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Abstract

In this paper we present a novel non-parametric method of simplifying piecewise linear
curves and we apply this method as a statistical approximation of structure within sequential
data in the plane. We consider the problem of minimizing the average length of sequences of
consecutive input points that lie on any one side of the simplified curve. Specifically, given a
sequence P of n points in the plane that determine a simple polygonal chain consisting of n−1
segments, we describe algorithms for selecting an ordered subset Q ⊂ P (including the first
and last points of P ) that determines a second polygonal chain to approximate P , such that
the number of crossings between the two polygonal chains is maximized, and the cardinality
of Q is minimized among all such maximizing subsets of P . Our algorithms have respective
running times O(n2 logn) when P is monotonic and O(n2 log2 n) when P is an arbitrary simple
polyline. Finally, we examine the application of our algorithms iteratively in a bootstrapping
technique to define a smooth robust non-parametric approximation of the original sequence.

1 Introduction

Given a simple polygonal chain P (a polyline) defined by a sequence of points (p1, p2, . . . , pn) in the
plane, the polyline simplification problem is to produce a simplified polyline Q = (q1, q2, . . . , qk),
where k < n. The polyline Q represents an approximation of P that optimizes one or more
objectives evaluated as functions of P and Q. For P to be simple, the points p1, . . . , pn must be
distinct and P cannot intersect itself.

Motivation for studying polyline simplification comes from the fields of computer graphics and
cartography, where simplification is used to render vector-based features such as streets, rivers, or
coastlines onto a screen or a map at appropriate resolution with acceptable error [1], as well in
problems involving computer animation, pattern matching and geometric hasing (see survey by Alt
and Guibas for details [3]). Our present work removes the arbitrary parameter previously required
to describe acceptable error between P and Q, and provides a simplification method that is robust
to some forms of noise.
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Typical polyline simplication algorithms require that “distance” between two polylines be mea-
sured using a function denoted here by ζ(P,Q). The specific measure of interest differs depending
on the focus of the particular problem or article; however, three measures are popular: Chebyshev
error ζC , Hausdorff distance ζH , and Fréchet distance ζF . In informal terms, the Chebyshev error is
the maximum absolute difference between y-coordinates of P and Q (maximum residual); the sym-
metric Hausdorff distance is the distance between the most isolated point of P or Q with respect
to the other polyline; and the Fréchet distance is more complicated, being the shortest possible
maximum distance between two particles each moving forward along P and Q. Alt and Guibas
give more formal definitions [3]. We define a new measure of quality or similarity, to be maximized,
rather than using an “error” to be minimized. Our crossing measure is a combinatorial description
of how well Q approximates P . It is invariant under a variety of geometric transformations of the
polylines, and is often robust to uncertainty in the locations of individual points.

Previous work on polyline simplification is generally divided into four categories depending on
what property is being optimized and what restrictions are placed on Q [3]. Problems can be
classified as those that either require an approximating polyline Q having the minimum number of
segments (minimizing |Q|) for a given acceptable error ζ(P,Q) ≤ ε, or a Q with minimum error
ζ(P,Q) for a given value of |Q|. These are called min-# problems and min-ε problems respectively.
These two types of problems are each further divided into “restricted” problems where the points
of Q are required to be a subset of those in P and to include the first and last points of P (q1 = p1
and qk = pn), and “unrestricted” problems, where the points of Q may be arbitrary points on the
plane. Under this classification, the polyline simplification Q we examine is a restricted min-#
problem for which a subset of points of P is selected (including p1 and pn) where the objective
measure ζ(P,Q) is the number of crossings between P and Q and an optimal simplification first
maximizes (rather than minimizing) the crossing number and then has a minimum |Q| given the
maximum crossing number.

While the restricted min-# problems find the smallest sized approximation within a given error
ε, an earlier approach was to find any approximation within the given error. The cartographers
Douglas and Peucker [7] developed a heuristic algorithm where an initial (single segment) approxi-
mation was evaluated and the furthest point was then added to the simplification. This technique
remained inefficient until series of papers by Hershberger and Snoeyink concluded that the problem
could be solved in O(n log∗ n) time and linear space [8].

The most relevant previous literature is on restricted min-# problems. Imai and Iri [9] presented
an early solution to the restricted polyline simplification problem using O(n3) time and O(n) space.
The version they study optimizes k = |Q| while maintaining that the Hausdorff metric between Q
and P is less than the parameter ε. Their algorithm was subsequently improved by Melkman and
O’Rourke [10] to O(n2 log n) time and then by Chan and Chin [4] to O(n2) time. Subsequently,
Agarwal and Varadarajan [2] changed the approach from finding a shortest path in an explicitly

constructed graph to an implicit method that runs in O(f(δ)n
4
3+δ) time. Agarwal and Varadarajan

used the L1 Manhattan and L∞ Chebyshev metrics instead of the previous works’ Hausdorff metric.
Finally, Agarwal et al. study a variety of metrics and give approximations of the min-# problem in
O(n) or O(n log n) time.

Our algorithm for minimizing |Q| while optimizing our non-parametric quality measure requires
O(n2 log n) time when P is monotonic in x, or O(n2 log2 n) time when P is a non-monotonic simple
polyline on the plane, both in O(n) space. The near-quadratic times are remarkably similar to the
optimal times achieved in the parametric version of the problem using Hausdorff distance [1, 4],
suggesting the possibility that the problems may have similar complexities.
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In the next section, we define the crossing measure χ(Q,P ) and relate the concepts and proper-
ties of χ(Q,P ) to previous work in both polygonal curve simplification and robust approximation.
In Section 3, we describe our algorithms to compute simplifications of monotonic and non-monotonic
simple polylines that maximize χ(Q,P ). Section 4 presents our results in applying the method to
x-monotonic polylines that model 2-D functional (e.g., measured) data and describes the use of this
simplification method to approximate “shape” and “noise” without assuming a parametric model
for either.

2 Crossing Measure

The crossing measure χ(Q,P ) is defined for a sequence of n distinct points P = (p1, p2, . . . , pn) and
a subsequence of k distinct points Q ⊂ P,Q = (q1, q2, . . . , qk) with the same first and last values:
q1 = p1 and qk = pn. For each pi let (xi, yi) = pi ∈ R2. To understand the crossing measure it
is necessary to introduce the idea of left and right sidedness of a point relative to a directed line
segment. A point pj is on the left side of a segment Si,i+1 = [pi, pi+1] if the signed area of the
triangle formed by the points pi, pi+1, pj is positive. Correspondingly, pj is on the right side of the
segment if the signed area is negative. The three points are collinear if the area is zero.

For any endpoint qi of a segment in Q it is possible to determine the side of P on which qi
lies. Since Q is a polyline using a subset of the points defining P , for every segment Si,i+1 there
exists a corresponding segment of Sπ(j),π(j+1) such that π(j)i < i+ 1 ≤ π(j + 1). The endpoints of
Sπ(j),π(j+1) are given a side based on Si,i+1 and vice versa. Two segments intersect if they share a
point. Such a point is interior to both segments if only if both segments change sides with respect
to each other or the intersection is at an endpoint of at least one endpoint is collinear to the other
segment [11, p. 566]. The crossing measure χ(Q,P ) is the number of times that Q changes sides
from properly left to properly right of P due to an intersection between the polylines. A single
crossing can be generated by any of five cases listed below (see Figure 1):

1. A segment of Q intersects P at a point distinct from any endpoints;

2. two consecutive segments of P meet and cross at a point interior to a segment of Q;

3. one or more consecutive segments of P are collinear to the interior of a segment of Q with
the previous and following segments of P on opposite sides of that segment of Q;

4. two consecutive segments of P share their common point with two consecutive segments of Q
and form a crossing; or

5. in a generalization of the previous case, instead of being a single point the intersection com-
prises one or more sequential segments of P and possibly Q that are collinear or identical.

In Section 2.1 we discuss how to compute the crossings for the first three cases, which are all
cases where crossings involve only one segment of Q. The remaining cases involve more than one
segment of Q, because an endpoint of one segment of Q or even some entire segments of Q are
coincident with one or more segments of P ; those cases are discussed in Section 2.2.

In the case where the x-coordinates of P are monotonic, P describes a function Y of x and Q
is an approximation Ŷ of that function. The signs of the residuals r = (r1, r2, . . . , rn) = YP − Ŷ
are computed at the x-coordinates of P and are equivalent to the sidedness described above. The
crossing number is the number of proper sign changes in the sequence of residuals. The resulting
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Figure 1: Examples of the five cases generating a single crossing.
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Figure 2: Crossings are indicated with a square and false crossings are marked with a red x. Crossing
are only counted when a segment intersects the portion of the chain between its own endpoints.

simplification maximizes the likelihood that adjacent residuals would have different signs, while
minimizing the number of original data points retained conditional on that number of sign changes.
Note that if r was independently and identically selected at random from a distribution with
median zero, then any adjacent residuals in the sequence (r1, r2, . . . , rn) would have different signs
with probability 1/2.

2.1 Counting Crossings With a Segment

To compute a simplification Q with optimal crossing number for a given P , we consider the optimal
numbers of crossings for segments of P and combine them in a dynamic programming algorithm.
Starting from a point pi we compute optimal crossing numbers for each of the n− i segments that
start at point pi and end at some pj with i < j ≤ n. Computing all n− i optimal crossing numbers
for a given pi simultaneously in a single pass is more efficient than computing them for each (pi, pj)
pair separately. These batched computations are performed for each pi and the results used to find
Q.

To compute a single batch we will consider the angular order of points in Pi+1,n = {pi+1, . . . , pn}
with respect to pi. Let ρi(j) be a function on the indices representing the clockwise angular order of
points pj within this set, such that ρi(j) = 1 for all pj having the smallest clockwise angle measured
from the vertical line passing through pi, and ρi(j) ≤ ρi(k) if and only if this angle for pj is less
than or equal to the corresponding angle for pk. See Figure 3. Using this angular ordering we
partition Pi+1,n into chains and process the batch of crossing number problems as discussed below.

We define a chain with respect to pi to be a consecutive sequence P`,`′ ⊂ Pi+1,n with non-
decreasing angular order. That is, either ρi(l

′) ≥ ρi(j + 1) ≥ · · · ≥ ρi(l) or ρi(l) ≤ ρi(j + 1) ≤
· · · ≤ ρi(l

′), with the added constraint that chains cannot cross the vertical ray above pi. Each
segment that does cross is split into two pieces using two “artificial” points on the ray per crossing
segment. The points on the “low” segment portions have rank ρi = 1 and the identically placed
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pn = p25

pi = p1

Figure 3: An example of the angular order of vertices in Pi+1,n and the resulting chains

other points have rank ρi = n + 1. These points do not increase the complexities by more than a
constant factor and are not mentioned again unless specifically required. Processing Pi+1,n into its
chains is done by first computing the angle from vertical for each point and storing that information
with the points. Then the points are sorted by angular order around pi and ρi(j) is computed as
the rank of p(j) in the sorted list. Since this algorithm works in the real RAM model, this step
can be done in O(n log n) time with linear space to store the angles and ranks. Creating a list of
chains is then computable in O(n) time and space by storing the indices of the beginning and end
of each chain encountered while checking points pj in increasing order from j = i+ 1 to j = n. The
process to identify all chains involves two steps. First all segments are checked to determine if they
intersect with the vertical ray, each in O(1) time. Such an intersection implies that the previous
chain should end and the segment that crosses the ray should be a new chain (note an artificial
index of i+ 1

2 can denote the point that crosses the vertical). The second check is to determine if the
most recent segment has a different angular direction from the previous segment. If so, the previous
chain “ended” with the previous point and the new chain “begins” with the current segment. Each
chain is oriented from lowest angular order to highest angular order.

Lemma 1 Consider any chain P`,`′ (wlog assume ` < `′). With respect to pi the segment Si,j :
(i < j ≤ n) can have at most one crossing strictly interior to P`,`′ .

Proof. Three cases need to be considered.
Case 1: ρi(`) = ρi(j) or ρi(j) = ρi(`

′). Note that if ` = n then no crossing can exist because
at least one end (or all) of Pk,` is collinear with Si,j and no proper change in sidedness can occur
in this chain to generate a crossing.

Case 2: ρi(j) /∈ [ρi(`), ρi(`
′)]. These cases have no crossings with the chain because Pk,` is

entirely on one side of Si,j . A ray exists between either ρi(j) < ρi(`) or ρi(m) < ρi(j) that separates
Pk,l from SP,i,j and thus no crossings can occur between the segment and the chain.

Case 3: ρi(j) ∈ (ρi(`), ρi(`
′)). Assume that the chain causes at least two crossings. Pick

the lowest index segment for each of the two crossings that are the fewest segments away from
pi. By definition there are no crossings of segments between these two segments. Label the point
with lowest index of these two segments pλ and the point with greatest index pλ′ . Define a possibly
degenerate cone Phi with a base pi and rays through pλ and pλ′ . This cone, by definition, separates
the segments from pλ+1 to pλ′−1 from the remainder of the chain. Since this sub-chain cannot circle
pi entirely there must exist one or more points that have a maximum (or minimum) angular index,
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which is a contradiction to the definition of the chain. Hence there must be zero or one crossings
only. �

The algorithm for computing the crossing measure on a batch of segments depends on the nature
of P . If P is x-monotone, then the chains can be ordered by increasing x-coordinates or equivalently
by the greatest index amoung the points that define them. Then a segment Si,j intersects any
chain P`,`′ exactly once if its x-coordinates are less than pj and ρi(j) ∈ (ρi(`), ρi(`

′)) (i.e., Case 3
of Lemma 1). The algorithm maintains a modified segment tree with one angular order interval
per chain previously included, using the modified segment tree described by van Kreveld et al. [6,
p. 237]. This data structure requires O(log n) time per insertion and O(n) space. Each point’s
crossing number is queried in O(log n) time, with points examined in order of increasing indices.
Once each chain’s points have all been queried the chain’s interval is added. Correctness follows
from the fact that no segment considered can have a crossing within any chain it ends, and chains
that span a point’s angular order intersect once if the point is sufficiently distant from pi relative
to the chain. These facts are guaranteed by x-monotonicity and the proof of Lemma 1.

The problem becomes more difficult if we assume that P is simple but not necessarily monotonic
in x. While chains describe angular order quite nicely, the non-monotone nature of P does not allow
a consistent implicit ordering of chain boundaries. Thus queries will be of a specific nature: for a
given point pj , we must determine how many chains are closer to i and have a lower maximum index
than j. Note that chains do not cross and can only intersect at their endpoints due to the non-
overlapping definition of chains and the simplicity of P . Therefore, sweeping a ray from pi, initially
vertical, in increasing ρi order defines a partial order on chains with respect to their distance from
pi. Using a topological sweep [11, p. 481] it is possible to determine a unique order that preserves
this partial ordering of chains. Since there are O(n) chains and changes in “neighbours” defining
the partial order occur at chain endpoints, there are O(n) edges in the partial order and this
operation requires O(n log n) time to determine the events in a sweep and O(n) time to compute
the topological ordering. Without loss of generality assume that the chains closest to pi have a
lower topological order.

In our algorithm each chain will be labelled with two labels: the maximum index of its defining
points and the topological order. Furthermore, each point pj will be labelled with the topological
order of the chain to which it belongs (or the minimum of the two if it is in two chains). A sweep
in increasing ρi order maintains the set of chains whose range of angular orders properly includes
the current ρi(j). Thus to query the number of crossings of Si,j we need to determine from the
current set of chains the number of them whose topological order is strictly less than the chain
or chains containing pj and whose maximum index is less than j. Querying the set in this way is
an orthogonal range counting query in R2, and such queries can be performed in O(log2 n) time
and O(n) space with insertion and deletion of chains in O(log2 n) time per event on an elementary
pointer machine [5]. The order of operations is as follows: first, build the range counting structure
by inserting all chains that begin at the vertical ray from pi; next, for each unique angular order
delete all segments whose maximum ρi order is achieved (this maintains the proper intersection of
ρi previously mentioned); compute the crossing number of all points with this angular order by
querying the data structure; finally, add any new chains starting at this ρi. The artificial points on
the vertical are not queried. Correctness follows from Lemma 1 and the previous discussion.
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pi = qj

pi+1

I

II

III
IV

pi−1

Figure 4: Regions around pj that determine a crossing at pj

2.2 Crossings Due to Neighbouring Simplification Segments

There are two cases of a crossing being generated that involve more than one segment of Q and it
is these cases we address now. Suppose that pi = qj . Then there is an intersection between P and
Q at this point, and we must detect if a change in sidedness accompanies this intersection. Assume
initially that P does not contain any consecutively collinear segments; we will consider the other
case later.

We begin with the non-degenerate case where (pi−1, pi+1, qi−1, qi+1) are all distinct points. Each
of the points qj−1 and qj+1 can be in one of four locations: in the cone left of (pi−1, pi, pi+1); in the
cone right of (pi−1, pi, pi+1); on the ray defined by Si,i−1; or on the ray defined by Si,i+1. These
are labelled in Figure 4 as regions I through IV respectively. In Cases III and IV it may also be
necessary to consider the location of qi−1 or qj+1 with respect to Si−2,i−1 or Si+1,i+2.

Within the degenerate “case” where the points may not be unique: if pi = qj and pi+1 6= qj+1,
then any change in sidedness is handled at pi and can be detected by verifying the previous side
from the polyline. If, however, pi+1 = qj+1, then any change in sidedness will be handled further
along in the simplification.

By examining these points it is possible to assign a sidedness to the end of Sπ(j−1),π(j) and
the beginning of Sπ(j),π(j+1). Note that the sidedness of a point qj−1 with respect to Si−2,i−1 can
be inferred from the sidedness of pi−2 with respect to Sπ(j−1),i−1, and that property is used in
the case of regions III and IV . The assumed lack of consecutive collinear segments requires that
{pi−2, pi+2} ∈ I ∪ II and thus Table 1 is a complete list of the possible cases when |P | ≥ 5. For
cases involving III or IV where i /∈ [3, n − 2] then the case is labelled collinear (we discuss the
consequences of this choice later).

A single crossing occurs if and only if the end of Sπ(j−1),i is on the left or right when the
beginning of Si,π(j+1) is the opposite. Furthermore, the end of any simplification Q1,j of P1,i that
ends in Sπ(j−1),i is labelled left or right in the same way that the end of Sπ(j−1),i is labelled. This
labelling is consistent with the statement that the simplification last approached the polyline P
from the side indicated by the labelling. To maintain this invariant in the labelling of the end of
polylines, if Sπ(j−1),i is labelled as collinear then the simplification Q1,j needs to have the same
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Entity Categorization Conditions

End of Sπ(j−1),i

collinear (1)
qj−1 = pi−1
qj+1 = pi+1

left (2)
qj−1 ∈ I

(qj−1 ∈ III) ∧ (pi−2 ∈ II)
(qj−1 ∈ IV ) ∧ (pi+2 ∈ II)

right (3)
qj−1 ∈ II

(qj−1 ∈ III) ∧ (pi−2 ∈ I)
(qj−1 ∈ IV ) ∧ (pi+2 ∈ I)

Beginning of Si,π(j+1)

collinear (1)
qj−1 = pi−1
qj+1 = pi+1

left (2)
qj+1 ∈ I

(qj+1 ∈ III) ∧ (pi−2 ∈ II)
(qj+1 ∈ IV ) ∧ (pi+2 ∈ II)

right (3)
qj+1 ∈ II

(qj+1 ∈ III) ∧ (pi−2 ∈ I)
(qj+1 ∈ IV ) ∧ (pi+2 ∈ I)

Table 1: Left, right, and collinear labels applied to beginning or end of a segment at pj

labelling as Q1,j−1. As a basis case, the simplifications of P1,2 and P1,1 are the result of the identity
operation so they must be collinear. Note that a simplification labelled collinear has no crossings.

The constant number of cases in Table 1, and the constant complexity of the sidedness test,
imply that we can compute the number of crossings between a segment and a chain, and there-
fore the labelling for the segment, in constant time. Let η(Q1,j , Sπ(j−1),i) represent the number
of extra crossings (necessarily 0 or 1) introduced at pj by joining Q1,j and Sπ(j−1),i. We have
χ(Q1,j , P1,i) = χ(Q1,j−1, P1,π(j−1)) + χ(Sπ(j−1),i, Pπ(j−1),i) + η(Q1,j , Sπ(j−1),i), which highlights
possibility of computing the optimal simplification incrementally in a dynamic programming algo-
rithm.

It remains to consider the case of sequential collinear segments. The polyline P ′ can be simplified
into P by merging sequential collinear segments, effectively removing points of P ′ without changing
its shape. When joining two segments where p′i = qj , p

′
i−1 and p′i+ 1 define the regions as before

but there is no longer a guarantee regarding non-collinearity of p′i−2 or p′i+2 with respect to the
other points. The points qj−1 and qj−2 are now collinear if and only if either of them are entirely
collinear to the relevant segments of P . Our check for equality is changed to a check for equality
or collinearity. We examine the previous and next points of P ′ that are not collinear to the two
segments [p′i−1, p

′
i] and [p′i, p

′
i+1]. We find such points for every p′i in a preprocessing step requiring

linear time and space, by scanning the polyline for turns and keeping two queues of previous and
current collinear points.

3 Optimal Crossing Measure Simplification

In this section we describe our dynamic programming approach to computing a polyline Q that is a
subset of P having minimum size k conditional on maximal crossing measure χ(Q,P ). We compute
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χ(Si,j , Pi,j) in batches, as described in the previous section. Our algorithm will maintain the best
known simplifications of P1,i for all i ∈ [1, n] and each of the three possible labellings of the ends.
We refer to these paths as (Q)σ,i where σ describes the labelling at i: σ = 1 for collinear, σ = 2 for
left, or σ = 3 for right.

To reduce the space complexity we do not explicitly maintain the (potentially exponential-size)
set of all simplifications Qσ,i. Instead, for each simplification corresponding to (σ, i) we maintain:
χ(Qσ,i, P1,i) (initially zero); the size of the simplification found |Qσ,i| (initially n+ 1); the starting
index of the last segment added βσ,i (initially zero); and the end labelling of the best simplification
that the last segment was connected to τσ,i (initially zero). The initial values described represent
the fact that no simplification is yet known. The algorithm begins by setting the values for the
optimal identity simplification for P1,1 to the following values (note σ = 1).

χ(Q1,1, P1,1) = 0

|Q1,1| = 1

β1,1 = 1

τ1,1 = 1

A total of n − 1 iterations are performed one for each i ∈ [1, n − 1] where a batch of segments
Si,j : i < j ≤ n is each considered in a possible simplification ending in that segment. Each
iteration begins with the set of simplifications {∀σ,Qσ,` : ` ≤ i} being optimal, with maximal
values of χ(Qσ,`, P1,`) and minimum size |Qσ,`| for each of the specified σ and ` combinations. The
iteration proceeds to calculate the crossing numbers of all segments starting at i and ending at a
later index {χ(Si,j , Pi,j)|j ∈ (i, n], }, using the method from Section 2. For each of the segments Si,j
we compute the sidedness of both the end at j (σ′j) and the start at i (υ′j). Using υ′j and all values
of {σ : βσ,i ≥ 0} it is possible to compute η(Qσ,i, Si,j) using just the labellings of the two inputs
(see Table 2). It is also possible to determine the labelling of the end of the concatenated polyline
ψ(σ, σ′j) using the labelling of the end of the previous polyline σ and the end of the additional
segment σ′j (also shown in Table 2).

η(βσ,i, υ
′
j)

βσ,i
1 2 3

υ′j
1 0 0 0
2 0 0 1
3 0 1 0

ψ(σ, σ′j)
σ

1 2 3
σ′j
1 1 2 3
2 2 2 2
3 3 3 3

Table 2: Tables defining the computation of additional crossings η(βσ,i, υ
′
j) due to concatenation

and the end labelling of the concatenated polyline ψ(σ, σ′j)

With these values computed, the current value of χ(Qψ(σ,σ′
j)

) is compared to χ(Qσ,i)+χ(Si,j , Pi,j)+

η(βσ,i, υ
′
j) and if the new simplification has a greater or equal number of crossings crossings then

we can compute:

χ(Qψ(σ,σ′
j),j

, P1,j) = χ(Qσ,i) + χ(Si,j , Pi,j) + η(βσ,i, υ
′
j)

9



|Qψ(σ,σ′
j),j
| = |Qσ,i|+ 1

βψ(σ,σ′
j),j

= i

τψ(σ,σ′
j),j

= σ

Correctness of this algorithm follows from the fact that each possible segment ending at i + 1
is considered before the (i + 1)-st iteration. For each segment and each labelling, at least one
optimal polyline with that labelling and leading to the beginning of that segment must have been
considered, by the inductive assumption. Since the number of crossings in a polyline only depends
on the crossings within the segments and the labellings where the segments meet, the inductive
hyopthesis is maintained through the (i + 1)-st iteration. It was also trivially true in the basis
case i = 1. With the exception of computing the crossing number for all of the segments, the
algorithm requires O(n) time and space to update the remaining information in each iteration. The
final post-processing step is to determine σmax = arg maxσ χ(Qσ,n), finding the simplification that
has the best crossing number. We use the β and τ information to reconstruct Qσmax,n in O(k)
remaining time.

The algorithm requires O(n) space in each iteration and O(n log2 n) time per iteration to com-
pute crossings of each batch of segments dominates the remaining time per iteration. Thus for
simple polylines Qσmax,n is computable in O(n2 log2 n) time and O(n) space and for monotonic
polylines it is computable in O(n2 log n) time and O(n) space.

4 Results and Smooth Shape Approximation

Our goal was to approximate shape (and noise) in a parameterless fashion. In this section we
present results of applying the simplification to monotonic data with and without noise. We then
describe how we perform a parameterless smooth boostrap-like operation, and give results for the
median and the 95% confidence intervals (i.e., error approximations). We conclude by showing the
results applied to a spectrum acquired from a Fourier transformed infrared microscope.

Our first point set is given by p = (x, x2 + 10 · sinx) for 101 equally spaced points x ∈ [−10, 10].
The maximal-crossing simplification for this point set has 5 points and 7 crossings. We generated
a second point set by adding standard normal noise generated in Matlab with randn to the first
point set. The maximal-crossing simplification of the data with standard normal noise has 19 points
and a crossing number of 54. We generated a third point set from the first by adding heavy-tailed
noise consisting of standard normal noise for 91 data points and standard normal noise multiplied by
ten for the remaining ten points. The maximal-crossing simplification of the signal contaminated by
heavy-tailed noise has 20 points and a crossing number of 50. These results are shown in Figure 5.

As can be seen in Figure 5, the crossing-maximization procedure gives a much closer approxi-
mation to the signal when there is some nonzero amount of noise present to provide opportunities
for crossings. We might expect that in the case of a clean signal, we could obtain a more useful
approximation by artificially adding some noise before computing our maximal-crossing polyline.
However, to do so requires choosing an appropriate distribution for the added noise, and we wish
to keep our procedure parameterless.

The residuals between the data and the optimal crossing approximation form a good first ap-
proximation of the noise within the data. If these residuals are not zero-centered then their median
should be subtracted to provide a zero-centered distribution. We can take the original data points
and subtract, at each point, a value selected uniformly at random with replacement from the zero-
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Figure 5: The optimal crossing path for p = (x, x2 +10 · sinx), without noise, with standard normal
noise and with heavy-tailed (mixed gaussian) noise.
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Figure 6: The data is in black (with crosses) and contains 1610 data points), the median bootstrap
approximation is in red and the green lines are the bootstrapped approximations of the 5 and 95
percentiles.

centered residuals. Then by finding the maximal-crossing polyline of the resulting modified data,
we obtain a noise-based approximation. We repeat this procedure for different random selections
of which residuals to apply to which data points. This smooth bootstrap-like approach is similar to
“smooth bootstrap” estimation, which normally would use a parameter-based model of the error
[12]. Our procedure is parameterless. Repeated evaluation of noise based approximations produce
multiple y values for all x values. Using the median of these and finding the 5th and 95th per-
centiles results in an approximation of signal and noise after relatively few iterations. Results from
90 iterations of this calculation applied to a Fourier transformed infrared spectrum are shown in
Figure 6.

5 Discussion and Conclusions

The optimal crossing measure simplification is robust to small changes of x- or y-coordinates of any
pi when the points are in general position. This robustness can be seen by considering that the
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crossing number of every simplification depends on the arrangement of lines induced by the line
segments, and any point in general position (by definition) can be moved some ε without affecting
the combinatorial structure of the arrangement. The simplification is also invariant under affine
transformations because these too do not modify the combinatorial structure of the arrangement.
In the case of x-monotonic polylines, the simplification possesses another useful property: the more
a point is an outlier, the less likely it is to be included in the simplification. In the limit, increasing
the y-coordinate of any point pi to infinity (x-monotonicity remains unchanged) will remove pi
from the simplification. That is, if pi is initially included in the simplification, then once pi moves
sufficiently upward, the two segments of the simplification adjacent to pi cease to cross any input
segments in P .

We discuss an additional improvement achievable by bounding sequence lengths. If a parameter
m is chosen in advance such that we require that the longest segment considered can span at
most m− 2 vertices, then with the appropriate changes the algorithm can find the minimum sized
simplification conditional on maximum crossing number and having a longest segment of length at
most m in O(nm log2m) time for simple polylines or O(nm logm) time for monotonic polylines,
both with linear space. Since long line segments tend to be rare in good simplifications, we can set
m to a relatively small value and still obtain good simplification results while significantly improving
speed.

Finally, this research presents a method to approximate the shape and noise without an implied
model for the data nor a need for parameters. Application of the shape and noise approximation in
the monotonic (functional) data case has shown promising results when used in conjunction with
the bootstrap method described here.
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