A Partially Ordered Structure and a Generalization of the Canonical Partition for General Graphs with Perfect Matchings

Nanao Kita
Keio University, Yokohama, Japan
kita@a2.keio.jp

Abstract

This paper is concerned with structures of general graphs with perfect matchings. We first reveal a partially ordered structure among factor-components of general graphs with perfect matchings. Our second result is a generalization of Kotzig's canonical partition to a decomposition of general graphs with perfect matchings. It contains a short proof for the theorem of the canonical partition. These results give decompositions which are canonical, that is, unique to given graphs. We also show that there are correlations between these two and that these can be computed in polynomial time.

1 Introduction

This paper is concerned with matchings on graphs. For general accounts on matching theory we refer to Lovász and Plummer's book 1 .

A matching of a graph G is a set of edges $F \subseteq E(G)$ no two of which have common vertices. A matching of cardinality $|V(G)| / 2$ (resp. $|V(G)| / 2-1$) is called a perfect matching (resp. a near-perfect matching). We call a graph with a perfect matching factorizable. An edge of a factorizable graph is called allowed if it is contained in a perfect matching. For a factorizable graph G, each connected component of the subgraph of G determined by all the allowed edges of it is called an elementary component of G. A factorizable graph which has exactly one elementary component is called elementary. For each elementary component H, we call $G[V(H)]$ a factor-connected component or factor-component of G, and denote the set of all the factor-components of G as $\mathcal{G}(G)$.

Matching theory is of central importance in graph theory and combinatorial optimization [2], with numerous practical applications [3]. Structure theorems that give decompositions which are canonical, namely, unique to given graphs, play important roles in matching theory. Only three theorems, i.e. the canonical partition [4-6, the Dulmage-Mendelsohn decomposition [1], and the Gallai-Edmonds structure theorem [1] have been known as such. The first two are not applicable for general graphs with perfect matchings, and the last one treats them as irreducible and does not decompose them properly, which means nothing has been known that tells non-trivial canonical structures of general
graphs with perfect matchings. Therefore, in this paper, we give new canonical structure theorems for them.

By the definitions, we can view factorizable graphs as being "built" up by combining factor-components with additional edges. However it does not mean that all combinations result in graphs with desired factor-components. Thus the family of factor-components must have a certain non-trivial structure. For bipartite factorizable graphs, the Dulmage-Mendelsohn decomposition (in short, the $D M$-decomposition) reveals the ordered structure of their factor-components. However, as for non-bipartite graphs, no counterpart has been known.

In this paper, as our first contribution, we reveal a partially ordered structure between factor-components of general graphs with perfect matchings. It has some similar natures to the DM-decomposition, however they are distinct.

The second contribution is a generalization of the canonical partition 4-6; see also [1], which is originally a decomposition of elementary graphs. Kotzig [4-6 first investigated the canonical partition of elementary graphs as the quotient set of a certain equivalence relation, and later, Lovász redefined it from the point of view of maximal barriers [1]. In this paper we generalize the canonical partition to a decomposition of general graphs with perfect matchings, based on Kotzig's way. It contains a short proof for the theorem of the canonical partition.

Note that these two results of us give canonical decompositions of graphs. We also show that there are correlations between these two and that these can be computed in polynomial time.

Any of the three existing canonical structure theorems plays significant roles in combinatorics including matching theory. The canonical partition plays a crucial role in matching theory, especially from the polyhedral point of view, that is, in the study of the matching polytope and the matching lattice [7-9]. The Dulmage-Mendelsohn decomposition is known for its application to the efficient solution of linear equations determined by large sparse matrices [1]. Additionally, it is an origin of a series of studies on submodular functions, that is, the field of the principal partition 10, 11. The Gallai-Edmonds structure theorem is essential to the optimality of the maximum matching [1, 12. Thus it also underlies reasonable generalizations of maximum matching problem 13, 14.

By combining the results in this paper with the Gallai-Edmonds structure theorem, we can easily obtain a refinement of the Gallai-Edmonds structure theorem, which gives a consistent view of graphs, whether they are factorizable or not, or, elementary or not [15]. Hence, we are sure that our structure theorems should be powerful tools in matching theory. In fact, the cathedral theorem [1] can be obtained from our results in a quite natural way 15.

2 Preliminaries

In this section, we list some standard definitions and well-known properties. Basics on sets, graphs, digraphs, and algorithms mostly conform to 2.

Let G be a graph and $X \subseteq V(G)$. The subgraph of G induced by X is denoted by $G[X]$. $G-X$ means $G[V(G) \backslash X]$. Given $F \subseteq E(G)$, we define the
contraction of G by F as the graph obtained from contracting all the edges in F, and denote as G / F. Additionally, We define the contraction of G by X as $G / X:=G / E(G[X])$. We say $H \subseteq G$ if H is a subgraph of G. If it is clear from the context, we sometimes regard a subgraph $H \subseteq G$ as the vertex set $V(H)$, a vertex v as a graph $(\{v\}, \emptyset)$.

The set of edges that has one end vertex in $X \subseteq V(G)$ and the other vertex in $Y \subseteq V(G)$ is denoted as $E_{G}[X, Y]$. We denote $E_{G}[X, V(G) \backslash X]$ as $\delta_{G}(X)$. We define the set of neighbors of X as the set of vertices in $V(G) \backslash X$ that are adjacent to vertices in X, and denote as $N_{G}(X)$. We sometimes denote $E_{G}[X, Y], \delta_{G}(X)$, $N_{G}(X)$ as just $E[X, Y], \delta(X), N(X)$ if they are apparent from the context.

For two graphs G_{1} and $G_{2}, G_{1}+G_{2}:=\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$ is called the union of them, and $G_{1} \cap G_{2}:=\left(V\left(G_{1}\right) \cap V\left(G_{2}\right), E\left(G_{1}\right) \cap E\left(G_{2}\right)\right)$ the intersection of them.

Let \hat{G} be a graph such that $G \subseteq \hat{G}$. For $e=u v \in E(\hat{G}), G+e$ means $(V(G) \cup\{u, v\}, E(G) \cup\{e\})$, and $G-e$ means $(V(G), E(G) \backslash\{e\})$. For a set of edges $F=\left\{e_{i}\right\}_{i=1}^{k}, G+F$ and $G-F$ means respectively $G+e_{1}+\cdots+e_{k}$ and $G-e_{1}-\cdots-e_{k}$.

For a path P and $x, y \in V(P), x P y$ means the subpath on P between x and y. For a circuit C with an orientation that makes it a dicircuit, and $x, y \in V(C)$ where $x \neq y, x C y$ means the subpath in C that can be regarded as a dipath from x to y.

A vertex $v \in V(G)$ satisfying $\delta(v) \cap M=\emptyset$ is called exposed by M. For a matching M of G and $u \in V(G), u^{\prime}$ denote the vertex to which u is matched by M. For $X \subseteq V(G), M_{X}$ denotes $M \cap E(G[X])$.

Let M be a matching of G. For $Q \subseteq G$, which is a path or circuit, we call Q M-alternating if $E(Q) \backslash M$ is a matching of Q. Let $P \subseteq G$ be an M-alternating path with end vertices u and v. If P has an even number of edges and starts with an edge in M if it is traced from u, we call it an M-balanced path from u to v. We regard a trivial path, that is, a path composed of one vertex and no edges as an M-balanced path. If P has an odd number of edges and $M \cap E(P)$ (resp. $E(P) \backslash M$) is a perfect matching of P, we call it M-saturated (resp. M-exposed).

Let $H \subseteq G$. We say a path $P \subseteq G$ is an ear relative to H if both end vertices of P are in H while internal vertices are not. So do we to a circuit if exactly one vertex of it is in H. For simplicity, we call the vertices of $V(P) \cap V(H)$ end vertices of P, even if P is a circuit. For an ear $R \subseteq G$ relative to H, we call it an M-ear if $P-V(H)$ is an M-saturated path.

A graph is called factor-critical if any deletion of its single vertex leaves a factorizable graph. A subgraph $G^{\prime} \subseteq G$ is called nice if $G-V\left(G^{\prime}\right)$ is factorizable. The next two propositions are well-known and might be regarded as folklores.

Proposition 1. Let M be a near-perfect matching of a graph G that exposes $v \in V(G)$. Then, G is factor-critical if and only if for any $u \in V(G)$ there exists an M-balanced path from u to v.

Proposition 2. Let G be a graph. Then G is factor-critical if and only if each block of G is factor-critical.

Proposition 3 (implicitly stated in [16]). Let G be a factor-critical graph, $v \in$ $V(G)$, and M be a near-perfect matching that exposes v. Then for any non-loop edge $e=v u \in E(G)$, there is a nice circuit C of G which is an M-ear relative to v and contains e.

Theorem 1 (implicitly stated in [16). Let G be a factor-critical graph. For any nice factor-critical subgraph G^{\prime} of $G, G / G^{\prime}$ is factor-critical.

Let us denote the number of odd components (i.e. connected components with odd numbers of vertices) of a graph G as $o c(G)$, and the cardinality of a maximum matching of G as $\nu(G)$. It is known as the Berge formula [1] that for any graph $G,|V(G)|-2 \nu(G)=\max \{o c(G-X)-|X|: X \subseteq V(G)\}$. A set of vertices that attains the maximum in the right side of the equation is called a barrier.

The canonical partition is a decomposition for elementary graphs and plays a crucial role in matching theory. First Kotzig introduced the canonical partition as a quotient set of a certain equivalence relation [4-6, and later Lovász redefined it from the point of view of barriers [1]. In fact, these are equivalent. For an elementary graph G and $u, v \in V(G)$, we say $u \sim v$ if $u=v$ or $G-u-v$ is not factorizable.

Theorem 2 (Kotzig [4-6], Lovász [1]). Let G be an elementary graph. Then \sim is an equivalence relation on $V(G)$ and the family of equivalence classes is exactly the family of maximal barriers of G.

The family of equivalence classes of \sim is called the canonical partition of G, and denoted by $\mathcal{P}(G)$. An ear-decomposition of graph G is a sequence of subgraphs $G_{0}, \subseteq, \cdots, \subseteq G_{k}=G$ such that $G_{0}=(\{r\}, \emptyset)$ for some $r \in V(G)$ and for each $i \geq 1, G_{i}$ is obtained from G_{i-1} by adding an ear P_{i} relative to G_{i-1}. We sometimes regard an ear-decomposition as a family of ears $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$. An ear-decomposition is called odd if any of its ears has an odd number of edges.

Theorem 3 (Lovász [16]). A graph is factor-critical if and only if it has an odd ear-decomposition.

For a factor-critical graph G and its near-perfect matching M, we call an eardecomposition alternating with respect to M, or just M-alternating, if each ear is an M-ear.

Proposition 4 (Lovász [16]). Let G be a factor-critical graph. Then for any near-perfect matching M of G, there is an M-alternating ear-decomposition of G.

Proposition 5. Let G be a factorizable graph, and M be a perfect matching of G. Then, for $e=x y \in E(G) \backslash M$, the followings are equivalent;
(i) e is allowed in G.
(ii) There is an M-alternating circuit containing e.
(iii) There is an M-saturated path between x and y.

Proposition 6. Let G be a graph, M be a matching of G, and $X \subseteq V(G)$ be such that M_{X} is a perfect matching of $G[X]$. Let P be a subgraph of G that satisfies either of the followings;
(i) P is an M-alternating circuit with $V(P) \cap X \neq \emptyset$,
(ii) for some $u \in X, P$ is an M-ear relative to $\{u\}$,
(iii) P is an M-exposed path whose end vertices are in X, or
(iv) P is an M-saturated path whose end vertices are in X.

Then, each connected component of $P-E(G[X])$ is an M-ear relative to X.

3 A Partially Ordered Structure in Factorizable Graphs

Let G be a factorizable graph. For $X \subseteq V(G)$ we call X a separating set if for any $H \in \mathcal{G}(G), V(H) \subseteq X$ or $V(H) \cap X=\emptyset$. The next property is easy to see by the definition.

Proposition 7. Let G be a factorizable graph, and $X \subseteq V(G)$ with $X \neq \emptyset$. The following properties are equivalent;
(i) X is separating.
(ii) There exist $H_{1}, \ldots, H_{k} \in \mathcal{G}(G)$, where $k \geq 1$, such that $X=V\left(H_{1}\right) \dot{\cup} \cdots \dot{\cup} V\left(H_{k}\right)$.
(iii) For any perfect matching M of $G, \delta(X) \cap M=\emptyset$.
(iv) For any perfect matching M of G, M_{X} is a perfect matching of $G[X]$.

Let $G_{1}, G_{2} \in \mathcal{G}(G)$. We say a separating set X is a critical-inducing set for G_{1} if $V\left(G_{1}\right) \subseteq X$ and $G[X] / G_{1}$ is a factor-critical graph. Moreover, we say X is a critical-inducing set for G_{1} to G_{2} if $V\left(G_{1}\right) \cup V\left(G_{2}\right) \subseteq V(G)$ and $G[X] / G_{1}$ is a factor-critical graph.

Definition 1. Let G be a factorizable graph, and $G_{1}, G_{2} \in \mathcal{G}(G)$. We say $G_{1} \triangleleft G_{2}$ if there is a critical-inducing set for G_{1} to G_{2}.

Lemma 1. Let G be a factorizable graph and M be a perfect matching of G, and let $X \subseteq V(G)$ and $G_{1} \in \mathcal{G}(G)$. Then, X is a critical-inducing set for G_{1} if and only if for any $x \in X \backslash V\left(G_{1}\right)$ there exists $y \in V\left(G_{1}\right)$ such that there is an M-balanced path from x to y whose vertices except y are in $X \backslash V\left(G_{1}\right)$.

Proof. The claim is rather easy from Proposition 1 is a critical-inducing set for G_{1} if and only if $G[X] / G_{1}$ is factor-critical. Note that $M_{X \backslash V\left(G_{1}\right)}$ forms a near-perfect matching of $G[X] / G_{1}$. Therefore, $G[X] / G_{1}$ is factor-critical if and only if for any $x \in X$ there is an M-balanced path from x to the contracted vertex g_{1} corresponding to G_{1}. Therefore, the claim follows.

Proposition 8. Let G be an elementary graph and M be a perfect matching of G. Then for any two vertices $u, v \in V(G)$ there is an M-saturated path between u and v, or an M-balanced path from u to v.

Proof. Without loss of generality we can assume G is matching-covered, that is, every edge of G is allowed. Let $U_{1} \subseteq V(G)$ be the set of vertices that can be reached from u by an M-saturated path, and $U_{2} \subseteq V(G)$ be the set of vertices that can be reached from u by an M-balanced path but cannot be by any M saturated paths. We are going to obtain the claim by showing $U:=U_{1} \dot{U} U_{2}=$ $V(G)$. Suppose that it fails, namely that $U \subsetneq V(G)$. Then there are $v \in U$ and $w \in V(G) \backslash U$ such that $v w \in E(G)$, since G is connected. By the definition of U, there is an M-saturated or balanced path P from u to v, which satisfies $V(P) \subseteq U$ since for each $z \in V(P) u P z$ is an M-saturated or balaned path from u to z. If P is M-saturated, therefore, $P+v w$ is an M-balanced path from u to w, which means $w \in U$, a contradiction.

Hence, hereafter we assume P is M-balanced, from u to v. Since $v w$ is defined to be allowed, there is an M-saturated path Q between v and w by Proposition 5 , Trace P from u and let x be the first vertex we encounter that is in Q; such x surely exists under the current hypotheses since $v \in V(P) \cap V(Q)$.
Claim 1. $u P x$ is an M-balanced path.
Proof. Suppose the claim fails, which is equivalent to $u P x$ being an M-saturated path. Then, $x^{\prime} \in V(u P x)$. On the other hand, since Q is M-saturated, $x^{\prime} \in V(Q)$. Therefore, $x^{\prime} \in V(u P x) \cap V(Q)$, which means we counter x^{\prime} before x if we trace P from u, a contradiction.

Claim 2. $x P w$ is an M-saturated path between x and w.
Proof. If $x=v, v P x$ is a trivial M-balanced path from v to x. Even if $x \neq v$, so is it since x is matched by $M \cap E(P)$. Anyway, whether $x=v$ or not, $v P x$ is an M-balanced path from v to x. Therefore, together with $v P w$ being an M saturated path, $x P w$ is an M-balanced path from x to w.
By Claims 1 and $2 u P x+x Q w$ is an M-saturated path between u and w, since $V(u P x) \cap V(x Q w)=\{x\}$ by the definition of x. Hence, $w \in U$, a contradiction, and we obtain $U=V(G)$, which completes the proof.

Proposition 9. Let G be a factorizable graph and M be a perfect matching of G. Let $X \subseteq V(G)$, and $H \in \mathcal{G}(G)$ be such that there is an M-ear P relative to X and through H, whose end vertices are $u, v \in V\left(G_{1}\right)$. Let $Y:=V(H) \cup V(P) \backslash\{u, v\}$. Then, for any $x \in Y$,
(i) there exists an internal vertex y of P such that there is an M-balanced path Q from x to y with $V(Q) \subseteq Y$ and $V(Q) \cap V(P)=\{y\}$, and
(ii) for w identical to either u or $v, Q+y P w$ is an M-balanced path from x to w, whose vertices except w are contained in Y.

Proof. If $x \in V(P) \backslash\{u, v\}$, the claims are obvious. Let $x \in V(H) \backslash V(P)$. Then, by Proposition 8, for an arbitrarily chosen $z \in V(P) \cap V(H)$, there is an M saturated or balanced path R from x to z with $V(R) \subseteq V(H)$. Trace R from x and let y be the first vertex we encounter that is in $V(P)$. Then, $x R y$ gives a desired path in (i) and $Q:=x R y+y P w$, where w is either u or v, gives one in (ii). Therefore, we are done.

Let G be a factorizable graph and M be a perfect matching of G. We call a sequence of factor-components $S:=\left(H_{0}, \ldots, H_{k}\right)$, where $k \geq 0$ and $H_{i} \in \mathcal{G}(G)$ for each $i=0, \ldots, k$, an M-ear sequence, from H_{0} to H_{k}, if $k=0$ or otherwise
(i) for any $i, j \in\{0, \ldots, k\}, i \neq j$ yields $H_{i} \neq H_{j}$, and
(ii) for each $i=1, \ldots, k$ there is an M-ear P_{i} relative to H_{i-1} and through H_{i}.

We call k the length of S. If $k \geq 1$, we call the sequence of M-ears $P:=$ $\left(P_{1}, \ldots, P_{k}\right)$ associated with S. If $k=0$, an empty sequence, $P:=()$, is defined to be the M-ears associated with S, for convenience.

For S and P, we define the sequence union of S and P as $S \oplus P:=\bigcup_{i=1}^{k} V\left(H_{i}\right) \cup$ $\bigcup_{i=1}^{k} V\left(P_{i}\right) \backslash V\left(H_{0}\right)$, if $k \geq 1$. If $k=0, S \oplus P:=\emptyset$.

Given S and P, for any i, j with $0 \leq i \leq j \leq k$, the subsequence $\left(H_{i}, \ldots, H_{j}\right)$ is an M-ear sequence, from H_{i} to H_{j}, and we denote it as $S[i, j]$. Additionally, if $i<j,\left(P_{i}, \ldots, P_{j}\right)$ is a sequence of M-ears associated with $S[i, j]$, and we denote it $P[i, j]$. If $i=j, P=()$ is associated with $S[i, j]$, and it is also denoted as $P[i, j]$. We denote $S[0, j]=: S^{j}$, and $P[0, j]=: P^{j}$.

Let G be a factorizable graph, and M be a perfect matching of G. Let $G_{1}, G_{2} \in \mathcal{G}(G)$, and let $S:=\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 0$, be an M-ear sequence from G_{1} to G_{2}, associated with M-ears P. Let us define in the following three properties for S and P :

D1 (S, P) : If $k \geq 2$, then by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=2, \ldots, k$, $V\left(P_{i}\right)$ is disjoint from $V\left(H_{0}\right)$.
$\mathbf{D 2}(S, P)$: If $k \geq 1$, by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=1, \ldots, k$, for any $x \in S^{i} \oplus P^{i}$ there exists an internal vertex y of P_{1} such that there is an M balanced path Q from x to y with $V(Q) \subseteq S^{i} \oplus P^{i}$ and $V(Q) \cap V\left(P_{1}\right)=\{y\}$.
D3(S, P): If $k \geq 1$, by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=1, \ldots, k$, for any $x \in S^{i} \oplus P^{i}$, for w which equals either of the end vertices of P_{1}, there is an M-balanced path R from x to w such that $V\left(P_{1}\right) \backslash\{w\} \subseteq S^{i} \oplus P^{i}$.

Remark 1. By their definitions, if $k=0$, then S and P trivially satisfy D1, D2 and D3.

Remark 2. D1, D2 and D3 are closed with respect to the substructures; if S and P satisfies D1, D2 and D3, then for any $i=0, \ldots, k$, so does S^{i} and P^{i}.

Proposition 10. Let G be a factorizable graph and M be a perfect matching of G. Let S be an M-ear sequence, and P be a sequence of M-ears associated with S. Then, $M_{S \oplus P}$ is a perfect matching of $G[S \oplus P]$.

Proof. If the length k of S equals zero, the claim is trivially true. Let $k \geq 1$, and let $S=:\left(H_{0}, \ldots, H_{k}\right)$ and $P=:\left(P_{1}, \ldots, P_{k}\right)$. Of course, $X:=V\left(H_{0}\right) \dot{\cup} \cdots \dot{\cup} V\left(H_{k}\right)$ has a perfect matching M_{X}. For each P_{i}, the end vertices of P_{i} are in X and any other vertex is covered by $M_{P_{i}}$. Therefore, M contains a perfect matching of $Y:=X \cup V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)$. Accordingly, $S \oplus P=Y \backslash V\left(H_{0}\right)$ is covered by $M_{S \oplus P}$.

Lemma 2. Let G be a factorizable graph and M be a perfect matching of G. Let $G_{1} \in \mathcal{G}(G)$ and $X \subseteq V(G)$ be a critical-inducing set for G_{1}. Suppose there exists an M-ear P relative to X, whose end vertices are $u, v \in V(G)$, and let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$, where $s \geq 1$, be the factor-components that have common vertices with the internal vertices of P. Then, $X \cup \bigcup_{i=1}^{s} V\left(I_{i}\right)$ is also a criticalinducing set for G_{1}.

Proof. We prove the claim by Lemma let $Y:=\bigcup_{i=1}^{s} V\left(I_{i}\right)$. By Lemma 1
Claim 3. for any $x \in X$ there exists $z \in V\left(G_{1}\right)$ such that there is an M-balanced path Q_{x} from x to z with $V\left(Q_{x}\right) \subseteq X$ and $V\left(Q_{x}\right) \cap V\left(G_{1}\right)=\{z\}$.

Claim 4. For any $y \in Y$ there exists $z \in V\left(G_{1}\right)$ such that there exists an M balanced path Q_{y} from y to x with $V\left(Q_{y}\right) \subseteq X$ and $V\left(Q_{y}\right) \cap V\left(G_{1}\right)=\{y\}$.

Proof. Let $i \in\{1, \ldots, s\}$ be such that $y \in V\left(I_{i}\right)$. By applying Proposition 9 to X, I_{i} and P, for w which equals either u or v, there is an M-balanced path R from y to w such that $V(R) \backslash\{w\} \subseteq Y$. Therefore, $P+Q_{w}$ gives a desired path.

Apparently by the definition $X \cup Y$ is a separating set, therefore with Claims 3 and 4 we can conclude that $X \cup Y$ is a critical-inducing set for G_{1}, by Lemma

Theorem 4. Let G be a factorizable graph, M be a perfect matching of G, and $G_{1}, G_{2} \in \mathcal{G}(G)$. Then, $G_{1} \triangleleft G_{2}$ if and only if there exists an M-ear sequence from G_{1} to G_{2}.

Proof. We first prove the sufficiency. Let $G_{1} \triangleleft G_{2}$ and $X \subseteq V(G)$ be a criticalinducing set for G_{1} to G_{2}. Let us define the following three properties for $Y \subseteq X$:
$\mathbf{C 1}(Y): Y$ is a critical-inducing set for G_{1}, and
$\mathbf{C 2}(Y)$: for each $H \in \mathcal{G}(G)$ with $V(H) \subseteq Y$, there is an M-ear sequence from G_{1} to H.

Let X^{\prime} be a maximal subset of X satisfying C 1 and C 2 . Note that $X^{\prime} \neq \emptyset$ because $V\left(G_{1}\right)$ satisfies C 1 and C 2 . We are going to prove the sufficiency by showing that $X^{\prime}=X$. Suppose it fails, that is, $X^{\prime} \subsetneq X$. Then,
Claim 5. there is an M-ear P relative to X^{\prime} such that $V(P) \subseteq X$.
Proof. $G[X] / G_{1}$ is factor-critical and $G\left[X^{\prime}\right] / G_{1}$ is a nice factor-critical subgraph of $G[X] / G_{1}$ by Proposition 7 Therefore, $G[X] / X^{\prime}$ is factor-critical by Theorem 1 and $M_{X \backslash X^{\prime}}$ forms a near-perfect matching of $G[X] / X^{\prime}$ exposing only the contracted vertex x^{\prime} corresponding to X^{\prime}. By Proposition 3] in $G[X] / X^{\prime}$ there is an M-ear P relative to x^{\prime}, and in G it corresponds to an M-ear relative to X^{\prime} with $V(P) \subseteq X$. Thus, the claim follows.

Let $u, v \in X^{\prime}$ be the end vertices of P. Let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$ be the factorcomponents that have common vertices with internal vertices of P. We are going to prove that $X^{\prime \prime}:=X^{\prime} \cup \bigcup_{i=1}^{s} V\left(I_{i}\right)$ satisfies C1 and C2.

Claim 6. $X^{\prime \prime}$ satisfies C2.
Proof. By Lemma 1, there exists an M-balanced path Q_{u} (resp. Q_{v}) from u (resp. v) to a vertex of $V\left(G_{1}\right)$, which is contained in X and whose vertices except the end vertex in $V\left(G_{1}\right)$ are disjoint from $V\left(G_{1}\right)$. Trace Q_{u} from u and let r_{u} be the first vertex we encounter that is contained in a factor-component I_{0} which has common vertices also with Q_{v}; such I_{0} surely exists since both Q_{u} and Q_{v} have some vertices in G_{1}. Trace Q_{v} from v and let r_{v} be the first vertex we encounter that is in $V\left(I_{0}\right)$. For each $w \in\{u, v\}, w Q_{w} r_{w}$ is an M-balanced path from w to r_{w} such that $V\left(w Q_{w} r_{w}\right) \subseteq X^{\prime}$ and $V\left(w Q_{w} r_{w}\right) \cap V\left(I_{0}\right)=\left\{r_{w}\right\}$, and it holds that $V\left(u Q_{u} r_{u}\right) \cap V\left(v Q_{v} r_{v}\right) \backslash\left\{r_{u}, r_{v}\right\}=\emptyset$. Therefore, $u Q_{u} r_{u}+P+v Q_{v} r_{v}$ is an M-ear relative to I_{0} and through every I_{1}, \ldots, I_{s}. By the definition of X^{\prime}, there is an M-ear sequence from G_{1} to I_{0}. Therefore, by adding subsequence $\left(I_{0}, I_{i}\right)$ to it, we obtain an M-ear sequence from G_{1} to I_{i}, for each $i=1, \ldots, s$. Thus, we obtain the claim.

Claim 7. $X^{\prime \prime}$ satisfies C1.
Proof. This is immediate by Lemma 2.
With Claims 6and 7, $X^{\prime \prime}$ contradicts the maximality of X^{\prime}. Therefore, we obtain $X^{\prime}=X$, accordingly the sufficiency part of the claim follows.

From now on we prove the necessity. Let $\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 0$, be the M-ear sequence from G_{1} to G_{2} We are going to prove that there is a critical-inducing set for G_{1} to G_{2}. We proceed by induction on k. For the case $k=0$, that is, $G_{1}=G_{2}$, the claim apparently holds by taking $V\left(G_{1}\right)$.

Let $k>0$ and suppose the claim holds for $k-1$. By the induction hypothesis, for the M-ear subsequence $\left(H_{0}, \ldots, H_{k-1}\right)$, there is a critical-inducing set X^{\prime} for H_{0} to H_{k-1}.

Claim 8. There is an M-ear P relative to X^{\prime} and through H_{k}.
Proof. Let P_{k} the associated M-ear relative to H_{k-1} and through H_{k}. By Proposition 6 each connected component $P-E\left(G\left[X^{\prime}\right]\right)$ is an M-ear relative to X^{\prime}, and one of them, which we call P, is through H_{k}. Therefore, the claim follows.

Let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$, where $s \geq 1$, be the factor-components that have common vertices with the internal vertices of P, and let $Y:=\bigcup_{i=1}^{s} V\left(I_{i}\right)$. Then, by applying Lemma 2 to the critical-inducing set X^{\prime} for G_{1} and the M-ear P, we obtain that $X^{\prime} \cup Y$ is a critical-inducing set for G_{1} to H_{k}. This completes the proof.

Lemma 3. Let G be a factorizable graph, and M be a perfect matching. Let $S:=\left(H_{0}, \ldots, H_{k}\right)$, where $k \geq 1$, be an M-ear sequence, associated with M ears $P:=\left(P_{1}, \ldots, P_{k}\right)$. Suppose S^{i} and P^{i} satisfy D1, D2, and D3 for each $i=0, \ldots, k-1$, and S and P satisfy D1. Then, S and P also satisfy D2 and D3.

Proof. If $k=1$, then by applying Proposition 9 to $V\left(H_{0}\right), P_{1}$, and H_{1}, it holds that S and P satisfy D1, D2 and D3.

Hence hereafter let $k \geq 2$. First note that each connected component of $P_{k}-E\left(G\left[S^{k-1} \oplus P^{k-1}\right]\right)$ is an M-ear relative to $S^{k-1} \oplus P^{k-1}$ by Proposition 6, and is disjoint from $V\left(H_{0}\right)$ since P_{k} is.

Take $x \in S \oplus P \backslash S^{k-1} \oplus P^{k-1}$ arbitrarily, and let P_{k}^{x} be a connected component of $P_{k}-E\left(G\left[S^{k-1} \oplus P^{k-1}\right]\right)$ such that x is an internal vertex of P_{k}^{x} if $x \in V(P)$, or one through H_{k} if $x \in V\left(H_{k}\right) \backslash V(P)$.

Claim 9. There exists $y \in S^{k-1} \oplus P^{k-1}$ such that there exists an M-balanced path Q from x to y whose vertices except y are contained in $S \oplus P \backslash S^{k-1} \oplus P^{k-1}$.

Proof. By applying Proposition 9 to $S^{k-1} \oplus P^{k-1}, P_{k}^{x}$, and H_{k} (if $x \in V\left(H_{k}\right)$), we obtain an internal vertex y of P_{1} and an M-balanced path Q from x to y with $V(Q) \backslash\{y\} \subseteq V\left(H_{k}\right) \cup V\left(P_{k}^{x}\right) \backslash S^{k-1} \oplus P^{k-1}$. Since P_{k} is disjoint from $V\left(H_{0}\right)$, we can see $V\left(H_{k}\right) \cup V\left(P_{k}^{x}\right) \subseteq S \oplus P$. Therefore, $V(Q) \backslash\{y\} \subseteq S \oplus P \backslash S^{k-1} \oplus P^{k-1}$, and the claim follows.

Claim 10. S and P satisfy D2.
Proof. By the hypothesis on S^{k-1} and P^{k-1} there exists an internal vertex z of P_{1} such that there is an M-balanced path R from y to z with $V(R) \subseteq$ $S^{k-1} \oplus P^{k-1}$ and $V(R) \cap V\left(P_{1}\right)=\{z\}$. Therefore, by Claim $9, Q+R$ is an $M-$ balanced path from x to z, whose veritices are contained in $S \oplus P$ and disjoint from P_{1} except z.

Since x is chosen arbitrarily from $S \oplus P \backslash S^{k-1} \oplus P^{k-1}$, we obtain that S and P satisfy D2.

By similar arguments, we can say that S and P satisfy D3 too, and the claim follows.

Proposition 11. Let G be a factorizable graph and M be a perfect matching. Let $G_{1}, G_{2} \in \mathcal{G}(G)$ be such that $G_{1} \triangleleft G_{2}$, and let $k \geq 0$ be the length of the shortest M-ear sequence from G_{1} to G_{2}. Then, there exists an M-ear sequence S of shortest length, and M-ears P associated with S such that $D 1(S, P), D 2(S$, $P)$, and $D 3(S, P)$ hold.

Proof. We proceed by induction on k. If $k=0$, the claim is trivially true. If $k=1$, for any shortest M-ear sequence $S=\left(H_{0}=G_{1}, H_{1}=G_{2}\right)$ from G_{1} to G_{2} and associated M-ears $P=\left(P_{1}\right), \mathrm{D} 1(S, P)$ trivially holds by the definition of D1, and moreover $\mathrm{D} 2(S, P)$ and $\mathrm{D} 3(S, P)$ also hold by applying Proposition 9 to $V\left(H_{0}\right), P_{1}$, and H_{k}.

Let $k \geq 2$, and suppose the claim is true for any two factor-components $G_{1}^{\prime}, G_{2}^{\prime} \in \mathcal{G}(G)$ such that the length of the shortest M-ear sequence from G_{1}^{\prime} to G_{2}^{\prime}, is $1, \ldots, k-1$.

Take arbitrarily an M-ear sequence $S=\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$ from G_{1} to G_{2} of shortest length, and M-ears $P=\left(P_{1}, \ldots, P_{k}\right)$ associated with it. Let u_{1}, v_{1} be the end vertices of P_{1}.

Claim 11. Without loss of generality we can assume that S and P are chosen so that for each $i=1, \ldots, k-1, S^{i}$ and P^{i} satisfy D1, D2, and D3.

Proof. By the induction hypothesis, there exist an M-ear sequence from H_{0} to H_{k-1}, which is of shortest length, and M-ears associated with it which satisfy $\mathrm{D} 1, \mathrm{D} 2$, and D 3 ; note that its length is $k-1$. Without loss of generality, we can assume S^{k-1} and P^{k-1} coincides to them. Since the conditions D1, D2, and D3 are closed with substructures, the claim follows.

If P_{k} is disjoint from $V\left(H_{0}\right)$, namely if $\mathrm{D} 1(S, P)$ holds, then by Lemma 3, S and P also satisfy D2 and D3, and the claim follows.

Hence hereafter suppose that might fail i.e. P_{k} might not be disjoint from $V\left(H_{0}\right)$. By Proposition 6] each connected component of $P_{k}-E\left(G\left[S^{k-1} \oplus P^{k-1}\right]\right)$ is an M-ear relative to $S^{k-1} \oplus P^{k-1}$. Take one of them Q arbitrarily that has common vertices with H_{k}.

Take $x \in V(Q) \cap V\left(H_{k}\right)$ arbitrarily, and let u, v be the end vertices of Q. Trace $x Q u$ from x and let y be the first vertex we encounter that is in $V\left(H_{0}\right) \cup\{u\}$. On the other hand, trace $x Q v$ from x and let z be the first vertex we encounter that is in $V\left(H_{0}\right) \cap\{v\}$. Then,

Claim 12. $y Q z$ is an M-exposed path, whose internal vertices contains $x \in$ $V\left(H_{k}\right)$, and whose vertices except the end vertices y and z are disjoint from $V\left(H_{0}\right) \cup S^{k-1} \oplus P^{k-1}$.

Claim 13. Q is disjoint from $V\left(H_{0}\right)$.
Proof. We are going to prove $y=u$ and $z=v$; First suppose the case where $y, z \in$ $V\left(H_{0}\right)$. Then, $y Q z$ is an M-ear relative to H_{0} and through H_{k}, which means (H_{0}, H_{k}) forms an M-ear sequence of length one, contradicting the definition of k, since $k \geq 2$.

Second suppose the case where $y \in V\left(H_{0}\right)$ and $z=v$. Since S^{k-1} and P^{k-1} satisfy D3, for either $w \in\left\{u_{1}, v_{1}\right\}$ there is an M-balanced path R from z to w such that $V(R) \backslash\{w\} \subseteq S^{k-1} \oplus P^{k-1}$. Therefore, $y Q z+R$ is an M-ear relative to H_{0} and through H_{k}, again letting $\left(H_{0}, H_{k}\right)$ be an M-ear sequence, a contradiction.

In the third case where $y=u$ and $z \in V\left(H_{0}\right)$, by symmetric arguments we are again lead to a contradiction.

Therefore, we obtain that $y=u$ and $z=v$, which is equivalent to Q being disjoint from $V\left(H_{0}\right)$.

Since S^{k-1} and P^{k-1} satisfy D3, for each $\alpha \in\{u, v\}$ there is an M-balanced path Q_{α} from α to r_{α}, where r_{α} equals either u_{1} or v_{1}, such that $V\left(Q_{\alpha}\right) \backslash\left\{r_{\alpha}\right\} \subseteq$ $S^{k-1} \oplus P^{k-1}$. Trace Q_{u} from u and let s be the first vertex we encounter that is contained in a factor-component, say $I \in \mathcal{G}(G)$, which has common vertices also with $V\left(Q_{v}\right)$; such I surely exists since both Q_{u} and Q_{v} have vertices in H_{0}. Trace Q_{v} from v and let t be the first vertex we encounter that is in $V(I)$.
Claim 14. $I \neq H_{0}$. Accordingly, $V\left(Q_{u}\right) \cup V\left(Q_{v}\right) \subseteq S^{k-1} \oplus P^{k-1}$.

Proof. $S^{k-1} \oplus P^{k-1} \cap V\left(H_{0}\right)=\emptyset$, and for each $\alpha \in\{u, v\}, V\left(Q_{\alpha}\right) \backslash\left\{r_{\alpha}\right\} \subseteq$ $S^{k-1} \oplus P^{k-1}$. Therefore, $I=H_{0}$ only if $V\left(Q_{u}\right) \cap V\left(Q_{v}\right)=\emptyset$ or $V\left(Q_{u}\right) \cap V\left(Q_{v}\right)=$ $\left\{r_{u}\right\}=\left\{r_{v}\right\}$. Then, $Q_{u}+Q+Q_{v}$ forms an M-ear relative to H_{0} and through H_{k}, letting $\left(H_{0}, H_{k}\right)$ be an M-ear sequence of length one, a contradiction.

Claim 15. Each connected component of $u Q_{u} s+Q+v Q_{z} t-E(I)$ is an M-ear relative to I, one of which, say \hat{Q}, is through H_{k}.

Proof. $u Q_{u} s$ and $v Q_{z} t$ are M-balanced paths respectively from u to s and from v to t, and they are disjoint if $s \neq t$, or have only one common vertex $s=t$ if $s=t$. Additionally, they are both contained in $S^{k-1} \oplus P^{k-1}$ by Claim 14, while $V(Q) \cap S^{k-1} \oplus P^{k-1}=\{u, v\}$. Therefore, $u Q_{u} s+Q+v Q_{z} t$ forms an M-exposed path between s and t if $s \neq t$, or an M-ear relative to $\{s\}=\{t\}$ if $s=t$, in both cases having internal vertices contained in H_{k}, since Q does. Hence, by Proposition 6, the claim follows.

By the arguments up till now, I has some vertices in $S^{k-1} \oplus P^{k-1}$. Hence, I equals either of H_{1}, \ldots, H_{k-1} or otherwise it just has common vertices other than u_{1} or v_{1}, with either of P_{1}, \ldots, P_{k-1}.

Claim 16. If I equals either of H_{1}, \ldots, H_{k-1}, then $I=H_{k-1}$.
Proof. If $k=2$, the claim is trivially true. Let $k \geq 3$ and suppose the claim fails, that is, $I=H_{i}$ for $i \in\{1, \ldots, k-2\}$. Then, $\left(H_{0}, \ldots, H_{i}=I, H_{k}\right)$ forms an M-ear sequence from H_{0} to H_{k}, associated with $\left(P_{1}, \ldots, P_{i}, \hat{Q}\right)$, and of length $i+1 \leq k-1$. This contradicts the definition of k, therefore we have the claim.

Claim 17. \hat{Q} is disjoint from $V\left(H_{0}\right)$.
Proof. By Claim [13, Q is disjoint from $V\left(H_{0}\right)$, and by Claim [14, Q_{u} and Q_{v} are both disjoint from $V\left(H_{0}\right)$. Therefore, $\hat{Q}=Q_{u}+Q+Q_{v}$ is also disjoint from $V\left(H_{0}\right)$.

Therefore, with Claims 16 and 17 in the above case, namely where $I=H_{k-1}$, $S=\left(H_{0}, \ldots, H_{k}\right)$ is an M-ear sequence, which can be regarded as being associated by M-ears $P^{\prime}:=\left(P_{1}, \ldots, P_{k-1}, \hat{Q}\right)$. Since S and P^{\prime} satisfy D1 by Claim 17 , we have that they satisfy also D2 and D3, by Lemma 3. Hence we are done for this case.

Claim 18. If I is distinct from any of H_{1}, \ldots, H_{k-1}, then P_{k-1}, an M-ear relative to H_{k-2}, is through I.

Proof. If $k=2$, the claim apparently follows. Let $k \geq 3$ and suppose I has common vertices with P_{i} with $i \in\{1, \ldots, k-2\}$. Namely, P_{i} is an M-ear relative to H_{i-1} and through I. Hence, $\left(H_{0}, \ldots, H_{i-1}, I, H_{k}\right)$ is an M-ear sequence from H_{0} to H_{k}, of length $i+1 \leq k-1$, associated with M-ears $\left(P_{1}, \ldots, P_{i}, \hat{Q}\right)$. This contradicts the definition of k. Therefore we can conclude that $i=k-1$, and the claim follows.

Therefore, in this case, by Claim 18 $\tilde{S}:=\left(H_{0}, \ldots, H_{k-2}, I, H_{k}\right)$ is an M-ear sequence associated with $\tilde{P}=\left(P_{1}, \ldots, P_{k-1}, \hat{Q}\right)$.
$-\tilde{S}^{k-2}$ and \tilde{P}^{k-2} satisfy D1, D2, and D3, since $\tilde{S}^{k-2}=S^{k-2}$ and $\tilde{P}^{k-2}=$ P^{k-2}, and
$-\tilde{S}^{k-1}$ and \tilde{P}^{k-1} satisfy D1, since $(k-1)$-th elements of P and \tilde{P} are identical.
Therefore, by Lemma 3, \tilde{S}^{k-1} and \tilde{P}^{k-1} also satisfy D2 and D3. Moreover, by Claim 17 with Lemma 3 again applied to \tilde{S} and \tilde{P}, we obtain, with Claim 17 , that \tilde{S} and \tilde{P} also satisfy D1, D2, and D3. This complets the proof.
Theorem 5. \triangleleft is a partial order.
Proof. The reflexivity is obvious from the definition. The transitivity obviously follows from Theorem 4. Hence, we will prove the antisymmetry. Let $G_{1}, G_{2} \in$ $\mathcal{G}(G)$ be such that $G_{1} \triangleleft G_{2}$ and $G_{2} \triangleleft G_{1}$. Suppose that the antisymmetry fails, that is, that $G_{1} \neq G_{2}$. Let M be a perfect matching of G. By Proposition 11 there exists an M-ear sequence from G_{1} to G_{2}, say $S:=\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 1$, and associated M-ears $P:=\left(P_{1}, \ldots, P_{k}\right)$ which D1, D2 and D3. Let u_{1} and v_{1} be the end vertices of P_{1}.

By Lemma 1 there exists $w \in V\left(G_{2}\right)$ such that there is an M-balanced path Q from u_{1} to w. Trace Q from u_{1} and let x be the first vertex we encounter that is in $\left(S \oplus P \cup\left\{v_{1}\right\}\right) \backslash\left\{u_{1}\right\}$; such a vertex surely exists since $V\left(G_{2}\right) \subseteq S \oplus P$.
Claim 19. Without loss of generality we can assume that $x \neq v_{1}$, namely, $x \in$ $S \oplus P$ and $u_{1} Q x$ is disjoint from v_{1}.
Proof. Suppose the claim fails, that is, $x=v_{1}$. Then, $u_{1} \neq v_{1}$. If $u_{1} Q v_{1}$ is an M-saturated path, then $P_{1}+u_{1} Q v_{1}$ forms an M-alternating circuit, containing non-allowed edges, a contradiction. Otherwise, namely if $u_{1} Q v_{1}$ is an M-balanced path from u_{1} to v_{1}, then $v_{1} Q w$ is an M-balanced path from v_{1} to w. Now redefine x as the first vertex we encounter that is in $S \oplus P$ if we trace $v_{1} Q w$ from v_{1}. Then, $v_{1} Q x$ is an M-balanced path from v_{1} to x which is disjoint from u_{1}. Therefore, by changing the roles of u_{1} and v_{1}, without loss of generality, we obtain the claim.

Therefore, hereafter let $x \in S \oplus P$, noting that $u_{1} Q x$ is an M-balanced path from u_{1} to x. Since $x \in S \oplus P$, by Proposition 9 there is an M-balanced path R from x to an internal vertex of P_{1}, say y, such that $V(R) \subseteq S \oplus P$ and $V(R) \cap V\left(P_{1}\right)=\{y\}$.

If $u_{1} P_{1} y$ has an even number of edges, $u_{1} Q x+x R y+y P_{1} u_{1}$ is an M alternating circuit containing non-allowed edges, a contradiction.

Hence hereafter we assume $u_{1} P_{1} y$ has an odd number of edges. By Proposition 8 there is an M-saturated or balanced path L from v_{1} to u_{1} which is contained in G_{1}. Trace L from v_{1} and let w be the first vertex on $u_{1} Q x$; note that L is disjoint from $S \oplus P$ since $V(L) \subseteq V\left(H_{0}\right)$ and $S \oplus P$ is disjoint from $V\left(H_{0}\right)$. If $u_{1} Q w$ has an odd number of edges, then $w Q u_{1}+P_{1}+v_{1} L w$ is an M-alternating circuit, a contradiction. If $u_{1} Q w$ has an even number of edges, then $v_{1} L w+w Q x+x R y+y P_{1} u_{1}$ is an M-alternating circuit, which is also a contradiction. Thus we get $G_{1}=G_{2}$, and the claim follows.

4 A Generalization of the Canonical Partition

For non-elementary graphs, the family of maximal barriers never gives a partition of its vertex set [1]. Therefore, to analyze the structures of general graphs with perfect matchings, we generalized the canonical partition based on Kotzig's way (4) 6].

Definition 2. Let G be a factorizable graph and $H \in \mathcal{G}(G)$. For $u, v \in V(H)$, we say $u \sim_{g} v$ if $u=v$ or $G-u-v$ is not factorizable.

Theorem 6. \sim_{g} is an equivalence relation.
Proof. Since the reflexivity and the symmetry are obvious from the definition, we prove the transitivity. Let M be a perfect matching of G. Let $u, v, w \in V(H)$ be such that $u \sim_{g} v$ and $v \sim_{g} w$. If any two of them are identical, clearly the claim follows. Therefore it suffices to consider the case that they are mutually distinct. Suppose that the claim fails, that is, $u \not \chi_{g} w$. Then there is an M-saturated path P between u and w. By Proposition 8 there is an M-balanced path Q from v to u. Trace Q from v and let x be the first vertex we encounter that in $V(Q) \cap V(P)$. If $u P x$ has an odd number of edges, $v Q x+x P u$ is an M-saturated path between u and v, a contradiction. If $u P x$ has an even number of edges, then $x P w$ has an odd number of edges, and by the same argument we have a contradiction.

We call the family of equivalence classes of \sim_{g} as the generalized canonical partition and denote as $\mathcal{P}_{G}(H)$ for each factor-component $H \in \mathcal{G}(G)$ of a factorizable graph G. Note that the notions of the canonical partition and the generalized one are coincident for an elementary graph. Thus we denote the union of equivalence classes of all the factor-components of G as $\mathcal{P}(G)$, and call it just as the canonical partition. Moreover our proof for Theorem 6 contains a short proof for the existence of the canonical partition. Kotzig takes three papers to prove it, thus to prove that \sim is an equivalence relation "from scratch" is considered to be hard [1]. However, in fact, it can be shown in a simple way even without the premise of the Gallai-Edmonds structure theorem nor the notion of barriers. Note also that the generalized canonical partition $\mathcal{P}_{G}(H)$ is a refinement of $\mathcal{P}(H)$ for each $H \in \mathcal{G}(G)$.

5 Correlations between \triangleleft and \sim_{g}

In this section we further analyze properties of factorizable graphs. We denote all the upper bounds of $H \in \mathcal{G}(G)$ in $(\mathcal{G}(G), \triangleleft)$ as $u p_{G}^{*}(H)$ and define $u p_{G}(H)$ as $u p_{G}^{*}(H) \backslash\{H\}$. We sometimes omit the subscripts if they are apparent from the context. For simplicity, we sometimes denote the subgraph induced by the vertices in $u p(H)\left(\operatorname{resp} . u p^{*}(H)\right)$ as just $G[u p(H)]$ (resp. $\left.G\left[u p^{*}(H)\right]\right)$, and the vertices of $u p(H)\left(\right.$ resp. $\left.u p^{*}(H)\right)$ as just $V(u p(H))\left(\right.$ resp. $\left.V\left(u p^{*}(H)\right)\right)$.

Lemma 4. Let G be a factorizable graph, M be a perfect matching of G, and $H \in \mathcal{G}(G)$. Let P be an M-ear relative to H with end vertices $u, v \in V(H)$. Then $u \sim_{g} v$.

Proof. Suppose the claim fails, that is, $u \neq v$ and there is an M-saturated path Q between u and v. Trace Q from u and let x be the first vertex we encounter that is on $P-u$. If $u P x$ has an even number of edges, $u Q x+x P u$ is an M-alternating circuit containing non-allowed edges, a contradiction. Hence we suppose $u P x$ has an odd number of edges. Let $I \in \mathcal{G}(G)$ be such that $x \in V(I)$. Then one of the components of $u Q x+x P u-E(I)$ is an M-ear relative to I and through H, a contradiction by Theorem 4 .

Theorem 7. Let G be a factorizable graph, and $G_{0} \in \mathcal{G}(G)$. For each connected component K of $G\left[u p\left(G_{0}\right)\right]$ there exists $T_{K} \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $N(K) \cap V\left(G_{0}\right) \subseteq$ T_{K}.

Proof. Let M be a perfect matching of G.
Claim 20. Let $H \in u p\left(G_{0}\right)$, and S and P be the shortest M-ear sequence from G_{0} to H and associated M-ears which satisfy D1, D2 and D3. Then, there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that for each factor-components H^{\prime} that has common vertices with $S \oplus P, N\left(H^{\prime}\right) \cap V\left(G_{0}\right) \subseteq T$ holds.

Proof. Let us denote $S=\left(G_{0}=H_{0}, \ldots, H_{k}=H\right)$, where $k \geq 1$, and $P=$ $\left(P_{1}, \ldots, P_{k}\right)$. Let $u_{1}, v_{1} \in V\left(G_{0}\right)$ be the end vertices of P_{1}. By Lemma 4 there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $u_{1}, v_{1} \in T$.

Let $H^{\prime} \in \mathcal{G}(G)$ be such that $V\left(H^{\prime}\right) \cap S \oplus P \neq \emptyset$. Suppose there exists $w \in N\left(H^{\prime}\right) \cap V\left(G_{0}\right)$ and let $z \in V\left(H^{\prime}\right)$ be such that $w z \in E(G)$. Take $x \in$ $V\left(H^{\prime}\right) \cap S \oplus P$ arbitrarily. By Proposition 8, there exists a path Q which is M balanced from z to x or M-saturated between z and x such that $V(Q) \subseteq V\left(H^{\prime}\right)$. Trace Q from z and let y be the first vertex we encounter that is in $S \oplus P$. Then, $z P y$ is an M-balanced path from z to y with $V(z P y) \subseteq V\left(H^{\prime}\right)$ and $V(z P y) \cap S \oplus P=\{y\}$. By D3 (S, P), for either of $r \in\left\{u_{1}, v_{1}\right\}$, there is an M-balanced path R from y to r such that $V(R) \backslash\{r\} \subseteq S \oplus P$.

Therefore, $R+z P y+w z$ forms an M-ear relative to G_{0}, whose end vertices are r and w. By Lemma 4, therefore, $w \in T$ and the claim follows.

Immediately by Claim 20 we can see that for any $H \in u p\left(G_{0}\right)$ there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $N(H) \cap V\left(G_{0}\right) \subseteq T$. Hence for each $T \in \mathcal{P}_{G}\left(G_{0}\right)$ we can define

$$
\mathcal{K}_{T}:=\left\{H \in u p\left(G_{0}\right): V(H) \subseteq V(K) \text { and } N(H) \cap V\left(G_{0}\right) \subseteq T\right\}
$$

and $V_{T}:=\bigcup_{H \in \mathcal{K}_{T}} V(H)$. Note that $\bigcup_{T \in \mathcal{P}_{G}\left(G_{0}\right)} V_{T}=V(K)$.
We are going to prove the claim by showing that $\left|\left\{T \in \mathcal{P}_{G}\left(G_{0}\right): V_{T} \neq \emptyset\right\}\right|=$ 1. Suppose it fails; Then, since K is connected, there exist $T_{1}, T_{2} \in \mathcal{P}_{G}\left(G_{0}\right)$ with $T_{1} \neq T_{2}$ such that $E\left[V_{T_{1}}, V_{T_{2}}\right] \neq \emptyset$. Let $s_{1} \in V_{T_{1}}$ and $s_{2} \in V_{T_{2}}$ be such that $s_{1} s_{2} \in E\left[V_{T_{1}}, V_{T_{2}}\right]$.

Claim 21. For each $i=1,2$, there is an M-balanced path L_{i} from s_{i} to a vertex in T_{i}, say r_{i}, such that $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq V_{T_{i}}$.

Proof. Let $i \in\{1,2\}$. Let $H \in \mathcal{G}(G)$ be such that $s_{i} \in V(H)$. Then, $V(H) \subseteq V_{T_{i}}$. Take an M-ear sequence $S=\left(G_{0}=H_{0}, \ldots, H_{k}=H\right)$, where $k \geq 1$, from G_{0} to H and an associated M-ears $P=\left(P_{1}, \ldots, P_{k}\right)$ which satisfy D1, D2 and D3; By Claim 20, $S \oplus P \subseteq V_{T_{i}}$. By D3, there is an M-balanced path L_{i} from s_{i} to either of the end vertices of P_{1}, say $r_{i} \in V\left(G_{0}\right)$ such that $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq S \oplus P$. Therefore, $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq V_{T_{i}}$.

By Claim 21, $L_{1}+s_{1} s_{2}+L_{2}$ is an M-ear relative to G_{0}, whose end vertices are $r_{1} \in T_{1}$ and $r_{2} \in T_{2}$. By Lemma 4 this yields $T_{1}=T_{2}$, a contradiction. Therefore, we can conclude that there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $V_{T}=V(K)$, namely the claim follows.

By Theorem[7, we can see that upper bounds of a factor-component are each "attached" to an equivalence class of the generalized canonical partition.

Proposition 12. Let G be a graph and M be a matching of G. Let $H_{1}, H_{2} \subseteq G$ be factor-critical subgraphs of G such that there exists $v \in V\left(H_{1}\right) \cap V\left(H_{2}\right)$ and that for each $i=1,2, M_{H_{i}}$ is a near-perfect matching of H_{i} exposing only v. Then, $H_{1} \cup H_{2}$ is factor-critical.

Proof. Apparently, $M_{1} \cup M_{2}$ is a near-perfect matching of $H_{1} \cup H_{2}$, exposing only v. Since H_{1} and H_{2} are both factor-critical, the claim follows by Proposition 1

Lemma 5. Let G be a factorizable graph, and $H \in \mathcal{G}(G)$. Then, $G\left[u p^{*}(H)\right] / H$ is factor-critical.
Proof. Let M be a perfect matching of G. Let $\mathcal{X} \subseteq 2^{V(G)}$ be the family of separable set for H. Then, by Theorem 55, $\bigcup_{X \in \mathcal{X}} X=V\left(u p^{*}(H)\right)$. On the other hand, $G\left[\bigcup_{X \in \mathcal{X}} X\right] / H$ is factor-critical by Proposition [12. Therefore, the claim follows.

Theorem 8. Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$ and $S \subseteq \mathcal{P}_{G}(H)$. Let K_{1}, \ldots, K_{l}, where $l \geq 1$ be some connected components of $G[u p(H)]$ such that $N\left(K_{i}\right) \cap V(H) \subseteq S$ for $i=1, \ldots, l$. Then, $G\left[V\left(K_{1}\right) \cup \cdots \cup V\left(K_{l}\right) \cup S\right] / S$ is factor-critical.

Proof. First note that $G\left[u p^{*}(H)\right] / H$ is factor-critical by Lemma [5] Let h be the contracted vertex of $G\left[u p^{*}(H)\right] / H$. Note also that K is a connected component of $G[u p(H)]$ if and only if there is a block \widehat{K} of $G\left[u p^{*}(H)\right] / H$ such that $K=\widehat{K}-h$. Therefore, by Proposition 2 the claim follows.

Remark 3. There are factorizable graphs where \triangleleft does not hold for any two factor-components, in other words, where all the factor-components are minimal in the poset. For example, we can see by Theorem4and Theorem 7 that bipartite factorizable graphs are such, which means Theorem 5 is not a generalization of the DM-decomposition, even though they have similar natures.

The following theorem shows that most of the factorizable graphs with $|\mathcal{G}(G)| \geq$ 2 , in a sense, have non-trivial structures as posets.

Theorem 9. Let G be a factorizable graph, $G_{1}, G_{2} \in \mathcal{G}(G)$ be factor-components for which $G_{1} \triangleleft G_{2}$ does not hold, and let G_{1} be minimal in the poset $(\mathcal{G}(G), \triangleleft)$. Then there are possibly identical complement edges e, f of G between G_{1} and G_{2} such that $\mathcal{G}(G+e+f)=\mathcal{G}(G)$ and $G_{1} \triangleleft G_{2}$ in $(\mathcal{G}(G+e+f), \triangleleft)$.

Proof. First we prove the case where there is an edge $x y$ such that $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Let M be a perfect matching of G. Choose a vertex $w \in V\left(G_{2}\right)$ such that $w \chi_{g} y$ in G_{2}, and let P be an M-saturated path between w and y. If $x w \in E(G)$, there is an M-ear $x y+P+w x$ relative to G_{1} and through G_{2}, which means $G_{1} \triangleleft G_{2}$ by Theorem 4 Thus $x w \notin E(G)$. Suppose $\mathcal{G}(G+x w) \neq \mathcal{G}(G)$. Then there is an M-alternating circuit C containing $x w$ in $G+x w$. Give an orientation to C so that it becomes a dicircuit with the arc $x x^{\prime}$. Trace C from x and let z be the first vertex we encounter that is in $V\left(G_{2}\right)$. Then $x y+x C z$ is an M-ear of G which is relative to G_{2} and through G_{1}, which means $G_{2} \triangleleft G_{1}$ by Theorem 4, a contradiction to the minimality of G_{1}. Thus $\mathcal{G}(G+x w)=\mathcal{G}(G)$ and we are done for this case.

Now we prove the other case, where there is no edge of G connecting G_{1} and G_{2}. Choose any $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. If $\mathcal{G}(G+x y)=\mathcal{G}(G)$, we can reduce it to the first case and the claim follows. Therefore it suffices to consider the case that $\mathcal{G}(G+x y) \neq \mathcal{G}(G)$. Then, for any perfect matching M of G, there is an M-alternating circuit C in $G+x y$ containing $x y$. Give an orientation to C so that it becomes a dicircuit with the arc $y y^{\prime}$. Trace C from y and let u be the first vertex of G_{1}, and let v be the first vertex in G_{2} if we trace C from u in the opposite direction.

If $\mathcal{G}(G+u v)=\mathcal{G}(G)$, the claim follows by the same argument. Otherwise, that is, if $\mathcal{G}(G+u v) \neq \mathcal{G}(G)$, there is an M-alternating circuit D containing $u v$. Give an orientation to D so that it becomes a dicircuit with the arc $u u^{\prime}$. If $u D v$ is disjoint from the internal vertices of $v C u$, then $u D v+v C u$ forms an M-alternating circuit containing non-allowed edges, a contradiction. Otherwise, trace D from u and let w be the first vertex on $v C u-u$.

If $w C u$ has an even number of edges, $w C u+u D w$ is an M-alternating circuit of G, a contradiction. Therefore, we assume $w C u$ has an odd number of edges. Let $H \in \mathcal{G}(G)$ be such that $w \in V(H)$. Then $w C u+u D w-H$ leaves an M-ear in G which is relative to H and through G_{1}, contradicting the minimality of G_{1}. Thus this completes the proof.

6 Algorithmic Result

In this section, we discuss the algorithmic aspects of the partial order and the generalized canonical partition. We denote by n and m respectively the number of vertices and edges of input graphs. As we work on factorizable graphs and graphs with near-perfect matchings, we can assume $m=\Omega(n)$.

We start with some materials from Edmonds' maximum matching algorithm [12], referring mainly to [1, 17. For a tree T with a specified root vertex r, we call a vertex $v \in V(T)$ inner (resp. outer) if the unique path in T from
r to v has an odd (resp. even) number of edges. Let G be a graph and M be a matching of G. A tree $T \subseteq G$ is called M-alternating if exactly one vertex of it, the root, is exposed by M in G, and each inner vertex $v \in V(T)$ satisfies $|\delta(v) \cap E(T)|=2$ and one of the edges of $\delta(v) \cap E(T)$ is contained in M.

A subgraph $S \subseteq G$ is called a special blossom tree with respect to $M(M-S B T)$ if there is a partition $V\left(C_{1}\right) \dot{\cup} \cdots \dot{\cup} V\left(C_{k}\right)=V(S)$ such that
(i) $S^{\prime}:=S / C_{1} / \cdots / C_{k}$ is an M-alternating tree,
(ii) $M_{C_{i}}$ is a near-perfect matching of C_{i},
(iii) C_{i} is a maximal factor-critical subgraph of G if it corresponds to an outer vertex of S^{\prime}, and called an outer blossom, and
(iv) $\left|V\left(C_{i}\right)\right|>1$ only if C_{i} is an outer blossom, for each $i=1, \ldots, k$.

Edmonds' maximum matching algorithm tells us the following facts. Let G be a graph, M be a near-perfect matching of G, and $r \in V(G)$ be the vertex exposed by M. Then an M-SBT S, with root r, can be computed, if it is carefully implemented [18, 19, in $O(m)$ time. Additionally, the set of vertices from which r can be reached by an M-balanced path is exactly the set of vertices contained in the outer blossoms of S.

Thus, due to an easy reduction of the above facts, the following proposition holds; they can be regarded as a folklore. See 3]. (In 3] they are presented as those for elementary graphs, but in fact, they can be applicable for general factorizable graphs.)

Proposition 13. Let G be a factorizable graph, M be a perfect matching of G, and $u \in V(G)$.
(i) The set of vertices that can be reached from u by an M-saturated path can be computed in $O(m)$ time.
(ii) All the allowed edges adjacent to u can be computed in $O(m)$ time.
(iii) All the factor-components of G can be computed in $O(n m)$ time.

Proposition 14. Given a factorizable graph G, one of its perfect matchings M and $\mathcal{G}(G)$, we can compute the generalized canonical partition of G in $O(\mathrm{~nm})$ time.

Proof. For each $H \in \mathcal{G}(G)$, we can compute $\mathcal{P}_{G}(H)$ in a similar way to compute the canonical partition of an elementary graph 3. That is, for each $v \in V(H)$, compute the set of vertices U that can be reached from v by an M-saturated path, and recognize $V(H) \backslash U$ as a member of $\mathcal{P}_{G}(H)$. This procedure is surely compatible by Theorem 6. Thus, the claim follows by Proposition 13

Let G be a factorizable graph and M be a perfect matching of G. We say two distinct factor-components G_{1}, G_{2} of G with $G_{1} \triangleleft G_{2}$ are non-refinable if $G_{1} \triangleleft H \triangleleft G_{2}$ yields $G_{1}=H$ or $G_{2}=H$ for any $H \in \mathcal{G}(G)$. Note that if G_{1} and G_{2} are non-refinable, then there is an M-ear relative to G_{1} and through G_{2} by Theorem 4. Note also that the converse of the above fact does not hold.

Lemma 6. Let G be a factorizable graph, M be a perfect matching of G, and $H \in \mathcal{G}(G)$. Let S be a maximal $M-S B T$ in G / H and let C be the blossom of T containing the contracted vertex h corresponding to H. Then any non-refinable upper bound of H in $(\mathcal{G}(G), \triangleleft)$ has common vertices with C. Additionally, if a factor-component $I \in \mathcal{G}(G)$ has some common vertices with C, then $H \triangleleft I$.

Proof. For the former part, let H^{\prime} be a non-refinable upper bound of H, and P be an M-ear relative to H and through H^{\prime}. Since $P-C$ is a disjoint union of M-ears relative to C, we have $P \subseteq C$ by Theorem 3 and the maximality of the outer blossoms in M-SBT. Thus the former part of the claim follows.

For the latter part, by the definition of M-SBT and Proposition 4 there is an M-alternating odd ear-decomposition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of C. Let $I \in \mathcal{G}(G)$ be such that $V(I) \cap V(C) \neq \emptyset$ and that $V\left(P_{j}\right) \cap V(I)=\emptyset$ for $j=1, \ldots, i-1$ and $V\left(P_{i}\right) \cap V(I) \neq \emptyset$. We proceed by induction on i. If $i=1$, the claim obviously follows. Let $i>1 . G_{i-1}:=P_{1}+\cdots+P_{i-1}$ is factor-critical by Theorem 3, and $M_{G_{i-1}}$ is a near-perfect matching of G_{i-1}. Moreover, P_{i} is an M-ear relative to G_{i-1}. Therefore, with the same technique as in the proof of Theorem 4 there exists $I^{\prime} \in \mathcal{G}(G)$ such that $V\left(I^{\prime}\right) \cap V(C) \neq \emptyset$ and that there is an M-ear relative to I^{\prime} and through I. Thus, by the induction hypothesis, the latter part of the claim follows.

Proposition 15. Given a factorizable graph G, its perfect matching M, and $\mathcal{G}(G)$, we can compute the poset $(\mathcal{G}(G), \triangleleft)$ in $O(n m)$ time.

Proof. It is sufficient to list all the non-refinable upper bounds for each factorcomponent of G by the following procedure:
$D:=(\mathcal{G}(G), \emptyset) ; A:=\emptyset ;$
for all $H \in \mathcal{G}(G)$ do
compute a maximal M-SBT T; let C be the blossom of T corresponding to its root;
for all $x \in V(C)$, which satisfies $x \in V(I)$ for some $I \in \mathcal{G}(G)$ do
$A:=A \cup\{(H, I)\} ;$
end for
end for
$D:=(\mathcal{G}(G), A) ;$ STOP.
By Lemma 6, the partial order on $V(D)$ determined by the reachability corresponds to \triangleleft after the above procedure. That is, if we define a binary relation \prec on $V(D)$ so that $H^{\prime} \triangleleft I^{\prime}$ if there is a dipath from H^{\prime} to I^{\prime} in D, then \prec and \triangleleft coincide. For each $H \in \mathcal{G}(G)$, the above procedure costs $O(m)$ time, thus it costs $O(n m)$ time over the whole computation.

Remark 4. Given the digraph D after the procedure in Proposition 15 we can compute all the upper bounds of a factor-component in $O\left(n^{2}\right)$ time. Thus, an efficient data structure that represents the poset, for example, a boolean-valued matrix L where $L[i, j]=$ true if and only if $G_{i} \triangleleft G_{j}$, can be obtained in additional $O\left(n^{2}\right)$ time.

As a maximum matching of a graph can be computed in $O(\sqrt{n} m)$ time [20, 21, we have the following, combining Propositions 1314 and 15

Theorem 10. Let G be a factorizable graph. Then the poset $(\mathcal{G}(G), \triangleleft)$ and the generalized canonical partition $\mathcal{P}(G)$ can be computed in $O(n m)$ time.

Acknowlegements. The author is grateful to Yusuke Kobayashi and Richard Hoshino for carefully reading the paper, and Akihisa Tamura for useful discussions.

References

1. Lovász, L., Plummer, M.D.: Matching Theory. Elsevier Science (1986)
2. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. SpringerVerlag (2003)
3. Carvalho, M.H., Cheriyan, J.: An $O(V E)$ algorithm for ear decompositions of matching-covered graphs. ACM Transactions on Algorithms 1(2) (2005) 324-337
4. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. I (in slovak). Mathematica Slovaca 9(2) (1959) 73-91
5. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. II (in slovak). Mathematica Slovaca 9(3) (1959) 136-159
6. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. III (in slovak). Mathematica Slovaca 10(4) (1960) 205-215
7. Edomonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the matching rank of graphs. Combinatorica 2(3) (1982) 247-274
8. Lovász, L.: Matching structure and the matching lattice. Journal of Combinatorial Theory, Series B 43 (1987) 187-222
9. Carvalho, M.H., Lucchesi, C.L., Murty, U.S.R.: The matching lattice. In Reed, B., Sales, C.L., eds.: Recent Advances in Algorithms and Combinatorics. SpringerVerlag (2003)
10. Nakamura, M.: Structural theorems for submodular functions, polymatroids and polymatroid intersections. Graphs and Combinatorics 4 (1988) 257-284
11. Fujishige, S.: Submodular Functions and Optimization. second edn. Elsevier Science (2005)
12. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17 (1965) 449-467
13. Pap, G., Szegő, L.: On the maximum even factor in weakly symmetric graphs. Journal of Combinatorial Theory, Series B 91(2) (2004) 201-213
14. Spille, B., Szegő, L.: A gallai-edmonds type structure theorem for path-matchings. Journal of Graph Theory 46(2) (2004) 93-102
15. Kita, N.: Another proof for Lovász's cathedral theorem. preprint
16. Lovász, L.: A note on factor-critical graphs. Studia Scientiarum Mathematicarum Hungarica 7 279-280
17. Korte, B., Vygen, J.: Combinatorial Optimization; Theory and Algorithms. fourth edn. Springer-Verlag (2007)
18. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics (1983)
19. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30 (1985) 209-221
20. Micali, S., Vazirani, V.V.: An $O(\sqrt{|v|} \cdot|E|)$ algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science. (1980) 17-27
21. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the $O(\sqrt{V} E)$ general graph maximum matching algorithm. Combinatorica 14 (1994) 71-109
