPL(Σa,Σc)
(Φa,Φc) = REDUCEI(Σa,Σc)
Φ′a = Φa ∧ NON ZERO(Σ1)
Φ′c = Φc ∧ NON ZERO(Σ2)
Return ¬ SMT SOLVER(Φ′a ∧ ¬Φ′c)

14

Because these non-zero constraints relate otherwise disjoint equation subsys-
tems to each other, it is not obvious how to verify each subsystem independently,
which is why we produce one large boolean formula rather than many small ones.

Furthermore, the non-zero set forces extra system decompositions. To illus-
trate this point, observe that the equation v1 ⊕ v2 = • has no solution of depth
0 in which both v1 and v2 are non-empty. However, decomposing the system
once will yield the system: vl1 ⊕ vl2 = • ∧ vr1 ⊕ vr2 = • with two possible solutions
(vl1 = ◦; vr1 = •; vl2 = •; vr2 = ◦) and (vl1 = •; vr1 = ◦; vl2 = ◦; vr2 = •) which
translate into (v1 = ◦ •; v2 = • ◦) and (v1 = • ◦; v2 = ◦ •). We have proved

that for each non-zero variable, dlog2(n)e is an upper bound on the number of
extra decompositions, where n is the total number of variables. In practice we do
not need to decompose nearly that much, and we have not noticed a meaningful
performance cost. We speculate that we avoid most of the cost of the additional
decompositions because the extra variables are often handled by some of the fast
simplification rules we have incorporated into our tool.

7 Solver Implementation

Here we discuss some implementation issues. Our prototype is an OCaml library
that implements (an optimized version of) the algorithms from §4 to resolve the
SAT and IMPL queries issued by an entailment checker such as SLEEK.

Architecture. Our library contains four modules with clearly delimited interfaces
so that each component can be independently used and improved:

1. An implementation of tree shares that exposes basic operations like equality
testing, tree constructors, the join operation, and left/right projection.

2. The core: which reduces equation systems to boolean satisfiability. The bulk
of the core module translates equation systems into boolean formulas via
an optimized version of the procedures given in §4. As we will see, a con-
siderable number of queries reduce to tautologies after repeated simplifi-
cation/decomposition and can thus be discharged without the SAT/SMT
solver. If we are not that lucky, then the system is reduced to a list of exis-
tentially quantified variables, a list of variables that must be strictly positive,
and a list of join facts over booleans of the form v1 ⊕ v2 = (•|v3).

3. The backend: tasked with interfacing with the SAT/SMT solver: translating
the output format from the core to the input format of the SAT/SMT solver
and retrieving the result. Our backend is quite lightweight so changing the
underlying solver is a breeze. We provide backends to MiniSat [5] and Z3 [3];
each add some final solver-specific optimizations.

4. A frontend: although the prover can be used as an OCaml library, we believe
users may also want to query it as a standalone program. We provide a
module for parsing input files and calling the core module.

15

Evaluation A: SLEEK embedding. Our OCaml library is designed to be easily
incorporated into a general verification system. Accordingly, we tested our imple-
mentation by incorporating it into the SLEEK separation logic entailment prover
and comparing its performance with our previous attempt at a share prover [9,
§8.1]. That prover attempted to find solution by iteratively bounding the range
of variables and trying to reach a fixed point; for example from ◦ • ⊕ x = y it

would deduce ◦ ≤ x ≤ • ◦ and ◦ • ≤ y. The resulting highly incomplete solver

was unable to prove most entailments containing more than one share variable,
even for many extremely simple examples such as v1 ⊕ v2 = v3 ` v2 ⊕ v1 = v3.

We denote the implementation of the method presented here as ShP (Share
Prover), and use BndP (Bound Prover) for the previous prover and present our
results in Table 1. In the first column, we name our tests, which are broken into
three test groups. The next five columns deal with the SAT queries generated
by the tests, and the final five columns with the IMPL queries.

The first two test groups were developed for BndP in [9] and so the share
problems they generate are not particularly difficult. The first four tests verify
increasingly precise properties of a short (32-line) concurrent program in HIP,
which calls SLEEK, which then calls BndP/ShP. In either case, the number of
calls is the same and is given in the column labeled “call no.”; e.g., barrier-weak
requires 116 SAT checks and 222 IMPL checks.

The columns labeled “BndP (ms)” contain the cumulative time in millisec-
onds to run the BndP checker on all the queries in the associated test, e.g.,
barrier-weak spends 0.4ms to verify 116 SAT problems and 2.1ms to verify 222
IMPL checks. BndP may be highly incomplete, but at least it is rapidly highly
incomplete. The columns labeled “ShP” contain the cumulative time in millisec-
onds to run the ShP checker, e.g., barrier-weak spends 610ms verifying 116 SAT
problems and 650ms verifying 222 IMPL problems. Obviously this is quite a bit
slower, but part of the context is that the rest of HIP/SLEEK is approximately
3,000ms on each of the first four tests—in other words, ShP, although much
slower than BndP, is still considerably faster than the rest of HIP/SLEEK.

The remaining columns shed some light on what is going on; “SAT no.” gives
the number of queries that ShP actually submitted to the underlying SAT solver.
For example, barrier-weak submitted 73 out of 116 queries to the underlying
solver for SAT and 42 out of 222 queries to the underlying solver for IMPL;
the remaining 43+180 queries were solved during simplification/decomposition.
Finally “SAT (ms)” gives the total amount of time spent in the underlying SAT
solver itself; in every case this is the dominant timing factor. While it is not
surprising that the SAT solver takes a certain amount of time to work its mojo,
we suspect that most of the time is actually spent with process startup/teardown
and hypothesize that performance would improve considerably with some clever
systems engineering. Of course, another way to improve the timings in practice
is to run BndP first and only resort to ShP when BndP gets confused.

Tests five through nine were also developed for BndP, but bypass HIP to test
certain parts of SLEEK directly. Observe that when the underlying solver is not
called, ShP is quite fast, although still considerably slower than BndP.

16

SAT IMPL

test call BndP ShP SAT SAT call BndP ShP SAT SAT
no. (ms) (ms) no. (ms) no. (ms) (ms) no. (ms)

barrier-weak 116 0.4 610 73 530 222 2.1 650 42 450
barrier-strong 116 0.6 660 73 510 222 2.2 788 42 460
barrier-paper 116 0.7 664 73 510 216 2.2 757 42 460

barrier-paper-ex 114 0.8 605 71 520 212 2.3 610 40 430

fractions 63 0.1 0.1 0 0 89 0.1 110 11 110
fractions1 11 0.1 0.1 0 0 15 0.1 31.3 3 30

barrier 68 0.1 0.9 0 0 174 1.2 3.9 0 0
barrier3 36 0.2 0.1 0 0 92 0.2 2.2 0 0
barrier4 59 0.1 0.7 0 0 140 0.9 2.4 0 0

read ops 14 FAIL 210 14 208 27 FAIL 317 9 150
construct 4 FAIL 70 4 65 17 FAIL 880 17 270
join ent 3 FAIL 70 3 30 3 FAIL 50 3 48

Table 1. Experimental timing results

On the other hand, even if the total time is reasonable, what is the point of
advocating a slower prover unless it can verify things the faster prover cannot?
The tenth test tries to verify a simple 25-line sequential program whose ver-
ification uses fractional shares; we write FAIL to indicate that BndP is unable
to verify the queries. Finally, the eleventh and twelfth tests bypass HIP and
instruct SLEEK to check entailments that BndP is unable to help verify.

For brevity, we report here the timings obtained only with the Z3 backend.
Usually, choice of backend does not make much difference, but in a few cases,
e.g. read ops and join ent, choosing MiniSat can degrade the performance by a
factor of 10. We leave the investigation of this behavior for future work.

Evaluation B: Standalone. While verifying programs, and their associated sep-
aration logic entailments is really the main goal, it is not so easy to casually
develop HIP and SLEEK input files that exercise share provers aggressively. We
designed a benchmark of 53 SAT and 50 IMPLY queries, many of which we
specifically designed to stress a share prover in various tricky ways, including
heavily skewed tree constants, evil mixes of non-zero variables, deep heteroge-
nous tree constants, numerous unconstrained variables, and a number of others.

ShP solved the entire test suite in 1.4s; 24 SAT checks and 18 IMPL checks
reached the underlying solver. BndP could solve fewer than 10% of the queries.

8 Related and Future Work

Simpler fractional permissions are used in a variety of logics [2, 1] and verification
tools [10]. Their use is by no means restricted to separation logic as indicated by
their use in CHALICE [6]. Despite the simpler domain, and associated loss of
useful technical properties, we could find no completeness claims in the literate.
It is our hope that other program verification tools will decide to incorporate
more sophisticated share models now that they can use our solver.

17

In the future we would like to improve the performance of our tool by trying to
mix the sound but incomplete bounds-based method [9] with the techniques de-
scribed here; make a number of performance-related engineering enhancements,
integrate the ./ operation, and develop a mechanically-verified implementation.

9 Conclusion

We have shown how to extract a system of equations over a sophisticated frac-
tional share model from separation logic formulae. We have developed a solver
for the equation systems and proven that the associated problems are decid-
able. We have integrated our solver into the HIP/SLEEK verification toolset
and benchmarked its performance to show that the system is usable in practice.

References

1. Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Per-
mission accounting in separation logic. In POPL, pages 259–270, 2005.

2. John Boyland. Checking interference with fractional permissions. In SAS, pages
55–72, 2003.

3. Leonardo de Moura and Nikolaj Bjrner. Z3: An efficient SMT solver. In TACAS,
2008.

4. Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, pages 161–177, 2009.

5. N. Een and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–508, 2003.
6. Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers. Frac-

tional permissions without the fractions. In FTfJP, 2011.
7. Aquinas Hobor. Oracle Semantics. PhD thesis, Princeton University, Department

of Computer Science, Princeton, NJ, October 2008.
8. Aquinas Hobor and Cristian Gherghina. Barriers in concurrent separation logic.

In ESOP, pages 276–296, 2011.
9. Aquinas Hobor and Cristian Gherghina. Barriers in concurrent separation logic:

Now with tool support! Logical Methods in Computer Science, 8(2), 2012.
10. Bart Jacobs, Jan Smans, Pieter Philippaerts, Frederic Vogels, Willem Penninckx,

and Frank Piessens. Verifast: A powerful, sound, predictable, fast verifier for C
and Java. In NASA Formal Methods, volume 6617, pages 41–55, 2011.

11. Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated
verification of shape and size properties via separation logic. In VMCAI, pages
251–266, 2007.

12. Matthew Parkinson. Local Reasoning for Java. PhD thesis, University of Cam-
bridge, 2005.

13. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, 2002.

14. Jules Villard. personal communication, 2012.
15. Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking heaps that hop

with Heap-Hop. In TACAS, pages 275–279, 2010.

18

