Skip to main content

Towards a Framework Based on Single Trial Connectivity for Enhancing Knowledge Discovery in BCI

  • Conference paper
Active Media Technology (AMT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7669))

Included in the following conference series:

Abstract

We developed a framework for systematic evaluation of BCI systems. This framework is intended to compare features extracted from a variety of spectral measures related to functional connectivity, effective connectivity, or instantaneous power. Different measures are treated in a consistent manner, allowing fair comparison within a repeated measures design. We applied the framework to BCI data from 14 subjects recorded on two days each, and demonstrated the framework’s feasibility by confirming results from the literature. Furthermore, we could show that electrode selection becomes more focal in the second BCI session, but classification accuracy stays unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billinger, M., Kaiser, V., Neuper, C., Brunner, C.: Automatic frequency band selection for BCIs with ERDS difference maps. In: Proceedings of the 5th International Brain–Computer Interface Conference (2011)

    Google Scholar 

  2. Billinger, M., Neuper, C., Müller-Putz, G.R., Brunner, C.: User-centric performance estimation in a continuous online BCI. In: Proceedings of the 3rd TOBI Workshop (2012)

    Google Scholar 

  3. Brunner, C., Billinger, M., Vidaurre, C., Neuper, C.: A comparison of univariate, vector, bilinear autoregressive, and band power features for brain computer interfaces. Medical and Biological Engineering and Computing 49, 1337–1346 (2011), http://dx.doi.org/10.1007/s11517-011-0828-x , doi:10.1007/s11517-011-0828-x

    Article  Google Scholar 

  4. Brunner, C., Scherer, R., Graimann, B., Supp, G., Pfurtscheller, G.: Online control of a brain-computer interface using phase synchronization. IEEE Transactions on Biomedical Engineering 53, 2501–2506 (2006)

    Article  Google Scholar 

  5. Erla, S., Faes, L., Tranquillini, E., Orrico, D., Nollo, G.: Multivariate autoregressive model with instantaneous effects to improve brain connectivity estimation. International Journal of Bioelectromagnetism 11(2), 74–79 (2009)

    Google Scholar 

  6. Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapping 2, 56–78 (1994)

    Article  Google Scholar 

  7. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human-computer interaction & biomedical informatics. In: Proceedings of the 9th International Joint Conference on e-Business and Telecommunications (ICETE 2012), Rome, Italy, pp. IS9–IS20 (2012)

    Google Scholar 

  8. Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G.: Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 166–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Krusienski, D.J., McFarland, D.J., Wolpaw, J.R.: Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain computer interface. Brain Research Bulletin 87(1), 130–134 (2012)

    Article  Google Scholar 

  10. Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Annals of the New York Acadamy of Sciences 1157, 90–100 (2009)

    Article  Google Scholar 

  11. Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.R.: Introduction to machine learning for brain imaging. NeuroImage 56(2), 387–399 (2011), http://www.sciencedirect.com/science/article/pii/S1053811910014163

    Article  Google Scholar 

  12. Lim, J.H., Hwang, H.J., Jung, Y.J., Im, C.H.: Feature extraction for brain–computer interface (BCI) based on the functional causality analysis of brain signals. In: Proceedings of the 5th International Brain–Computer Interface Conference (2011)

    Google Scholar 

  13. Möller, E., Schack, B., Vath, N., Witte, H.: Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence. Biological Cybernetics 89, 303–312 (2003)

    Article  MATH  Google Scholar 

  14. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomedizinische Technik 51, 57–63 (2006)

    Article  Google Scholar 

  15. Neuper, C., Pfurtscheller, G.: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. International Journal of Psychophysiology 43, 41–58 (2001)

    Article  Google Scholar 

  16. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proceedings of the IEEE 89, 1123–1134 (2001)

    Article  Google Scholar 

  17. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller, G.: A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology 118, 98–104 (2007)

    Article  Google Scholar 

  18. Schlögl, A., Supp, G.: Analyzing event-related EEG data with multivariate autoregressive parameters. In: Neuper, C., Klimesch, W. (eds.) Event-related Dynamics of Brain Oscillations, pp. 135–147. Elsevier (2006)

    Google Scholar 

  19. Shoker, L., Sanei, S., Sumich, A.: Distinguishing between left and right finger movement from eeg using svm. In: 27th Annual International Conference on Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 5420–5423 (January 2005)

    Google Scholar 

  20. Storey, J.D.: A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(3), 479–498 (2002), http://dx.doi.org/10.1111/1467-9868.00346

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Billinger, M., Brunner, C., Scherer, R., Holzinger, A., Müller-Putz, G.R. (2012). Towards a Framework Based on Single Trial Connectivity for Enhancing Knowledge Discovery in BCI. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics