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Abstract. This paper is concerned with structures of general graphs
with perfect matchings. We first reveal a partially ordered structure
among factor-components of general graphs with perfect matchings. Our
second result is a generalization of Kotzig’s canonical partition to a de-
composition of general graphs with perfect matchings. It contains a short
proof for the theorem of the canonical partition. These results give de-
compositions which are canonical, that is, unique to given graphs. We
also show that there are correlations between these two and that these
can be computed in polynomial time.

1 Introduction

This paper is concerned with matchings on graphs. For general accounts on
matching theory we refer to Lovász and Plummer’s book [1].

A matching of a graph G is a set of edges F ⊆ E(G) no two of which have
common vertices. A matching of cardinality |V (G)|/2 (resp. |V (G)|/2 − 1) is
called a perfect matching (resp. a near-perfect matching). We call a graph with a
perfect matching factorizable. An edge of a factorizable graph is called allowed if
it is contained in a perfect matching. For a factorizable graph G, each connected
component of the subgraph of G determined by all the allowed edges of it is
called an elementary component of G. A factorizable graph which has exactly
one elementary component is called elementary. For each elementary component
H , we call G[V (H)] a factor-connected component or factor-component of G, and
denote the set of all the factor-components of G as G(G).

Matching theory is of central importance in graph theory and combinato-
rial optimization [2], with numerous practical applications [3]. Structure the-
orems that give decompositions which are canonical, namely, unique to given
graphs, play important roles in matching theory. Only three theorems, i.e. the
canonical partition [4–6], the Dulmage-Mendelsohn decomposition [1], and the
Gallai-Edmonds structure theorem [1] have been known as such. The first two
are not applicable for general graphs with perfect matchings, and the last one
treats them as irreducible and does not decompose them properly, which means
nothing has been known that tells non-trivial canonical structures of general
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graphs with perfect matchings. Therefore, in this paper, we give new canonical
structure theorems for them.

By the definitions, we can view factorizable graphs as being “built” up by
combining factor-components with additional edges. However it does not mean
that all combinations result in graphs with desired factor-components. Thus
the family of factor-components must have a certain non-trivial structure. For
bipartite factorizable graphs, the Dulmage-Mendelsohn decomposition (in short,
the DM-decomposition) reveals the ordered structure of their factor-components.
However, as for non-bipartite graphs, no counterpart has been known.

In this paper, as our first contribution, we reveal a partially ordered structure
between factor-components of general graphs with perfect matchings. It has some
similar natures to the DM-decomposition, however they are distinct.

The second contribution is a generalization of the canonical partition [4–6];
see also [1], which is originally a decomposition of elementary graphs. Kotzig [4–6]
first investigated the canonical partition of elementary graphs as the quotient set
of a certain equivalence relation, and later, Lovász redefined it from the point of
view of maximal barriers [1]. In this paper we generalize the canonical partition
to a decomposition of general graphs with perfect matchings, based on Kotzig’s
way. It contains a short proof for the theorem of the canonical partition.

Note that these two results of us give canonical decompositions of graphs.
We also show that there are correlations between these two and that these can
be computed in polynomial time.

Any of the three existing canonical structure theorems plays significant roles
in combinatorics including matching theory. The canonical partition plays a
crucial role in matching theory, especially from the polyhedral point of view,
that is, in the study of the matching polytope and the matching lattice [7–9].
The Dulmage-Mendelsohn decomposition is known for its application to the
efficient solution of linear equations determined by large sparse matrices [1].
Additionally, it is an origin of a series of studies on submodular functions, that
is, the field of the principal partition [10, 11]. The Gallai-Edmonds structure
theorem is essential to the optimality of the maximum matching [1,12]. Thus it
also underlies reasonable generalizations of maximum matching problem [13,14].

By combining the results in this paper with the Gallai-Edmonds structure
theorem, we can easily obtain a refinement of the Gallai-Edmonds structure
theorem, which gives a consistent view of graphs, whether they are factorizable
or not, or, elementary or not [15]. Hence, we are sure that our structure theorems
should be powerful tools in matching theory. In fact, the cathedral theorem [1]
can be obtained from our results in a quite natural way [15].

2 Preliminaries

In this section, we list some standard definitions and well-known properties.
Basics on sets, graphs, digraphs, and algorithms mostly conform to [2].

Let G be a graph and X ⊆ V (G). The subgraph of G induced by X is
denoted by G[X ]. G −X means G[V (G) \X ]. Given F ⊆ E(G), we define the



contraction of G by F as the graph obtained from contracting all the edges in
F , and denote as G/F . Additionally, We define the contraction of G by X as
G/X := G/E(G[X ]). We say H ⊆ G if H is a subgraph of G. If it is clear from
the context, we sometimes regard a subgraph H ⊆ G as the vertex set V (H), a
vertex v as a graph ({v}, ∅).

The set of edges that has one end vertex in X ⊆ V (G) and the other vertex
in Y ⊆ V (G) is denoted as EG[X,Y ]. We denote EG[X,V (G)\X ] as δG(X). We
define the set of neighbors ofX as the set of vertices in V (G)\X that are adjacent
to vertices in X , and denote as NG(X). We sometimes denote EG[X,Y ], δG(X),
NG(X) as just E[X,Y ], δ(X), N(X) if they are apparent from the context.

For two graphs G1 and G2, G1 +G2 := (V (G1) ∪ V (G2) , E (G1) ∪ E (G2))
is called the union of them, and G1 ∩G2 := (V (G1) ∩ V (G2) , E (G1) ∩ E (G2))
the intersection of them.

Let Ĝ be a graph such that G ⊆ Ĝ. For e = uv ∈ E(Ĝ), G + e means
(V (G) ∪ {u, v}, E(G) ∪ {e}), and G − e means (V (G), E(G) \ {e}). For a set of
edges F = {ei}ki=1, G+ F and G− F means respectively G+ e1 + · · ·+ ek and
G− e1 − · · · − ek.

For a path P and x, y ∈ V (P ), xPy means the subpath on P between x and
y. For a circuit C with an orientation that makes it a dicircuit, and x, y ∈ V (C)
where x 6= y, xCy means the subpath in C that can be regarded as a dipath
from x to y.

A vertex v ∈ V (G) satisfying δ(v) ∩ M = ∅ is called exposed by M . For a
matching M of G and u ∈ V (G), u′ denote the vertex to which u is matched by
M . For X ⊆ V (G), MX denotes M ∩ E(G[X ]).

Let M be a matching of G. For Q ⊆ G, which is a path or circuit, we call Q
M -alternating if E(Q) \M is a matching of Q. Let P ⊆ G be an M -alternating
path with end vertices u and v. If P has an even number of edges and starts
with an edge in M if it is traced from u, we call it an M -balanced path from u to
v. We regard a trivial path, that is, a path composed of one vertex and no edges
as an M -balanced path. If P has an odd number of edges and M ∩ E(P ) (resp.
E(P ) \M) is a perfect matching of P , we call it M -saturated (resp. M -exposed).

Let H ⊆ G. We say a path P ⊆ G is an ear relative to H if both end vertices
of P are in H while internal vertices are not. So do we to a circuit if exactly
one vertex of it is in H . For simplicity, we call the vertices of V (P ) ∩ V (H) end
vertices of P , even if P is a circuit. For an ear R ⊆ G relative to H , we call it
an M -ear if P − V (H) is an M -saturated path.

A graph is called factor-critical if any deletion of its single vertex leaves a
factorizable graph. A subgraph G′ ⊆ G is called nice if G−V (G′) is factorizable.
The next two propositions are well-known and might be regarded as folklores.

Proposition 1. Let M be a near-perfect matching of a graph G that exposes
v ∈ V (G). Then, G is factor-critical if and only if for any u ∈ V (G) there exists
an M -balanced path from u to v.

Proposition 2. Let G be a graph. Then G is factor-critical if and only if each
block of G is factor-critical.



Proposition 3 (implicitly stated in [16]). Let G be a factor-critical graph, v ∈
V (G), and M be a near-perfect matching that exposes v. Then for any non-loop
edge e = vu ∈ E(G), there is a nice circuit C of G which is an M -ear relative
to v and contains e.

Theorem 1 (implicitly stated in [16]). Let G be a factor-critical graph. For any
nice factor-critical subgraph G′ of G, G/G′ is factor-critical.

Let us denote the number of odd components (i.e. connected components with
odd numbers of vertices) of a graph G as oc(G), and the cardinality of a maxi-
mum matching of G as ν(G). It is known as the Berge formula [1] that for any
graph G, |V (G)|−2ν(G) = max{oc(G−X)−|X | : X ⊆ V (G)}. A set of vertices
that attains the maximum in the right side of the equation is called a barrier.

The canonical partition is a decomposition for elementary graphs and plays a
crucial role in matching theory. First Kotzig introduced the canonical partition as
a quotient set of a certain equivalence relation [4–6], and later Lovász redefined
it from the point of view of barriers [1]. In fact, these are equivalent. For an
elementary graph G and u, v ∈ V (G), we say u ∼ v if u = v or G− u− v is not
factorizable.

Theorem 2 (Kotzig [4–6], Lovász [1]). Let G be an elementary graph. Then
∼ is an equivalence relation on V (G) and the family of equivalence classes is
exactly the family of maximal barriers of G.

The family of equivalence classes of ∼ is called the canonical partition of G, and
denoted by P(G). An ear-decomposition of graph G is a sequence of subgraphs
G0,⊆, · · · ,⊆ Gk = G such that G0 = ({r}, ∅) for some r ∈ V (G) and for each
i ≥ 1, Gi is obtained from Gi−1 by adding an ear Pi relative to Gi−1. We
sometimes regard an ear-decomposition as a family of ears P = {P1, . . . , Pk}.
An ear-decomposition is called odd if any of its ears has an odd number of edges.

Theorem 3 (Lovász [16]). A graph is factor-critical if and only if it has an
odd ear-decomposition.

For a factor-critical graph G and its near-perfect matching M , we call an ear-
decomposition alternating with respect to M , or just M -alternating, if each ear
is an M -ear.

Proposition 4 (Lovász [16]). Let G be a factor-critical graph. Then for any
near-perfect matching M of G, there is an M -alternating ear-decomposition of
G.

Proposition 5. Let G be a factorizable graph, and M be a perfect matching of
G. Then, for e = xy ∈ E(G) \M , the followings are equivalent;

(i) e is allowed in G.
(ii) There is an M -alternating circuit containing e.
(iii) There is an M -saturated path between x and y.



Proposition 6. Let G be a graph, M be a matching of G, and X ⊆ V (G) be
such that MX is a perfect matching of G[X ]. Let P be a subgraph of G that
satisfies either of the followings;

(i) P is an M -alternating circuit with V (P ) ∩X 6= ∅,
(ii) for some u ∈ X, P is an M -ear relative to {u},
(iii) P is an M -exposed path whose end vertices are in X, or
(iv) P is an M -saturated path whose end vertices are in X.

Then, each connected component of P − E(G[X ]) is an M -ear relative to X.

3 A Partially Ordered Structure in Factorizable Graphs

Let G be a factorizable graph. For X ⊆ V (G) we call X a separating set if for
any H ∈ G(G), V (H) ⊆ X or V (H) ∩X = ∅. The next property is easy to see
by the definition.

Proposition 7. Let G be a factorizable graph, and X ⊆ V (G) with X 6= ∅. The
following properties are equivalent;

(i) X is separating.
(ii) There exist H1, . . . , Hk ∈ G(G), where k ≥ 1, such that X = V (H1)∪̇ · · · ∪̇V (Hk).
(iii) For any perfect matching M of G, δ(X) ∩M = ∅.
(iv) For any perfect matching M of G, MX is a perfect matching of G[X ].

Let G1, G2 ∈ G(G). We say a separating set X is a critical-inducing set for G1

if V (G1) ⊆ X and G[X ]/G1 is a factor-critical graph. Moreover, we say X is a
critical-inducing set for G1 to G2 if V (G1) ∪ V (G2) ⊆ V (G) and G[X ]/G1 is a
factor-critical graph.

Definition 1. Let G be a factorizable graph, and G1, G2 ∈ G(G). We say G1⊳G2

if there is a critical-inducing set for G1 to G2.

Lemma 1. Let G be a factorizable graph and M be a perfect matching of G,
and let X ⊆ V (G) and G1 ∈ G(G). Then, X is a critical-inducing set for G1 if
and only if for any x ∈ X \ V (G1) there exists y ∈ V (G1) such that there is an
M -balanced path from x to y whose vertices except y are in X \ V (G1).

Proof. The claim is rather easy from Proposition 1; X is a critical-inducing set
for G1 if and only if G[X ]/G1 is factor-critical. Note that MX\V (G1) forms a
near-perfect matching of G[X ]/G1. Therefore, G[X ]/G1 is factor-critical if and
only if for any x ∈ X there is an M -balanced path from x to the contracted
vertex g1 corresponding to G1. Therefore, the claim follows. ⊓⊔

Proposition 8. Let G be an elementary graph and M be a perfect matching of
G. Then for any two vertices u, v ∈ V (G) there is an M -saturated path between
u and v, or an M -balanced path from u to v.



Proof. Without loss of generality we can assume G is matching-covered, that is,
every edge of G is allowed. Let U1 ⊆ V (G) be the set of vertices that can be
reached from u by an M -saturated path, and U2 ⊆ V (G) be the set of vertices
that can be reached from u by an M -balanced path but cannot be by any M -
saturated paths. We are going to obtain the claim by showing U := U1∪̇U2 =
V (G). Suppose that it fails, namely that U ( V (G). Then there are v ∈ U and
w ∈ V (G) \ U such that vw ∈ E(G), since G is connected. By the definition
of U , there is an M -saturated or balanced path P from u to v, which satisfies
V (P ) ⊆ U since for each z ∈ V (P ) uPz is an M -saturated or balaned path from
u to z. If P is M -saturated, therefore, P + vw is an M -balanced path from u to
w, which means w ∈ U , a contradiction.

Hence, hereafter we assume P is M -balanced, from u to v. Since vw is defined
to be allowed, there is anM -saturated path Q between v and w by Proposition 5.
Trace P from u and let x be the first vertex we encounter that is in Q; such x
surely exists under the current hypotheses since v ∈ V (P ) ∩ V (Q).

Claim 1. uPx is an M -balanced path.

Proof. Suppose the claim fails, which is equivalent to uPx being an M -saturated
path. Then, x′ ∈ V (uPx). On the other hand, sinceQ isM -saturated, x′ ∈ V (Q).
Therefore, x′ ∈ V (uPx)∩V (Q), which means we counter x′ before x if we trace
P from u, a contradiction. ⊓⊔
Claim 2. xPw is an M -saturated path between x and w.

Proof. If x = v, vPx is a trivial M -balanced path from v to x. Even if x 6= v,
so is it since x is matched by M ∩ E(P ). Anyway, whether x = v or not, vPx
is an M -balanced path from v to x. Therefore, together with vPw being an M -
saturated path, xPw is an M -balanced path from x to w. ⊓⊔
By Claims 1 and 2, uPx+ xQw is an M -saturated path between u and w, since
V (uPx)∩ V (xQw) = {x} by the definition of x. Hence, w ∈ U , a contradiction,
and we obtain U = V (G), which completes the proof. ⊓⊔
Proposition 9. Let G be a factorizable graph and M be a perfect matching of G.
Let X ⊆ V (G), and H ∈ G(G) be such that there is an M -ear P relative to X and
through H, whose end vertices are u, v ∈ V (G1). Let Y := V (H)∪V (P )\{u, v}.
Then, for any x ∈ Y ,

(i) there exists an internal vertex y of P such that there is an M -balanced path
Q from x to y with V (Q) ⊆ Y and V (Q) ∩ V (P ) = {y}, and

(ii) for w identical to either u or v, Q + yPw is an M -balanced path from x to
w, whose vertices except w are contained in Y .

Proof. If x ∈ V (P )\ {u, v}, the claims are obvious. Let x ∈ V (H)\V (P ). Then,
by Proposition 8, for an arbitrarily chosen z ∈ V (P ) ∩ V (H), there is an M -
saturated or balanced path R from x to z with V (R) ⊆ V (H). Trace R from x
and let y be the first vertex we encounter that is in V (P ). Then, xRy gives a
desired path in (i), and Q := xRy + yPw, where w is either u or v, gives one in
(ii). Therefore, we are done. ⊓⊔



Let G be a factorizable graph and M be a perfect matching of G. We call a
sequence of factor-components S := (H0, . . . , Hk), where k ≥ 0 and Hi ∈ G(G)
for each i = 0, . . . , k, an M -ear sequence, from H0 to Hk, if k = 0 or otherwise

(i) for any i, j ∈ {0, . . . , k}, i 6= j yields Hi 6= Hj , and
(ii) for each i = 1, . . . , k there is an M -ear Pi relative to Hi−1 and through Hi.

We call k the length of S. If k ≥ 1, we call the sequence of M -ears P :=
(P1, . . . , Pk) associated with S. If k = 0, an empty sequence, P := (), is defined
to be the M -ears associated with S, for convenience.

For S and P , we define the sequence union of S and P as S⊕P :=
⋃k

i=1 V (Hi)∪⋃k

i=1 V (Pi) \ V (H0), if k ≥ 1. If k = 0, S ⊕ P := ∅.
Given S and P , for any i, j with 0 ≤ i ≤ j ≤ k, the subsequence (Hi, . . . , Hj)

is an M -ear sequence, from Hi to Hj , and we denote it as S[i, j]. Additionally, if
i < j, (Pi, . . . , Pj) is a sequence of M -ears associated with S[i, j], and we denote
it P [i, j]. If i = j, P = () is associated with S[i, j], and it is also denoted as
P [i, j]. We denote S[0, j] =: Sj, and P [0, j] =: P j.

Let G be a factorizable graph, and M be a perfect matching of G. Let
G1, G2 ∈ G(G), and let S := (G1 = H0, . . . , Hk = G2), where k ≥ 0, be an
M -ear sequence from G1 to G2, associated with M -ears P . Let us define in the
following three properties for S and P :

D1(S, P ): If k ≥ 2, then by letting P = (P1, . . . , Pk), for each i = 2, . . . , k,
V (Pi) is disjoint from V (H0).

D2(S, P ): If k ≥ 1, by letting P = (P1, . . . , Pk), for each i = 1, . . . , k, for any
x ∈ Si ⊕ P i there exists an internal vertex y of P1 such that there is an M -
balanced path Q from x to y with V (Q) ⊆ Si⊕P i and V (Q)∩V (P1) = {y}.

D3(S, P ): If k ≥ 1, by letting P = (P1, . . . , Pk), for each i = 1, . . . , k, for any
x ∈ Si ⊕ P i, for w which equals either of the end vertices of P1, there is an
M -balanced path R from x to w such that V (P1) \ {w} ⊆ Si ⊕ P i.

Remark 1. By their definitions, if k = 0, then S and P trivially satisfy D1, D2
and D3.

Remark 2. D1, D2 and D3 are closed with respect to the substructures; if S and
P satisfies D1, D2 and D3, then for any i = 0, . . . , k, so does Si and P i.

Proposition 10. Let G be a factorizable graph and M be a perfect matching of
G. Let S be an M -ear sequence, and P be a sequence of M -ears associated with
S. Then, MS⊕P is a perfect matching of G[S ⊕ P ].

Proof. If the length k of S equals zero, the claim is trivially true. Let k ≥ 1, and
let S =: (H0, . . . , Hk) and P =: (P1, . . . , Pk). Of course,X := V (H0)∪̇ · · · ∪̇V (Hk)
has a perfect matching MX . For each Pi, the end vertices of Pi are in X and
any other vertex is covered by MPi

. Therefore, M contains a perfect matching
of Y := X ∪ V (P1)∪ · · · ∪ V (Pk). Accordingly, S⊕P = Y \V (H0) is covered by
MS⊕P . ⊓⊔



Lemma 2. Let G be a factorizable graph and M be a perfect matching of G.
Let G1 ∈ G(G) and X ⊆ V (G) be a critical-inducing set for G1. Suppose there
exists an M -ear P relative to X, whose end vertices are u, v ∈ V (G), and let
I1, . . . , Is ∈ G(G), where s ≥ 1, be the factor-components that have common
vertices with the internal vertices of P . Then, X ∪⋃s

i=1 V (Ii) is also a critical-
inducing set for G1.

Proof. We prove the claim by Lemma 1; let Y :=
⋃s

i=1 V (Ii). By Lemma 1,

Claim 3. for any x ∈ X there exists z ∈ V (G1) such that there is an M -balanced
path Qx from x to z with V (Qx) ⊆ X and V (Qx) ∩ V (G1) = {z}.

Claim 4. For any y ∈ Y there exists z ∈ V (G1) such that there exists an M -
balanced path Qy from y to x with V (Qy) ⊆ X and V (Qy) ∩ V (G1) = {y}.

Proof. Let i ∈ {1, . . . , s} be such that y ∈ V (Ii). By applying Proposition 9 to
X , Ii and P , for w which equals either u or v, there is an M -balanced path
R from y to w such that V (R) \ {w} ⊆ Y . Therefore, P + Qw gives a desired
path. ⊓⊔

Apparently by the definition X ∪ Y is a separating set, therefore with Claims 3
and 4 we can conclude that X ∪Y is a critical-inducing set for G1, by Lemma 1.

⊓⊔

Theorem 4. Let G be a factorizable graph, M be a perfect matching of G, and
G1, G2 ∈ G(G). Then, G1 ⊳G2 if and only if there exists an M -ear sequence from
G1 to G2.

Proof. We first prove the sufficiency. Let G1 ⊳ G2 and X ⊆ V (G) be a critical-
inducing set for G1 to G2. Let us define the following three properties for Y ⊆ X :

C1(Y ): Y is a critical-inducing set for G1, and
C2(Y ): for each H ∈ G(G) with V (H) ⊆ Y , there is an M -ear sequence from

G1 to H .

Let X ′ be a maximal subset of X satisfying C1 and C2. Note that X ′ 6= ∅
because V (G1) satisfies C1 and C2. We are going to prove the sufficiency by
showing that X ′ = X . Suppose it fails, that is, X ′ ( X . Then,

Claim 5. there is an M -ear P relative to X ′ such that V (P ) ⊆ X .

Proof. G[X ]/G1 is factor-critical and G[X ′]/G1 is a nice factor-critical subgraph
of G[X ]/G1 by Proposition 7. Therefore,G[X ]/X ′ is factor-critical by Theorem 1
and MX\X′ forms a near-perfect matching of G[X ]/X ′ exposing only the con-
tracted vertex x′ corresponding to X ′. By Proposition 3, in G[X ]/X ′ there is an
M -ear P relative to x′, and in G it corresponds to an M -ear relative to X ′ with
V (P ) ⊆ X . Thus, the claim follows. ⊓⊔

Let u, v ∈ X ′ be the end vertices of P . Let I1, . . . , Is ∈ G(G) be the factor-
components that have common vertices with internal vertices of P . We are going
to prove that X ′′ := X ′ ∪⋃s

i=1 V (Ii) satisfies C1 and C2.



Claim 6. X ′′ satisfies C2.

Proof. By Lemma 1, there exists an M -balanced path Qu (resp. Qv) from u
(resp. v) to a vertex of V (G1), which is contained in X and whose vertices
except the end vertex in V (G1) are disjoint from V (G1). Trace Qu from u and
let ru be the first vertex we encounter that is contained in a factor-component I0
which has common vertices also with Qv; such I0 surely exists since both Qu and
Qv have some vertices in G1. Trace Qv from v and let rv be the first vertex we
encounter that is in V (I0). For each w ∈ {u, v}, wQwrw is an M -balanced path
from w to rw such that V (wQwrw) ⊆ X ′ and V (wQwrw)∩V (I0) = {rw}, and it
holds that V (uQuru)∩ V (vQvrv) \ {ru, rv} = ∅. Therefore, uQuru + P + vQvrv
is an M -ear relative to I0 and through every I1, . . . , Is. By the definition of X ′,
there is an M -ear sequence from G1 to I0. Therefore, by adding subsequence
(I0, Ii) to it, we obtain an M -ear sequence from G1 to Ii, for each i = 1, . . . , s.
Thus, we obtain the claim. ⊓⊔

Claim 7. X ′′ satisfies C1.

Proof. This is immediate by Lemma 2. ⊓⊔

With Claims 6 and 7, X ′′ contradicts the maximality of X ′. Therefore, we obtain
X ′ = X , accordingly the sufficiency part of the claim follows.

From now on we prove the necessity. Let (G1 = H0, . . . , Hk = G2), where
k ≥ 0, be the M -ear sequence from G1 to G2 We are going to prove that there
is a critical-inducing set for G1 to G2. We proceed by induction on k. For the
case k = 0, that is, G1 = G2, the claim apparently holds by taking V (G1).

Let k > 0 and suppose the claim holds for k−1. By the induction hypothesis,
for the M -ear subsequence (H0, . . . , Hk−1), there is a critical-inducing set X ′ for
H0 to Hk−1.

Claim 8. There is an M -ear P relative to X ′ and through Hk.

Proof. Let Pk the associatedM -ear relative to Hk−1 and through Hk. By Propo-
sition 6 each connected component P −E(G[X ′]) is an M -ear relative to X ′, and
one of them, which we call P , is through Hk. Therefore, the claim follows. ⊓⊔

Let I1, . . . , Is ∈ G(G), where s ≥ 1, be the factor-components that have common
vertices with the internal vertices of P , and let Y :=

⋃s

i=1 V (Ii). Then, by
applying Lemma 2 to the critical-inducing set X ′ for G1 and the M -ear P , we
obtain that X ′ ∪ Y is a critical-inducing set for G1 to Hk. This completes the
proof. ⊓⊔

Lemma 3. Let G be a factorizable graph, and M be a perfect matching. Let
S := (H0, . . . , Hk), where k ≥ 1, be an M -ear sequence, associated with M -
ears P := (P1, . . . , Pk). Suppose Si and P i satisfy D1, D2, and D3 for each
i = 0, . . . , k − 1, and S and P satisfy D1. Then, S and P also satisfy D2 and
D3.



Proof. If k = 1, then by applying Proposition 9 to V (H0), P1, and H1, it holds
that S and P satisfy D1, D2 and D3.

Hence hereafter let k ≥ 2. First note that each connected component of
Pk −E(G[Sk−1 ⊕P k−1]) is an M -ear relative to Sk−1 ⊕P k−1 by Proposition 6,
and is disjoint from V (H0) since Pk is.

Take x ∈ S⊕P\Sk−1⊕P k−1 arbitrarily, and let P x
k be a connected component

of Pk −E(G[Sk−1 ⊕ P k−1]) such that x is an internal vertex of P x
k if x ∈ V (P ),

or one through Hk if x ∈ V (Hk) \ V (P ).

Claim 9. There exists y ∈ Sk−1 ⊕ P k−1 such that there exists an M -balanced
path Q from x to y whose vertices except y are contained in S⊕P \Sk−1⊕P k−1.

Proof. By applying Proposition 9 to Sk−1 ⊕ P k−1, P x
k , and Hk (if x ∈ V (Hk)),

we obtain an internal vertex y of P1 and an M -balanced path Q from x to y with
V (Q)\{y} ⊆ V (Hk)∪V (P x

k )\Sk−1⊕P k−1. Since Pk is disjoint from V (H0), we
can see V (Hk)∪V (P x

k ) ⊆ S⊕P . Therefore, V (Q) \ {y} ⊆ S⊕P \Sk−1⊕P k−1,
and the claim follows. ⊓⊔

Claim 10. S and P satisfy D2.

Proof. By the hypothesis on Sk−1 and P k−1 there exists an internal vertex
z of P1 such that there is an M -balanced path R from y to z with V (R) ⊆
Sk−1 ⊕ P k−1 and V (R) ∩ V (P1) = {z}. Therefore, by Claim 9, Q+R is an M -
balanced path from x to z, whose veritices are contained in S ⊕ P and disjoint
from P1 except z.

Since x is chosen arbitrarily from S⊕P \Sk−1⊕P k−1, we obtain that S and
P satisfy D2. ⊓⊔

By similar arguments, we can say that S and P satisfy D3 too, and the claim
follows.

Proposition 11. Let G be a factorizable graph and M be a perfect matching.
Let G1, G2 ∈ G(G) be such that G1 ⊳ G2, and let k ≥ 0 be the length of the
shortest M -ear sequence from G1 to G2. Then, there exists an M -ear sequence
S of shortest length, and M -ears P associated with S such that D1(S, P ), D2(S,
P ), and D3(S,P ) hold.

Proof. We proceed by induction on k. If k = 0, the claim is trivially true. If
k = 1, for any shortest M -ear sequence S = (H0 = G1, H1 = G2) from G1 to G2

and associated M -ears P = (P1), D1(S, P ) trivially holds by the definition of
D1, and moreover D2(S, P ) and D3(S, P ) also hold by applying Proposition 9
to V (H0), P1, and Hk.

Let k ≥ 2, and suppose the claim is true for any two factor-components
G′

1, G
′
2 ∈ G(G) such that the length of the shortest M -ear sequence from G′

1 to
G′

2, is 1, . . . , k − 1.
Take arbitrarily an M -ear sequence S = (G1 = H0, . . . , Hk = G2) from G1

to G2 of shortest length, and M -ears P = (P1, . . . , Pk) associated with it. Let
u1, v1 be the end vertices of P1.



Claim 11. Without loss of generality we can assume that S and P are chosen so
that for each i = 1, . . . , k − 1, Si and P i satisfy D1, D2, and D3.

Proof. By the induction hypothesis, there exist an M -ear sequence from H0 to
Hk−1, which is of shortest length, and M -ears associated with it which satisfy
D1, D2, and D3; note that its length is k− 1. Without loss of generality, we can
assume Sk−1 and P k−1 coincides to them. Since the conditions D1, D2, and D3
are closed with substructures, the claim follows. ⊓⊔

If Pk is disjoint from V (H0), namely if D1(S, P ) holds, then by Lemma 3, S
and P also satisfy D2 and D3, and the claim follows.

Hence hereafter suppose that might fail i.e. Pk might not be disjoint from
V (H0). By Proposition 6, each connected component of Pk−E(G[Sk−1⊕P k−1])
is an M -ear relative to Sk−1 ⊕ P k−1. Take one of them Q arbitrarily that has
common vertices with Hk.

Take x ∈ V (Q)∩V (Hk) arbitrarily, and let u, v be the end vertices of Q. Trace
xQu from x and let y be the first vertex we encounter that is in V (H0) ∪ {u}.
On the other hand, trace xQv from x and let z be the first vertex we encounter
that is in V (H0) ∩ {v}. Then,
Claim 12. yQz is an M -exposed path, whose internal vertices contains x ∈
V (Hk), and whose vertices except the end vertices y and z are disjoint from
V (H0) ∪ Sk−1 ⊕ P k−1.

Claim 13. Q is disjoint from V (H0).

Proof. We are going to prove y = u and z = v; First suppose the case where y, z ∈
V (H0). Then, yQz is an M -ear relative to H0 and through Hk, which means
(H0, Hk) forms an M -ear sequence of length one, contradicting the definition of
k, since k ≥ 2.

Second suppose the case where y ∈ V (H0) and z = v. Since Sk−1 and P k−1

satisfy D3, for either w ∈ {u1, v1} there is an M -balanced path R from z to
w such that V (R) \ {w} ⊆ Sk−1 ⊕ P k−1. Therefore, yQz + R is an M -ear
relative to H0 and through Hk, again letting (H0, Hk) be an M -ear sequence, a
contradiction.

In the third case where y = u and z ∈ V (H0), by symmetric arguments we
are again lead to a contradiction.

Therefore, we obtain that y = u and z = v, which is equivalent to Q being
disjoint from V (H0). ⊓⊔

Since Sk−1 and P k−1 satisfy D3, for each α ∈ {u, v} there is anM -balanced path
Qα from α to rα, where rα equals either u1 or v1, such that V (Qα) \ {rα} ⊆
Sk−1 ⊕ P k−1. Trace Qu from u and let s be the first vertex we encounter that
is contained in a factor-component, say I ∈ G(G), which has common vertices
also with V (Qv); such I surely exists since both Qu and Qv have vertices in H0.
Trace Qv from v and let t be the first vertex we encounter that is in V (I).

Claim 14. I 6= H0. Accordingly, V (Qu) ∪ V (Qv) ⊆ Sk−1 ⊕ P k−1.



Proof. Sk−1 ⊕ P k−1 ∩ V (H0) = ∅, and for each α ∈ {u, v}, V (Qα) \ {rα} ⊆
Sk−1⊕P k−1. Therefore, I = H0 only if V (Qu)∩V (Qv) = ∅ or V (Qu)∩V (Qv) =
{ru} = {rv}. Then, Qu + Q + Qv forms an M -ear relative to H0 and through
Hk, letting (H0, Hk) be an M -ear sequence of length one, a contradiction. ⊓⊔

Claim 15. Each connected component of uQus+Q+ vQzt− E(I) is an M -ear
relative to I, one of which, say Q̂, is through Hk.

Proof. uQus and vQzt are M -balanced paths respectively from u to s and from
v to t, and they are disjoint if s 6= t, or have only one common vertex s = t if
s = t. Additionally, they are both contained in Sk−1 ⊕P k−1 by Claim 14, while
V (Q)∩Sk−1⊕P k−1 = {u, v}. Therefore, uQus+Q+ vQzt forms an M -exposed
path between s and t if s 6= t, or an M -ear relative to {s} = {t} if s = t, in
both cases having internal vertices contained in Hk, since Q does. Hence, by
Proposition 6, the claim follows. ⊓⊔

By the arguments up till now, I has some vertices in Sk−1 ⊕ P k−1. Hence,
I equals either of H1, . . . , Hk−1 or otherwise it just has common vertices other
than u1 or v1, with either of P1, . . . , Pk−1.

Claim 16. If I equals either of H1, . . . , Hk−1, then I = Hk−1.

Proof. If k = 2, the claim is trivially true. Let k ≥ 3 and suppose the claim
fails, that is, I = Hi for i ∈ {1, . . . , k− 2}. Then, (H0, . . . , Hi = I,Hk) forms an
M -ear sequence from H0 to Hk, associated with (P1, . . . , Pi, Q̂), and of length
i+1 ≤ k−1. This contradicts the definition of k, therefore we have the claim. ⊓⊔

Claim 17. Q̂ is disjoint from V (H0).

Proof. By Claim 13, Q is disjoint from V (H0), and by Claim 14, Qu and Qv

are both disjoint from V (H0). Therefore, Q̂ = Qu +Q+Qv is also disjoint from
V (H0). ⊓⊔

Therefore, with Claims 16 and 17, in the above case, namely where I = Hk−1,
S = (H0, . . . , Hk) is an M -ear sequence, which can be regarded as being associ-
ated by M -ears P ′ := (P1, . . . , Pk−1, Q̂). Since S and P ′ satisfy D1 by Claim 17,
we have that they satisfy also D2 and D3, by Lemma 3. Hence we are done for
this case.

Claim 18. If I is distinct from any ofH1, . . . , Hk−1, then Pk−1, anM -ear relative
to Hk−2, is through I.

Proof. If k = 2, the claim apparently follows. Let k ≥ 3 and suppose I has
common vertices with Pi with i ∈ {1, . . . , k−2}. Namely, Pi is an M -ear relative
to Hi−1 and through I. Hence, (H0, . . . , Hi−1, I,Hk) is an M -ear sequence from
H0 to Hk, of length i + 1 ≤ k − 1, associated with M -ears (P1, . . . , Pi, Q̂). This
contradicts the definition of k. Therefore we can conclude that i = k − 1, and
the claim follows. ⊓⊔



Therefore, in this case, by Claim 18, S̃ := (H0, . . . , Hk−2, I,Hk) is an M -ear
sequence associated with P̃ = (P1, . . . , Pk−1, Q̂).

– S̃k−2 and P̃ k−2 satisfy D1, D2, and D3, since S̃k−2 = Sk−2 and P̃ k−2 =
P k−2, and

– S̃k−1 and P̃ k−1 satisfy D1, since (k−1)-th elements of P and P̃ are identical.

Therefore, by Lemma 3, S̃k−1 and P̃ k−1 also satisfy D2 and D3. Moreover, by
Claim 17, with Lemma 3 again applied to S̃ and P̃ , we obtain, with Claim 17,
that S̃ and P̃ also satisfy D1, D2, and D3. This complets the proof. ⊓⊔
Theorem 5. ⊳ is a partial order.

Proof. The reflexivity is obvious from the definition. The transitivity obviously
follows from Theorem 4. Hence, we will prove the antisymmetry. Let G1, G2 ∈
G(G) be such that G1⊳G2 and G2⊳G1. Suppose that the antisymmetry fails, that
is, that G1 6= G2. Let M be a perfect matching of G. By Proposition 11, there
exists an M -ear sequence from G1 to G2, say S := (G1 = H0, . . . , Hk = G2),
where k ≥ 1, and associated M -ears P := (P1, . . . , Pk) which D1, D2 and D3.
Let u1 and v1 be the end vertices of P1.

By Lemma 1 there exists w ∈ V (G2) such that there is an M -balanced path
Q from u1 to w. Trace Q from u1 and let x be the first vertex we encounter that
is in (S ⊕ P ∪ {v1}) \ {u1}; such a vertex surely exists since V (G2) ⊆ S ⊕ P .

Claim 19. Without loss of generality we can assume that x 6= v1, namely, x ∈
S ⊕ P and u1Qx is disjoint from v1.

Proof. Suppose the claim fails, that is, x = v1. Then, u1 6= v1. If u1Qv1 is an
M -saturated path, then P1 + u1Qv1 forms an M -alternating circuit, containing
non-allowed edges, a contradiction. Otherwise, namely if u1Qv1 is anM -balanced
path from u1 to v1, then v1Qw is an M -balanced path from v1 to w. Now redefine
x as the first vertex we encounter that is in S⊕P if we trace v1Qw from v1. Then,
v1Qx is an M -balanced path from v1 to x which is disjoint from u1. Therefore,
by changing the roles of u1 and v1, without loss of generality, we obtain the
claim. ⊓⊔
Therefore, hereafter let x ∈ S ⊕ P , noting that u1Qx is an M -balanced path
from u1 to x. Since x ∈ S ⊕ P , by Proposition 9 there is an M -balanced path
R from x to an internal vertex of P1, say y, such that V (R) ⊆ S ⊕ P and
V (R) ∩ V (P1) = {y}.

If u1P1y has an even number of edges, u1Qx + xRy + yP1u1 is an M -
alternating circuit containing non-allowed edges, a contradiction.

Hence hereafter we assume u1P1y has an odd number of edges. By Propo-
sition 8, there is an M -saturated or balanced path L from v1 to u1 which is
contained in G1. Trace L from v1 and let w be the first vertex on u1Qx; note
that L is disjoint from S ⊕ P since V (L) ⊆ V (H0) and S ⊕ P is disjoint from
V (H0). If u1Qw has an odd number of edges, then wQu1 + P1 + v1Lw is an
M -alternating circuit, a contradiction. If u1Qw has an even number of edges,
then v1Lw + wQx + xRy + yP1u1 is an M -alternating circuit, which is also a
contradiction. Thus we get G1 = G2, and the claim follows. ⊓⊔



4 A Generalization of the Canonical Partition

For non-elementary graphs, the family of maximal barriers never gives a parti-
tion of its vertex set [1]. Therefore, to analyze the structures of general graphs
with perfect matchings, we generalized the canonical partition based on Kotzig’s
way [4–6].

Definition 2. Let G be a factorizable graph and H ∈ G(G). For u, v ∈ V (H),
we say u ∼g v if u = v or G− u− v is not factorizable.

Theorem 6. ∼g is an equivalence relation.

Proof. Since the reflexivity and the symmetry are obvious from the definition, we
prove the transitivity. Let M be a perfect matching of G. Let u, v, w ∈ V (H) be
such that u ∼g v and v ∼g w. If any two of them are identical, clearly the claim
follows. Therefore it suffices to consider the case that they are mutually distinct.
Suppose that the claim fails, that is, u 6∼g w. Then there is an M -saturated path
P between u and w. By Proposition 8, there is an M -balanced path Q from v to
u. Trace Q from v and let x be the first vertex we encounter that in V (Q)∩V (P ).
If uPx has an odd number of edges, vQx+xPu is an M -saturated path between
u and v, a contradiction. If uPx has an even number of edges, then xPw has an
odd number of edges, and by the same argument we have a contradiction. ⊓⊔
We call the family of equivalence classes of ∼g as the generalized canonical parti-
tion and denote as PG(H) for each factor-component H ∈ G(G) of a factorizable
graph G. Note that the notions of the canonical partition and the generalized
one are coincident for an elementary graph. Thus we denote the union of equiv-
alence classes of all the factor-components of G as P(G), and call it just as the
canonical partition. Moreover our proof for Theorem 6 contains a short proof
for the existence of the canonical partition. Kotzig takes three papers to prove
it, thus to prove that ∼ is an equivalence relation “from scratch” is considered
to be hard [1]. However, in fact, it can be shown in a simple way even without
the premise of the Gallai-Edmonds structure theorem nor the notion of barri-
ers. Note also that the generalized canonical partition PG(H) is a refinement of
P(H) for each H ∈ G(G).

5 Correlations between ⊳ and ∼g

In this section we further analyze properties of factorizable graphs. We denote
all the upper bounds of H ∈ G(G) in (G(G), ⊳) as up∗G(H) and define upG(H)
as up∗G(H) \ {H}. We sometimes omit the subscripts if they are apparent from
the context. For simplicity, we sometimes denote the subgraph induced by the
vertices in up(H) (resp. up∗(H)) as just G[up(H)] (resp. G[up∗(H)]), and the
vertices of up(H) (resp. up∗(H)) as just V (up(H)) (resp. V (up∗(H))).

Lemma 4. Let G be a factorizable graph, M be a perfect matching of G, and
H ∈ G(G). Let P be an M -ear relative to H with end vertices u, v ∈ V (H). Then
u ∼g v.



Proof. Suppose the claim fails, that is, u 6= v and there is anM -saturated path Q
between u and v. Trace Q from u and let x be the first vertex we encounter that
is on P −u. If uPx has an even number of edges, uQx+xPu is an M -alternating
circuit containing non-allowed edges, a contradiction. Hence we suppose uPx has
an odd number of edges. Let I ∈ G(G) be such that x ∈ V (I). Then one of the
components of uQx + xPu − E(I) is an M -ear relative to I and through H , a
contradiction by Theorem 4. ⊓⊔

Theorem 7. Let G be a factorizable graph, and G0 ∈ G(G). For each connected
component K of G[up(G0)] there exists TK ∈ PG(G0) such that N(K)∩V (G0) ⊆
TK .

Proof. Let M be a perfect matching of G.

Claim 20. Let H ∈ up(G0), and S and P be the shortest M -ear sequence from
G0 to H and associated M -ears which satisfy D1, D2 and D3. Then, there exists
T ∈ PG(G0) such that for each factor-components H ′ that has common vertices
with S ⊕ P , N(H ′) ∩ V (G0) ⊆ T holds.

Proof. Let us denote S = (G0 = H0, . . . , Hk = H), where k ≥ 1, and P =
(P1, . . . , Pk). Let u1, v1 ∈ V (G0) be the end vertices of P1. By Lemma 4, there
exists T ∈ PG(G0) such that u1, v1 ∈ T .

Let H ′ ∈ G(G) be such that V (H ′) ∩ S ⊕ P 6= ∅. Suppose there exists
w ∈ N(H ′) ∩ V (G0) and let z ∈ V (H ′) be such that wz ∈ E(G). Take x ∈
V (H ′) ∩ S ⊕ P arbitrarily. By Proposition 8, there exists a path Q which is M -
balanced from z to x or M -saturated between z and x such that V (Q) ⊆ V (H ′).
Trace Q from z and let y be the first vertex we encounter that is in S ⊕ P .
Then, zPy is an M -balanced path from z to y with V (zPy) ⊆ V (H ′) and
V (zPy) ∩ S ⊕ P = {y}. By D3(S, P ), for either of r ∈ {u1, v1}, there is an
M -balanced path R from y to r such that V (R) \ {r} ⊆ S ⊕ P .

Therefore, R+ zPy+wz forms an M -ear relative to G0, whose end vertices
are r and w. By Lemma 4, therefore, w ∈ T and the claim follows. ⊓⊔

Immediately by Claim 20 we can see that for any H ∈ up(G0) there exists
T ∈ PG(G0) such that N(H) ∩ V (G0) ⊆ T . Hence for each T ∈ PG(G0) we can
define

KT := {H ∈ up(G0) : V (H) ⊆ V (K) and N(H) ∩ V (G0) ⊆ T }

and VT :=
⋃

H∈KT
V (H). Note that

⋃
T∈PG(G0)

VT = V (K).

We are going to prove the claim by showing that |{T ∈ PG(G0) : VT 6= ∅}| =
1. Suppose it fails; Then, since K is connected, there exist T1, T2 ∈ PG(G0) with
T1 6= T2 such that E[VT1

, VT2
] 6= ∅. Let s1 ∈ VT1

and s2 ∈ VT2
be such that

s1s2 ∈ E[VT1
, VT2

].

Claim 21. For each i = 1, 2, there is an M -balanced path Li from si to a vertex
in Ti, say ri, such that V (Li) \ {ri} ⊆ VTi

.



Proof. Let i ∈ {1, 2}. Let H ∈ G(G) be such that si ∈ V (H). Then, V (H) ⊆ VTi
.

Take an M -ear sequence S = (G0 = H0, . . . , Hk = H), where k ≥ 1, from G0

to H and an associated M -ears P = (P1, . . . , Pk) which satisfy D1, D2 and D3;
By Claim 20, S ⊕ P ⊆ VTi

. By D3, there is an M -balanced path Li from si to
either of the end vertices of P1, say ri ∈ V (G0) such that V (Li) \ {ri} ⊆ S ⊕ P .
Therefore, V (Li) \ {ri} ⊆ VTi

. ⊓⊔
By Claim 21, L1 + s1s2 + L2 is an M -ear relative to G0, whose end vertices
are r1 ∈ T1 and r2 ∈ T2. By Lemma 4 this yields T1 = T2, a contradiction.
Therefore, we can conclude that there exists T ∈ PG(G0) such that VT = V (K),
namely the claim follows. ⊓⊔

By Theorem 7, we can see that upper bounds of a factor-component are each
“attached” to an equivalence class of the generalized canonical partition.

Proposition 12. Let G be a graph and M be a matching of G. Let H1, H2 ⊆ G
be factor-critical subgraphs of G such that there exists v ∈ V (H1) ∩ V (H2) and
that for each i = 1, 2, MHi

is a near-perfect matching of Hi exposing only v.
Then, H1 ∪H2 is factor-critical.

Proof. Apparently, M1∪M2 is a near-perfect matching of H1∪H2, exposing only
v. Since H1 and H2 are both factor-critical, the claim follows by Proposition 1.

⊓⊔
Lemma 5. Let G be a factorizable graph, and H ∈ G(G). Then, G[up∗(H)]/H
is factor-critical.

Proof. Let M be a perfect matching of G. Let X ⊆ 2V (G) be the family of
separable set for H . Then, by Theorem 5,

⋃
X∈X X = V (up∗(H)). On the other

hand, G[
⋃

X∈X X ]/H is factor-critical by Proposition 12. Therefore, the claim
follows. ⊓⊔
Theorem 8. Let G be a factorizable graph, and let H ∈ G(G) and S ⊆ PG(H).
Let K1, . . . ,Kl, where l ≥ 1 be some connected components of G[up(H)] such
that N(Ki)∩ V (H) ⊆ S for i = 1, . . . , l. Then, G[V (K1)∪ · · · ∪ V (Kl)∪S]/S is
factor-critical.

Proof. First note that G[up∗(H)]/H is factor-critical by Lemma 5. Let h be the
contracted vertex ofG[up∗(H)]/H . Note also thatK is a connected component of

G[up(H)] if and only if there is a block K̂ of G[up∗(H)]/H such that K = K̂−h.
Therefore, by Proposition 2 the claim follows. ⊓⊔
Remark 3. There are factorizable graphs where ⊳ does not hold for any two
factor-components, in other words, where all the factor-components are minimal
in the poset. For example, we can see by Theorem 4 and Theorem 7 that bipartite
factorizable graphs are such, which means Theorem 5 is not a generalization of
the DM-decomposition, even though they have similar natures.

The following theorem shows that most of the factorizable graphs with |G(G)| ≥
2, in a sense, have non-trivial structures as posets.



Theorem 9. Let G be a factorizable graph, G1, G2 ∈ G(G) be factor-components
for which G1 ⊳ G2 does not hold, and let G1 be minimal in the poset (G(G), ⊳).
Then there are possibly identical complement edges e, f of G between G1 and G2

such that G(G+ e+ f) = G(G) and G1 ⊳ G2 in (G(G+ e+ f), ⊳).

Proof. First we prove the case where there is an edge xy such that x ∈ V (G1)
and y ∈ V (G2). Let M be a perfect matching of G. Choose a vertex w ∈ V (G2)
such that w 6∼g y in G2, and let P be an M -saturated path between w and y. If
xw ∈ E(G), there is an M -ear xy+P +wx relative to G1 and through G2, which
means G1 ⊳ G2 by Theorem 4. Thus xw 6∈ E(G). Suppose G(G + xw) 6= G(G).
Then there is an M -alternating circuit C containing xw in G + xw. Give an
orientation to C so that it becomes a dicircuit with the arc xx′. Trace C from
x and let z be the first vertex we encounter that is in V (G2). Then xy+ xCz is
an M -ear of G which is relative to G2 and through G1, which means G2 ⊳G1 by
Theorem 4, a contradiction to the minimality of G1. Thus G(G + xw) = G(G)
and we are done for this case.

Now we prove the other case, where there is no edge of G connecting G1 and
G2. Choose any x ∈ V (G1) and y ∈ V (G2). If G(G+ xy) = G(G), we can reduce
it to the first case and the claim follows. Therefore it suffices to consider the
case that G(G + xy) 6= G(G). Then, for any perfect matching M of G, there is
an M -alternating circuit C in G + xy containing xy. Give an orientation to C
so that it becomes a dicircuit with the arc yy′. Trace C from y and let u be the
first vertex of G1, and let v be the first vertex in G2 if we trace C from u in the
opposite direction.

If G(G + uv) = G(G), the claim follows by the same argument. Otherwise,
that is, if G(G + uv) 6= G(G), there is an M -alternating circuit D containing
uv. Give an orientation to D so that it becomes a dicircuit with the arc uu′.
If uDv is disjoint from the internal vertices of vCu, then uDv + vCu forms an
M -alternating circuit containing non-allowed edges, a contradiction. Otherwise,
trace D from u and let w be the first vertex on vCu− u.

If wCu has an even number of edges, wCu+uDw is an M -alternating circuit
of G, a contradiction. Therefore, we assume wCu has an odd number of edges.
Let H ∈ G(G) be such that w ∈ V (H). Then wCu+ uDw−H leaves an M -ear
in G which is relative to H and through G1, contradicting the minimality of G1.
Thus this completes the proof. ⊓⊔

6 Algorithmic Result

In this section, we discuss the algorithmic aspects of the partial order and the
generalized canonical partition. We denote by n and m respectively the number
of vertices and edges of input graphs. As we work on factorizable graphs and
graphs with near-perfect matchings, we can assume m = Ω(n).

We start with some materials from Edmonds’ maximum matching algo-
rithm [12], referring mainly to [1, 17]. For a tree T with a specified root vertex
r, we call a vertex v ∈ V (T ) inner (resp. outer) if the unique path in T from



r to v has an odd (resp. even) number of edges. Let G be a graph and M be
a matching of G. A tree T ⊆ G is called M -alternating if exactly one vertex
of it, the root, is exposed by M in G, and each inner vertex v ∈ V (T ) satisfies
|δ(v) ∩ E(T )| = 2 and one of the edges of δ(v) ∩E(T ) is contained in M .

A subgraph S ⊆ G is called a special blossom tree with respect to M (M -SBT )
if there is a partition V (C1)∪̇ · · · ∪̇V (Ck) = V (S) such that

(i) S′ := S/C1/ · · · /Ck is an M -alternating tree,
(ii) MCi

is a near-perfect matching of Ci,
(iii) Ci is a maximal factor-critical subgraph of G if it corresponds to an outer

vertex of S′, and called an outer blossom, and
(iv) |V (Ci)| > 1 only if Ci is an outer blossom, for each i = 1, . . . , k.

Edmonds’ maximum matching algorithm tells us the following facts. Let G
be a graph, M be a near-perfect matching of G, and r ∈ V (G) be the vertex
exposed byM . Then anM -SBT S, with root r, can be computed, if it is carefully
implemented [18,19], in O(m) time. Additionally, the set of vertices from which
r can be reached by an M -balanced path is exactly the set of vertices contained
in the outer blossoms of S.

Thus, due to an easy reduction of the above facts, the following proposition
holds; they can be regarded as a folklore. See [3]. (In [3] they are presented
as those for elementary graphs, but in fact, they can be applicable for general
factorizable graphs.)

Proposition 13. Let G be a factorizable graph, M be a perfect matching of G,
and u ∈ V (G).

(i) The set of vertices that can be reached from u by an M -saturated path can
be computed in O(m) time.

(ii) All the allowed edges adjacent to u can be computed in O(m) time.
(iii) All the factor-components of G can be computed in O(nm) time.

Proposition 14. Given a factorizable graph G, one of its perfect matchings M
and G(G), we can compute the generalized canonical partition of G in O(nm)
time.

Proof. For each H ∈ G(G), we can compute PG(H) in a similar way to compute
the canonical partition of an elementary graph [3]. That is, for each v ∈ V (H),
compute the set of vertices U that can be reached from v by an M -saturated
path, and recognize V (H) \ U as a member of PG(H). This procedure is surely
compatible by Theorem 6. Thus, the claim follows by Proposition 13. ⊓⊔

Let G be a factorizable graph and M be a perfect matching of G. We say
two distinct factor-components G1, G2 of G with G1 ⊳ G2 are non-refinable if
G1 ⊳ H ⊳ G2 yields G1 = H or G2 = H for any H ∈ G(G). Note that if G1 and
G2 are non-refinable, then there is an M -ear relative to G1 and through G2 by
Theorem 4. Note also that the converse of the above fact does not hold.



Lemma 6. Let G be a factorizable graph, M be a perfect matching of G, and
H ∈ G(G). Let S be a maximal M -SBT in G/H and let C be the blossom of T
containing the contracted vertex h corresponding to H. Then any non-refinable
upper bound of H in (G(G), ⊳) has common vertices with C. Additionally, if a
factor-component I ∈ G(G) has some common vertices with C, then H ⊳ I.

Proof. For the former part, let H ′ be a non-refinable upper bound of H , and P
be an M -ear relative to H and through H ′. Since P − C is a disjoint union of
M -ears relative to C, we have P ⊆ C by Theorem 3 and the maximality of the
outer blossoms in M -SBT. Thus the former part of the claim follows.

For the latter part, by the definition of M -SBT and Proposition 4, there is
an M -alternating odd ear-decomposition P = {P1, . . . , Pk} of C. Let I ∈ G(G)
be such that V (I)∩V (C) 6= ∅ and that V (Pj)∩V (I) = ∅ for j = 1, . . . , i−1 and
V (Pi) ∩ V (I) 6= ∅. We proceed by induction on i. If i = 1, the claim obviously
follows. Let i > 1. Gi−1 := P1 + · · ·+ Pi−1 is factor-critical by Theorem 3, and
MGi−1

is a near-perfect matching of Gi−1. Moreover, Pi is an M -ear relative to
Gi−1. Therefore, with the same technique as in the proof of Theorem 4, there
exists I ′ ∈ G(G) such that V (I ′)∩V (C) 6= ∅ and that there is an M -ear relative
to I ′ and through I. Thus, by the induction hypothesis, the latter part of the
claim follows. ⊓⊔

Proposition 15. Given a factorizable graph G, its perfect matching M , and
G(G), we can compute the poset (G(G), ⊳) in O(nm) time.

Proof. It is sufficient to list all the non-refinable upper bounds for each factor-
component of G by the following procedure:

1: D := (G(G), ∅); A := ∅;
2: for all H ∈ G(G) do
3: compute a maximal M -SBT T ; let C be the blossom of T corresponding

to its root;
4: for all x ∈ V (C), which satisfies x ∈ V (I) for some I ∈ G(G) do
5: A := A ∪ {(H, I)};
6: end for
7: end for
8: D := (G(G), A); STOP.

By Lemma 6, the partial order on V (D) determined by the reachability corre-
sponds to ⊳ after the above procedure. That is, if we define a binary relation ≺
on V (D) so that H ′ ⊳ I ′ if there is a dipath from H ′ to I ′ in D, then ≺ and
⊳ coincide. For each H ∈ G(G), the above procedure costs O(m) time, thus it
costs O(nm) time over the whole computation. ⊓⊔

Remark 4. Given the digraph D after the procedure in Proposition 15, we can
compute all the upper bounds of a factor-component in O(n2) time. Thus, an
efficient data structure that represents the poset, for example, a boolean-valued
matrix L where L[i, j] = true if and only if Gi ⊳Gj, can be obtained in additional
O(n2) time.



As a maximum matching of a graph can be computed in O(
√
nm) time [20,21],

we have the following, combining Propositions 13, 14, and 15.

Theorem 10. Let G be a factorizable graph. Then the poset (G(G), ⊳) and the
generalized canonical partition P(G) can be computed in O(nm) time.
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