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Abstract

In this paper we study the problem of augmenting a planar graph such that it becomes
3-regular and remains planar. We show that it is NP-hard to decide whether such an
augmentation exists. On the other hand, we give an efficient algorithm for the variant of
the problem where the input graph has a fixed planar (topological) embedding that has to
be preserved by the augmentation. We further generalize this algorithm to test efficiently
whether a 3-regular planar augmentation exists that additionally makes the input graph
connected or biconnected. If the input graph should become even triconnected, we show
that the existence of a 3-regular planar augmentation is again NP-hard to decide.

1 Introduction

An augmentation of a graph G = (V,E) is a set W ⊆ Ec of edges of the complement graph. The
augmented graph G′ = (V,E ∪W ) is denoted by G+W . We study several problems where the
task is to augment a given planar graph to be 3-regular while preserving planarity. The problem
of augmenting a graph with the goal that the resulting graph has some additional properties is a
well-studied problem and has applications in network planning [6]. Often the goal is to increase
the connectivity of the graph while adding few edges. Nagamochi and Ibaraki [12] study the
problem making a graph biconnected by adding few edges. Watanabe and Nakamura [16] give
an O(cmin{c, n}n4(cn + m)) algorithm for minimizing the number of edges to make a graph
c-edge-connected. The problem of biconnecting a graph at minimum cost is NP-hard, even if
all weights are in {1, 2} [12]. Motivated by graph drawing algorithms that require biconnected
input graphs, Kant and Bodlaender [9] initiated the study of augmenting the connectivity of
planar graphs, while preserving planarity. They show that minimizing the number of edges for
the biconnected case is NP-hard and give efficient 2-approximation algorithms for both variants.
Rutter and Wolff [14] give a corresponding NP-hardness result for planar 2-edge connectivity
and study the complexity of geometric augmentation problems, where the input graph is a plane
geometric graph and additional edges have to be drawn as straight-line segments. Abellanas et
al. [1], Tóth [15] and Al-Jubeh et al. [2] give upper bounds on the number of edges required
to make a plane straight-line graph c-connected for c = 2, 3. For a survey on plane geometric
graph augmentation see [8].

We study the problem of augmenting a graph to be 3-regular while preserving planarity. In
doing so, we additionally seek to raise the connectivity as much as possible. Specifically, we
study the following problems.

Problem: Planar 3-Regular Augmentation (PRA)
Instance: Planar graph G = (V,E)
Task: Find an augmentation W such that G+W is 3-regular and planar.

∗Partially supported by the DFG under grant WA 654/15 within the Priority Programme ”Algorithm Engi-
neering”.
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Problem: Fixed-Embedding Planar 3-Regular Augmentation (FERA)
Instance: Planar graph G = (V,E) with a fixed planar (topological) embedding
Task: Find an augmentation W such that G+W is 3-regular, planar, and W can be added in
a planar way to the fixed embedding of G.

Moreover, we study c-connected FERA, for c = 1, 2, 3, where the goal is to find a solution
to FERA, such that the resulting graph additionally is c-connected.

Contribution and Outline. Using a modified version of an NP-hardness reduction by Rutter
and Wolff [14], we show that PRA is NP-hard; the proof is postponed to Section 6.

Theorem 1. PRA is NP-complete, even if the input graph is biconnected.

Our main result is an efficient algorithm for FERA and c-connected FERA for c = 1, 2. We
note that Pilz [13] has simultaneously and independently studied the planar 3-regular augmen-
tation problem. He showed that it is NP-hard and posed the question on the complexity if the
embedding is fixed. Our hardness proof strengthens his result (to biconnected input graphs) and
our algorithmic results answer his open question. We further prove that for c = 3 c-connected
FERA is again NP-hard.

We introduce basic notions used throughout the paper in Section 2. We present our results
on FERA in Section 3. The problem is equivalent to finding a node assignment that assigns
the vertices with degree less than 3 to the faces of the graph, such that for each face f an
augmentation exists that can be embedded in f in a planar way and raises the degrees of all
its assigned vertices to 3. We completely characterize these assignments and show that their
existence can be tested efficiently. We strengthen our characterizations to the case where the
graph should become c-connected for c = 1, 2 in Section 4 and show that our algorithm can be
extended to incorporate these constraints. In Section 5 and Section 6 we provide the hardness
proofs for 3-connected FERA and PRA.

2 Preliminaries

A graph G = (V,E) is 3-regular if all vertices have degree 3. It is a maxdeg-3 graph if all vertices
have at most degree 3. For a vertex set V , we denote by V 0 , V 1 and V 2 the set of vertices
with degree 0,1 and 2, respectively. For convenience, we use V ? = V 0 ∪ V 1 ∪ V 2 to denote
the set of vertices with degree less than 3. Clearly, an augmentation W such that G + W is
3-regular must contain 3 − i edges incident to a vertex in V i . We say that a vertex v ∈ V i

has 3− i (free) valencies and that an edge of an augmentation incident to v satisfies a valency
of v. Two valencies are adjacent if their vertices are adjacent.

Recall that a graph G is connected if it contains a path between any pair of vertices, and it
is c-(edge)-connected if it is connected and removing any set of at most c − 1 vertices (edges)
leaves G connected. A 2-connected graph is also called biconnected. We note that the notions of
c-connectivity and c-edge-connectivity coincide on maxdeg-3 graphs. Hence a maxdeg-3 graph
is biconnected if and only if it is connected and does not contain a bridge, i.e., an edge whose
removal disconnects the graph.

A graph is planar if it admits a planar embedding into the Euclidean plane, where each
vertex (edge) is mapped to a distinct point (Jordan curve between its endpoints) such that
curves representing distinct edges do not cross. A planar embedding of a graph subdivides the
Euclidean plane into faces. When we seek a planar augmentation preserving a fixed embedding,
we require that the additional edges can be embedded into these faces in a planar way.
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3 Planar 3-Regular Augmentation with Fixed Embedding

In this section we study the problem FERA of deciding for a graph G = (V,E) with fixed
planar embedding, whether there exists an augmentation W such that G+W is 3-regular and
the edges in W can be embedded into the faces of G in a planar way.

An augmentation W is valid only if the endpoints of each edge in W share a common
face in G. We assume that a valid augmentation is associated with a (not necessarily planar)
embedding of its edges into the faces of G such that each edge is embedded into a face shared by
its endpoint. A valid augmentation is planar if the edges can be further embedded in a planar
way into the faces of G.

Let F denote the set of faces of G and recall that V ? is the set of vertices with free valencies.
A node assignment is a mapping A : V ? → F such that each v ∈ V ? is incident to A(v). Each
valid 3-regular augmentation W induces a node assignment by assigning each vertex v to the
face where its incident edges in W are embedded: this is well-defined since vertices in V 0 ∪ V 1

are incident to a single face. A node assignment is realizable if there exists a valid augmentation
that induces it. It is realizable in a planar way if it is induced by some planar augmentation.
We also call the corresponding augmentation a realization. A realizable node assignment can
be found efficiently by computing a matching in the subgraph of Gc that contains edges only
between vertices that share a common face. The existence of such a matching is a necessary
condition for the existence of a planar realization. The main result of this section is that this
condition is also sufficient.

Both valid augmentations and node assignments are local by nature, and can be considered
independently for distinct faces. Let A be a node assignment and let f be a face. We denote
by Vf the vertices that are assigned to f . We say that A is realizable for f if there exists an

augmentation Wf ⊆
(Vf

2

)
such that in G + Wf all vertices of Vf have degree 3. It is realizable

for f in a planar way if additionally Wf can be embedded in f without crossings. We call the
corresponding augmentations (planar) realizations for f . The following lemma is obtained by
glueing (planar) realizations for all faces.

Lemma 1. A node assignment is realizable (in a planar way) for a graph G if and only if it is
realizable (in a planar way) for each face f of G.

Proof. Consider a node assignment A. If A is realizable (in a planar way), there exists a
corresponding valid (planar) augmentation W . Then for each face f the set Wf ⊆ W of edges
embedded in f forms a (planar) realization for f . Conversely, assume that A is realizable (in a
planar way) for each face f . Then for each face f there is a corresponding (planar) realizationWf

of A for f . Hence W :=
⋃

f∈F Wf is a valid (planar) augmentation that realizes A.

Note that a node assignment induces a unique corresponding assignment of free valencies,
and we also refer to the node assignment as assigning free valencies to faces. In the spirit of
the notation G + W we use f + Wf to denote the graph G + Wf , where the edges in Wf are
embedded into the face f . If Wf consists of a single edge e, we write f + e. For a fixed node
assignment A we sometimes consider an augmentation Wf that realizes A for f only in parts
by allowing that some vertices assigned to f have still a degree less than 3 in f +Wf . We then
seek an augmentation W ′f such that Wf ∪W ′f forms a realization of A for f . We interpret A as
a node assignment for f + Wf that assigns to f all vertices that were originally assigned to f
by A and do not yet have degree 3 in f +Wf . Observe that in doing so, we still assign to the
faces of G but when considering free valencies and adjacencies, we consider G+Wf .

3.1 (Planarly) Realizable Assignments for a Face

Throughout this section we consider an embedded graph G together with a fixed node assign-
ment A and a fixed face f of G. The goal of this section is to characterize when A is realizable
(in a planar way) for f . We first collect some necessary conditions for a realizable assignment.
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Condition 1 (parity). The number of free valencies assigned to f is even.

Furthermore, we list certain indicator sets of vertices assigned to f that demand additional
valencies outside the set to which they can be matched, as otherwise an augmentation is im-
possible. Note that these sets may overlap.

(1) Joker: A vertex in V 2 whose neighbors are not assigned to f demands one valency.
(2) Pair: Two adjacent vertices in V 2 demand two valencies.
(3) Leaf: A vertex in V 1 whose neighbor has degree 3 demands two valencies from two distinct

vertices.
(4) Branch: A vertex in V 1 and an adjacent vertex in V 2 demand three valencies from at

least two distinct vertices with at most one valency adjacent to the vertex in V 2 .
(5) Island: A vertex in V 0 demands three valencies from distinct vertices.
(6) Stick: Two adjacent vertices of degree 1 demand four valencies of which at most two belong

to the same vertex.
(7) Two vertices in V 0 demand four valencies; at most two from the same vertex.
(8) 3-cycle: A cycle of three vertices in V 2 demands three valencies.

Condition 2 (matching). The demands of all indicator sets formed by vertices assigned to f
are satisfied.

Each indicator set contains at most three vertices and provides at least the number of
valencies it demands; only sets of type (7) provide more. The demand of a joker is implicitly
satisfied by the parity condition. We call an indicator set with maximum demand maximum
indicator set, and we denote its demand by kmax. Note that kmax ≤ 4. We observe that inserting
edges does not increase kmax.

Observation 1. Inserting an edge uv into f does not increase kmax.

Proof. Let k and k′ denote kmax before and after the insertion of uv, respectively. We show
k′ ≤ k. If k′ = 4, then after the insertion there is a stick or an indicator set of type 7. Since
a stick can only be obtained from a set of type 7, we have k = 4. If k′ = 3, then after the
insertion there is a branch or an island. Since a branch can only be obtained from an island or
a stick, we have k ≥ 3. If k′ = 2, then after the insertion there is a pair or a leaf. Since a pair
can only be obtained from two leaves, we have k ≥ 2.

The following lemma reveals the special role of maximum indicator sets.

Lemma 2. Let S be a maximum indicator set in f . Then A satisfies the matching condition
for f if and only if the demand of S is satisfied.

Proof. Clearly, if A satisfies the matching condition than in particular the demand of S is
satisfied. Hence, assume that the demand of S is satisfied. We prove that for any indicator
set U of vertices assigned to f the demands are satisfied. Observe that the demand of an
indicator set that is contained in S is trivially satisfied, we may thus assume that U contains
vertices outside of S. We distinguish cases based on the demand kmax of S.

Case I: kmax = 4. Then S consists either of a stick or a set of type (7), which is a pair
of isolated vertices. Let U be any indicator set distinct from S. Assume that U demands four
vertices. If U is disjoint from S, then S provides the demanded valencies. Otherwise, both S
and U consist of a pair of isolated vertices, and they share a common vertex. Since the demand
of S is satisfied, there are at least two more assigned valencies provided by vertices outside
of S ∪U . Together with S \U , they provide the demanded valencies for U . The same argument
applies if U consists of an island, and hence demands three valencies.

If U demands three or fewer valencies and it is not an isolated vertex, then it is either
contained in S or disjoint from it. In the former case its demand is satisfied, in the latter case
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the demand is satisfied by S since an island, which is contained in S, is the only indicator set
demanding valencies from three different vertices.

Case II: kmax = 3. Then S consists either of a 3-cycle, an island, or a branch. If S is a
3-cycle, then any other indicator set is either completely contained in S or disjoint from it, and
it hence provides the necessary valencies (even for an isolated vertex).

If S consists of an island s, observe that kmax = 3 implies that there is no other island
assigned to f . The island s provides the necessary valencies for all indicator sets, except for a
branch or a leaf. Assume that U is a branch. Since s demands three valencies from distinct
vertices, there is a vertex v /∈ U ∪ {s} assigned to f . Together s and v provide the valencies
for U . The case that U is a leaf can be treated analogously.

Finally, consider the case that S consists of a branch. If U consists of an island u, then
there must be a vertex v /∈ S ∪ {u} providing a valency. Then S ∪ {v} provide the demanded
valencies for u. If U is not an island, it demands at most three valencies from at most two
different vertices. Hence, if U is disjoint from S, S provides the demanded valencies for U . It
remains to deal with the case that U is a branch sharing its degree-2 vertex with S. But then
the situation for U and S is completely symmetric, and the demands for U are satisfied.

Case III: kmax = 2. Since the demands of jokers are always satisfied due to the parity
condition, in this case all indicator sets consists either of pairs or of leaves. If S and U are
both leaves, their situation is again completely symmetric. If S and U are a leaf and a pair,
respectively, they mutually satisfy their demands. It remains to deal with the case that S and U
both consist of pairs. If S and U are disjoint, they mutually satisfy their demands. If they
share a vertex S and U are again completely symmetric.

The necessity of the parity and the matching condition is obvious; we prove that they are
also sufficient for a node assignment to be realizable for f .

Theorem 2. A is realizable for f ⇔ A satisfies the parity and matching condition for f .

The following proof of Theorem 2 postpones the case that A assigns less than seven vertices
to f to Lemma 3, which handles this by a case distinction.

Proof. If A assigns less than seven vertices to f , the statement follows from Lemma 3. Moreover,
the parity condition and the matching condition are necessary. In the following we assume thatA
assigns at least seven vertices to f and satisfies the parity condition and the matching condition
for f . Suppose there exists a partial augmentation W1 of f such that A still assigns k ≥ 6
vertices to f +W1 and each assigned vertex has degree 2. We define the graph Hc that consists
of the vertices assigned to f +W1 and contains an edge between two vertices if and only if they
are not adjacent in f +W1. Since each assigned vertex in f +W1 has degree 2, it has at most
two adjacencies in f + W1 and at least k − 1 − 2 = k − 3 ≥ k/2 (for k ≥ 6) adjacencies in
Hc. Thus, by a theorem of Dirac [5], a Hamiltonian cycle exists in Hc, which induces a perfect
matching W2 of the degree-2 vertices in f +W1. Hence W1∪W2 is a 3-regular augmentation for
f . In the remainder of this proof we show that such a partial augmentation W1 always exists.

We begin with the following observation. Let S denote an island or a stick and let e denote
an edge between two valencies in f . Splitting e and connecting the resulting half-edges to the
vertex, respectively the vertices, in S yields an augmentation {e1, e2} such that the vertices in
S have degree 2 in f + {e1, e2}. We refer to this procedure as clipping in S.

In the following we construct a partial augmentation W1 for all possible assignments for f .
In order to identify pairs of degree-0 vertices with sticks, in a first step we arbitarily choose
pairs of degree-0 vertices and connect them by an edge. Note, that this in particular means that
there remains at most one island assigned to f . Then we distinguish the possible assignments
by the number of degree-1 vertices that are involved in a leaf or a branch. We denote the set of
these vertices by X 1 . Since the vertices in X 1 are mutually non-adjacent, each edge between
two of these vertices may occur in W1.
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For |X 1 | > 1 we hence connect the vertices in X 1 pairwise and clip in possibly existing
sticks and islands according to the observation above. If |X 1 | is odd there remains one vertex
x ∈ X 1 . However, the augmentation constructed so far contains at least one edge, which we
split. Then we connect the resulting half-edges to x. Thus, x becomes a degree-3 vertex and is
no longer assigned. Nevertheless, the condition of six assigned vertices in f+W1 is still satisfied
since there were at least seven vertices assigned to f .

If |X 1 | = 1, let x denote the unique vertex in X 1 . As A satisfies the matching condition for
f , there is at least one vertex u outside the indicator set of x to which we can connect x. Thus,
x becomes a degree-2 vertex. If u becomes a degree-3 vertex, it is no longer assigned. However,
according to the same argument as before, this is no problem. If u was a vertex in a stick or an
island, connecting x to u yields a new degree-1 vertex in X 1 replacing x. In this case, we repeat
the procedure above until no new degree-1 vertex comes up in X 1 . The resulting matching
contains at least one edge and we clip in sticks and islands.

If |X 1 | = 0, there exist no leaves and no branches. The only vertices whose degrees need to
be increased by W1 are those in sticks or islands. All other assigned vertices have degree 2. Let
n′ denote the number of assigned islands and sticks. If n′ = 1, there are at least six, respectively
seven, further degree-2 vertices assigned since in total A assigns at least seven vertices to f and
satisfies the parity condition. In both cases this yields at least eight assigned vertices. We can
hence connect the stick or the island with two degree-2 vertices, still having at least six assigned
vertices in f +W1. If n′ ≥ 2 we connect two arbitrary indicator sets, which are either two sticks
or a stick and an island, in the obvious way such that each vertex has degree 2 afterwards. All
further sticks or islands are then clipped in. Hence in each case we find a corresponding partial
augmentation W1, which concludes the proof.

Lemma 3. Let A assign less that seven vertices to f . A is realizable for f ⇔ A satisfies the
parity and matching condition for f .

Proof. Let Vf denote the vertices assigned to f . Recall that V i

f then denotes the number of

vertices in Vf with degree i. By assumption, we have |V 0

f |+ |V
1

f |+ |V
2

f | ≤ 6. We denote again
the maximum number of valencies demanded by any indicator set by kmax, and by assumption
A satisfies the parity condition and the demands of all indicator sets. At the beginning we
show how to solve the following basic situation. Consider a set N of four degree-1 vertices
u1, u2, u3 and u4, possibly belonging to larger indicator sets, and an even number of at most
six free valencies provided by at most two vertices v1 and v2 not in N . Figure 1 shows the only
possible occurrences of this situation together with a 3-regular augmentation. We now reduce
more complicated situations to these cases.

Case 1: |V 0

f | ≥ 4. Consider two pairs of degree-0 vertices and connect each pair by an
edge. This yields four degree-1 vertices in a set N . Outside N there is an even number of at
most six free valencies, as two further vertices cannot provide more valencies. Thus, we are
done according to the basic case above.

Case 2: 2 ≤ |V 0

f | ≤ 3. Consider a fixed set N of two degree-0 vertices and connect them by
an edge. Let k be the number of assigned valencies outside of N . Observe that outside N there
are at most four vertices, among them at most one degree-0 vertex. Hence k ≤ 9. Conversely,
the demand of N is satisfied, and hence k ≥ 4, moreover, k is even by the parity condition.
If k = 4, then the four remaining valencies in N can be arbitrarily matched to those outside N
since the vertices in N form a connected component by themselves.

For the case k = 6, we now distinguish cases based on |V 0

f |. If |V 0

f | = 2 there is no additional
degree-0 vertex outside N . Then any set of at most four vertices providing six valencies outside
N contains at least two degree-1 vertices. We add two such vertices to N , reducing the valencies
outside N to two, and we are done.

If |V 0

f | = 3, the additional degree-0 vertex v outside N already provides three valencies
outside. To reach a sum of six, besides v, there must be either a degree-2 and a degree-1 vertex
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u1 u2

u4u3

v1 v2

(a)

(d)

(b) (c)

(e) (f)

u1 u2

u4u3

u1
u2

u4u3

u1

u2

u4

u3

u1 u2

u4u3

u1 u2

u4u3

Figure 1: Basic case of Lemma 3. The possible occurrences of four degree-1 vertices in N
(black disks) and an even number of up to six free valencies provided by at most two further
vertices v1, v2. For each case a corresponding augmentation (dashed edges) is shown. The black
adjacencies are possible but not necessarily present, which only yields simpler situations. (a)
no further valencies. (b) two valencies by two further vertices. This augmentation also applies
if v1 and v2 are adjacent. (c) two valencies by one vertex. (d) four valencies by two degree-1
vertices. (e) four valencies by a degree-0 and a degree-2 vertex. Inserting v1v2 yields (c). (f)
six valencies by two vertices. Inserting v1v2 yields (d).

or three degree-2 vertices outside N . In the former case we connect the degree-0 vertex and the
degree-2 vertex by an edge yielding another degree-1 vertex, which we add to N together with
the remaining degree-1 vertex. This results in the situation of Figure 1(a). This solution also
applies for the second case by identifying two degree-2 vertices with the degree-1 vertex in the
first case. This concludes the case k = 6.

Finally, if k = 8, there are eight free valencies outside the initial set N , and hence any
set of at most four vertices providing these valencies contains at least two degree-1 vertices,
independent of whether |V 0

f | = 2 or |V 0

f | = 3. Adding two such degree-1 vertices to N reduces
the number of valencies outside N to four, and we are done.

Case 3: |V 0

f | = 1. Let u denote the only degree-0 vertex, which demands three further
valencies from distinct vertices, that is, kmax ∈ {3, 4}, and there are at least three vertices
assigned besides u of which at least one vertex v is of degree 2 in order to satisfy the parity
condition. More precisely, there is an even positive number of valencies provided by two, three
or four vertices besides u and v, as the total number of vertices assigned to f is at most six.
We distinguish cases based on the demand kmax.

If kmax = 3, consider the number of assigned degree-1 vertices. Recall that the degree-1
vertices are pairwise non-adjacent, kmax would be 4, otherwise. If |V 1

f | = 0, the demand of
u implies that V \ {u, v} consists of at least two degree-2 vertices. It follows from the parity
condition that the number of these degree-2 vertices is either two or four. Figure 2(a) shows
a solution for four further degree-2 vertices. The case of only two further degree-2 vertices
can be deduces from Figure 2(a) by ignoring u2 and u4. If |V 1

f | = 1, the demand of u and
the parity condition imply that there are exactly two degree-2 vertices in Vf \ {u, v}. An
augmentation is given by Figure 2(a) identifying u1 and u2 with the degree-1 vertex. If |V 1

f | = 2,

we have |V 2

f \{v}| ≤ 2 and even. This situation is solved by Figure 2(b) and (c). If there are no
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(e)

(a)

u1 u2

v

u3

u4u

(b)

u1 u2

v

u3

u4u

(c)

u1 u2

v

u3

u4u

v

u1

(d)

v u2

u1

(f)

v u2

u1

u3

u
u

u

Figure 2: Illustration of the proof of Lemma 3; augmentation edges are dashed. The black
vertices form a maximum indicator set S with demand kmax, the grey vertex v has degree 2 and
exists due to the demand of S. All augmentations also apply if the solid adjacencies are (partly)
dropped. In (a)-(c) kmax = 3, and there is a single vertex u of degree-0. (a) |V 1

f | = 0, also
applies if u1 and u4 are adjacent or ignored. Moreover {u1, u2} or {u3, u4} may be considered
as a single degree-1 vertex. (b) + (c) |V 1

f | = 2 and |V 2

f | > 0; the augmentation also applies
if {u2, u3} is considered as a single degree-1 vertex. (d)-(f) kmax = 3 and a branch S with
degree-2 vertex u ∈ S. (d) One degree-1 vertex besides S not adjacent to u; also applies if u1
is considered as two degree-2 vertices. (e) Two degree-1 vertices besides S, one adjacent to u;
also applies if u2 is considered as two degree-2 vertices. (f) One degree-1 vertex and further
degree-2 vertices besides S, adjacent to u.

additional degree-2 vertices an augmentation results from Figure 2(a) by identifying u1 and u2
as well as u3 and u4 with the two degree-1 vertices (which are non-adjacent). If |V 1

f | = 3, the
parity condition prohibits a further degree-2 vertex. Thus, Figure 2(c) provides an augmentation
by identifying u2 and u3 with a degree-1 vertex not adjacent to u1 and u4. The case |V 1

f | = 4
is shown by Figure 1(e), ignoring the adjacency of u2 and u4.

If kmax = 4, there must exist at least one stick S that demands four additional valencies,
of which at most two belong to the same vertex. This is, besides S, u and v, there is an even
positive number of valencies provided by at most two further vertices. If |V 1

f | ≥ 4, we are in the

situation of Figure 1(e). If |V 1

f | = 3, the parity condition prohibits a further degree-2 vertex.
This situation can be deduced from of Figure 2(c) assuming u1 and u4 are adjacent, forming S,
and identifying u2 and u3 with the degree-1 vertex; the vertex v may be located arbitrarily. If
|V 1

f | = 2, S contains the only degree-1 vertices, and there must be two further degree-2 vertices
besides S, u and v. Thus, Figure 2(c) provides a solution assuming u1 and u4 form S and the
remaining degree-2 vertices are located arbitrarily.

Case 4: |V 0

f | = 0. If kmax = 1, there is an even number of jokers assigned to f . We connect
pairs arbitrarily.

If kmax = 2 and |V 1

f | ≥ 4, we are done according to Figure 1(a)-(d). Note that due to
kmax = 2 each degree-1 vertex is neither part of a stick, nor of a branch, and hence is not adjacent
to other assigned vertices. For |V 1

f | = 3, Fig. 3(a) and (b) show an augmentation, depending on
whether the degree-1 vertices are accompanied by two degree-2 vertices or not. Note that the
total limit of six vertices and the parity condition does not allow for a different number of degree-
2 vertices. If | 1Vf | = 2, there are either two or four degree-2 vertices, as otherwise the demands
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(e)

(a)

u1

u2

u3

(b) (c)

(d)

u1

u2

v1

v2

u3

u1

u2

v1

v2

v3

v4

u1

v1

v2

v3

v4

v1 v2

v3

v4

v5

v6

Figure 3: Augmentation (dashed edges) of assignments with kmax = 2. The black vertices
have degree 1. All augmentations also apply if the solid adjacencies are (partly) dropped. (a)
|V 1

f | = 1; augmentation also applies if u3 is considered as two degree-2 vertices. (b) |V 1

f | = 3

and |V 2

f | = 2. (c) |V 1

f | = 2 and |V 2

f | = 4; also applies if v1 and v4 are adjacent or u2, v2 and

v4 are ignored. (d) |V 1

f | = 1 and |V 2

f | = 4; also applies if v1 and v4 are adjacent. (e) |V 2

f | = 6;
also applies if v1 and v6 are adjacent or v4 and v6 are ignored.

or the parity condition would be violated. Corresponding solutions are given by Figure 3(a)
(by identifying u3 with two arbitrarily located degree-2 vertices) and Figure 3(c), respectively.
If |V 1

f | = 1, there are two or four degree-2 vertices. Corresponding augmentations are shown

in Figure 3(c) (ignoring u2, v2 and v4) and Figure 3(d), respectively. Finally, if |V 1

f | = 0, all
valencies assigned to f are provided by degree-2 vertices. Figure 3(e) shows an augmentation
for six valencies. Ignoring v4 and v6 in Figure 3(e) yields an augmentation of four valencies.
Augmenting two non-adjacent degree-2 vertices is trivial.

If kmax = 3, we distinguish cases based on whether there is a 3-cycle assigned to f . If this
is the case, let C the vertex set of such a cycle. Due to the parity condition there must be a
further vertex v of degree 2 assigned to f . More precisely, by the demand of C and the parity
condition, there is an even positive number of valencies provided by one or two further vertices
outside C ∪ {v}. If there are two valencies provided outside C ∪ {v}, we pair the valencies of C
arbitrarily with the remaining three valencies. If there are four valencies assigned, then they
are provided by two non-adjacent degree-1 vertices. Connecting them by an edge reduces to the
previous case. Now assume that there is no 3-cycle, and hence there is a branch S demanding
three valencies. Due to the parity condition there is a further degree-2 vertex v assigned to f .
By the parity condition there is an even positive number of valencies outside S ∪ {v}, which is
provided by one, two or three further vertices. We distinguish cases based on the number k of
these valencies. Note that k ≤ 6.

If k = 2, the valencies are provided by one or two vertices. We note that if it is a degree-1
vertex, then it is not adjacent to S, as this would contradict the demand of S, and Figure 2(d)
shows a solution for this case. The same augmentation works if the valencies are provided by
two degree-2 vertices by considering two degree-2 vertices that are not adjacent to S as the
single degree-1 vertex u1 in the figure. If k = 4, consider the case that the four valencies
outside S ∪ {v} are provided by two degree-1 vertices. Figure 2(e) shows a solution, and this
also holds if u2 is replaced by two degree-2 vertices that are located arbitrarily. It remains
to deal with the case where four valencies are provided by a degree-1 vertex and two degree-2
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vertices, but the degree-1 vertex is adjacent to S. Figure 2(e) shows a solution for this case.
If k = 6, all further vertices have degree 1, resulting in |V 1

f | = 4, which can be handled by the
basic case. This concludes the case kmax = 3.

If kmax = 4, let S ⊆ V 1

f denote a stick. If |V 1

f | = 4, we are done according to Figure 1(a)-

(d). If |V 1

f | = 3, then we have |V 2

f | = 2 by the demand of S and the total limit of six vertices.
In this case outside S there are exactly the four valencies demanded by S, and we may connect
them arbitrarily since S forms a connected component. Finally, if |V 1

f | = 2, the demand of S
must be satisfied by four degree-2 vertices, and we connect S to these vertices arbitrarily.

Given a node assignment A that satisfies the parity and the matching condition for a face f ,
the following rule picks an edge that can be inserted into f . Lemma 4 states that afterwards the
remaining assignment still satisfies the parity and the matching condition. Iteratively applying
Rule 1 hence yields a (not necessarily planar) realization.

Rule 1. 1. If kmax ≥ 3 let S denote a maximum indicator set. Choose a vertex u of lowest
degree in S and connect this to an arbitrary assigned vertex v /∈ S.

2. If kmax = 2 and u is a leaf, choose S = {u}, and connect u to an assigned vertex v.
3. If kmax = 2 and there is no leaf, let S denote a path xuy of assigned vertices in V 2 .

Connect u to an arbitrary assigned vertex v /∈ S.
4. If kmax = 2 and there is neither a leaf nor a path of three assigned vertices in V 2 , let S

denote a pair uw. Connect u to an arbitrary assigned vertex v /∈ S.
5. If kmax = 1, choose S = {u}, where u is a joker, and connect u to another joker v.

Lemma 4. Assume A satisfies the parity and matching condition for f and let e denote an
edge chosen according to Rule 1. Then A satisfies the same conditions for f + e.

Proof. It follows from Theorem 2 that A is realizable for f . Thus, let Wf denote a 3-regular
augmentation for f . If e = uv ∈ Wf , we are done since Wf \ {e} is a 3-regular augmentation
for f + e.

Hence, assume uv /∈Wf . We consider the set W - ⊆Wf of edges that are incident to vertices
in S, where S is the set determined by the rule. It is u ∈ S and v /∈ S for all rules. The deletion
of W - in f+Wf yields a set X ? ∪S of vertices which have again free valencies in f+(Wf−W - ).
If v is connected to a vertex of S in Wf , then we already have v ∈ X ? . Otherwise, we add an
arbitrary edge vx ∈Wf to W - , which yields v, x ∈ X ? . Clearly, A satisfies the parity condition
and the matching condition for f + (Wf −W - ), and, after insertion of e = uv, at least the
parity condition for f + (Wf −W - ) + uv. In the following we show that A also satisfies the
demand of a maximum indicator set S′ in f + (Wf −W - ) + uv. Then A satisfies the matching
condition for f + (Wf − W - ) + uv by Lemma 2, and there exists an augmentation W⊕ for
f + (Wf −W - ) + uv such that (Wf −W - ) + W⊕ is an augmentation for f + e. Hence, A
satisfies the parity condition and the matching condition for f + e as claimed by the lemma.

For each subrule we distinguish cases based on the type of S. Recall that the insertion of
edges never increases kmax. Thus, any maximum indicator set in f + (Wf −W - ) +uv demands
at most as many valencies as a maximum indicator set in f . Note further, that v has degree 3
in f + (Wf −W - ) + uv if v is not matched to S in Wf .

Subrule 1: In this case, S is a maximum indicator set, and we distinguish further cases
based on the exact type of S.

Case I: Assume S is a stick or an indicator set of type (7). If v was connected to s ∈ S in
Wf , then, except for the valency at s, which was connected to u, the valencies in X ? \ (S ∪{v})
were matched to S. Due to the symmetry of S, these valencies can be also matched to S
preserving the necessary valency for v at u. Thus, A satisfies the parity condition and the
matching condition for f + e, according to Theorem 2.

If v was not connected to S in Wf and S is a set of type (7), we connect the isolated degree-0
vertices in S by an edge, such that S becomes a stick. Since this does not change the demand
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of S, which remains a maximum indicator set, Lemma 2 and Theorem 2 imply that A is still
realizable for f +(Wf −W - ) after this insertion. Thus, we identify this case with the next case,
where S is a stick.

Assume that S is a stick and v was not connected to S inWf . Then S provides three valencies
at two distinct vertices in f + (Wf −W - ) + uv. The vertices with free valencies in f + (Wf −
W - ) +uv are partitioned into two disjoint, non-adjacent groups, namely S and X ? \ (S ∪{v}).
We show that no maximum indicator set S′ contains vertices of both sets, and then argue
that the group that has empty intersection with a maximum indicator set S′ provides enough
valencies to satisfy the demand of S′.

First observe that S and X ? \ (S ∪ {v}) are disjoint by definition and non-adjacent since S
was a stick (before connecting it to v). Let S′ be any maximum indicator set f+(Wf−W - )+uv.
By definition S does not contain a degree-0 vertex, which could belong to an indicator set of
type (7). Since all other indicator sets are connected it follows that either S′ ⊆ S or S′ ∩S = ∅.
The set X ? \(S∪{v}) provides (at least) 4+1 = 5 valencies on at least three distinct vertices in
f + (Wf −W - ) +uv. Recall that if S has originally been a set of type (7), it may have induced
six valencies provided by X ? \ (S∪{v}) in f +(Wf −W - )+uv. The valencies in X ? \ (S∪{v})
clearly satisfy the demand of any maximum indicator set S′ ⊆ S. If S′ ⊆ X ? \ (S ∪ {v}), then
S′ either consists of at most two vertices or it is a 3-cycle. In both cases there exists at least one
valency in X ? \ (S ∪{v}) outside S′ since S′ provides at most three valencies. Thus, S together
with this valency provides four valencies on at least three distinct vertices, which satisfies the
demand of any indicator set S′ ⊆ X ? \ (S ∪ {v}).

Case II: Assume S is a 3-cycle or an island. If v was connected to s ∈ S in Wf , we are done
by the same symmetry argument as in the beginning of Case I.

If v was not connected to S in Wf , S provides two valencies at at most two distinct vertices
in f+(Wf −W - )+uv, and again each maximum indicator set S′ is completely contained either
in S or in X ? \ (S ∪ {v}).

The latter provides 3+1 = 4 valencies on at least two distinct vertices in f+(Wf−W - )+uv.
This clearly satisfies the demand of any maximum indicator set S′ ⊆ S, since S′ demands at
most two valencies in f+(Wf−W - )+uv. If S′ ⊆ X ? \(S∪{v}), there exists at least one valency
in X ? \(S∪{v}) outside S′ since each maximum indicator set (for kmax = 3) provides only three
valencies. Thus, S together with this valency provides three valencies at three distinct vertices
if S was a 3-cycle (before connecting u and v), and at two distinct vertices if S was an island.
In both cases this satisfies the demand of any maximum indicator set S′ ⊆ X ? \ (S ∪ {v}) with
kmax = 3. Note that in the latter case S′ ⊆ X ? \ (S ∪ {v}) is no island since together with u
this would have induced a set of type (7) in f , contradicting kmax = 3.

Case III: Assume S is a branch. Recall that u is the degree-1 vertex in S. Denote the degree-
2 vertex in S by r. The second vertex x besides u that is adjacent to r in f+(Wf−W - )+uv has
at least degree 2 since S can be connected to this vertex by at most one edge in Wf . However,
unlike the previous cases, it is now possible that a maximum indicator set S′ has nonempty
intersection with both S and X ? \ (S ∪ {v}). This is the case where S′ = {r, x} and x has
degree 2, and we have to consider this case in addition to the usual ones. Observe that S
provides two valencies at u and r in f + (Wf −W - ) + uv.

If v was connected to r ∈ S in Wf , v has degree 3 in f + (Wf −W - ) + uv, as uv /∈ Wf ,
and X ? \ (S ∪ {v}) provides exactly two valencies at two degree-2 vertices (the ones that
were adjacent to u in Wf . This clearly satisfies the demand of each maximum indicator set
S′ ⊆ S since in this case S′ demands at most two vertices. If S′ ⊆ X ? \ (S ∪ {v}), then
since S′ ⊆ X ? \ (S ∪ {v}) consists of two degree-2 vertices, S′ demands two valencies, which
are satisfied by S. If S′ = {x, r} is the pair containing vertices of both groups, its demand is
satisfied by u and the degree-2 vertex in X ? \ (S ∪ {v}) different from x.

If v was not connected to r ∈ S in Wf , X ? \(S∪{v}) provides 3+1 = 4 valencies on at least
three vertices, due to kmax = 3. This clearly satisfies the demand of each maximum indicator
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set S′ ⊆ S. If S′ ⊆ X ? \ (S ∪ {v}), there exists at least one valency in X ? \ (S ∪ {v}) outside
S′ since each maximum indicator set provides only three valencies. Thus, S together with this
valency provides three valencies at three distinct vertices, which satisfies the demand of each
maximum set S′ ⊆ X ? \ (S ∪ {v}) with kmax = 3. Finally, if S′ = {r, x} is the pair containing
vertices of both groups, the demand of S′, which is 2, is easily satisfied by the remaining three
valencies in X ? \ (S ∪ {v}). This concludes the treatment of subrule 1.

Subrules 2 and 4: In this case the set S is a leaf or a pair (of adjacent degree-2 vertices),
and we have kmax = 2. If v was matched to s ∈ S in Wf , we are done by the same symmetry
argument as before.

If v was not matched to S in Wf , then S provides one valency at one vertex in f + (Wf −
W - )+uv. Again we argue that each maximum indicator set S′ is either in S or in X ? \(S∪{v}).
If S′ is a leaf, this is clear and if it is a pair {u,w}, that is if subrule 4 is applied, the neighbors
of u and w have degree 3 as subrule 3 would have been applied otherwise. Hence S and {u,w}
are either equal or disjoint.

The set X ? \ (S ∪ {v}) provides 2 + 1 = 3 valencies on at least two distinct vertices. This
clearly satisfies the demand of each maximum indicator set S′ ⊆ S since in this case S′ demands
only one valency. If S′ ⊆ X ? \ (S ∪ {v}), there exists at least one valency in X ? \ (S ∪ {v})
outside S′ since each maximum indicator set (for kmax = 2) provides only two valencies. Thus,
S together with this valency provides two valencies on at least two distinct vertices, which
satisfies the demand of each maximum set S′ ⊆ X ? \ (S ∪ {v}) with kmax = 2.

Subrule 5: Since S is a joker, that is kmax = 1, all vertices inX ? are jokers in f+(Wf−W - ).
Jokers can be matched arbitrarily, and thus, there exists an augmentation that contains e = uv.
By Theorem 2, A then satisfies the parity condition and the matching condition for f + e.

Subrule 3: Subrule 3 differs from the remaining rules since S is no indicator set. Con-
sequently, Wf may contain the edge xy between the endpoints of the path forming S. If Wf

does not contain xy, then X ? \ (S ∪ {v}) provides four valencies in f + (Wf −W - ) + uv (three
for S and one for v). If xy ∈Wf , then S ∪ {v} provides four valencies in f + (Wf −W - ) + uv.
Thus, in total X ? provides at least four valencies in f + (Wf −W - ) + uv. It hence satisfies the
demand of any maximum indicator set S′ since kmax = 2 and S′ is no leaf, otherwise subrule 2
would have been invoked instead of subrule 3.

Our next goal is to extend this characterization and the construction of the assignment to
the planar case. Consider a path of degree-2 vertices that are incident to two distinct faces f
and f ′ but are all assigned to f . Then a planar realization for f may not connect any two
vertices of the path. Hence the following sets of vertices demand additional valencies, which
gives a new condition.
(1) A path π of k > 2 assigned degree-2 vertices that are incident to two distinct faces (end

vertices not adjacent) demands either k further valencies or at least one valency from a
different connected component.

(2) A cycle π of k > 3 assigned degree-2 vertices that are incident to two distinct faces demands
either k further valencies or at least two valencies from two distinct connected components
different from π.

Condition 3 (planarity). The demand of each path of k > 2 and each cycle of k > 3 degree-2
vertices that are incident to two faces and that are assigned to f , is satisfied.

Obviously, the planarity condition is satisfied if and only if the demand of a longest such
path or cycle is satisfied. We prove for a node assignment A and a face f that the parity,
matching, and planarity condition together are necessary and sufficient for the existence of
a planar realization for a face f . To construct a corresponding realization we give a refined
selection rule that iteratively chooses edges that can be embedded in f , such that the resulting
augmentation is a planar realization of A for f . The new rule considers the demands of both
maximum paths and cycles and maximum indicator sets, and at each moment picks a set with
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highest demand. If an indicator set is chosen, essentially Rule 1 is applied. However, we exploit
the freedom to choose the endpoint v of e = uv arbitrarily, and choose v either from a different
connected component incident to f (if possible) or by a right-first (or left-first) search along
the boundary of f . This guarantees that even if inserting the edge uv splits f into two faces f1
and f2, one of them is incident to all vertices that are assigned to f . Slightly overloading
notation, we denote this face by f + e and consider all remaining valencies assigned to it. We
show in Lemma 5 that A then satisfies all three conditions for f + e again.

Rule 2. Phase 1: Different connected components assign valencies to f .
1. If there exists a path (or cycle) of more than kmax assigned degree-2 vertices, let u denote

the middle vertex vdk/2e of the longest such path (or cycle) π = v1, . . . vk. Connect u to
an arbitrary assigned vertex v in another component.

2. If all paths (or cycles) of assigned degree-2 vertices have length at most kmax, apply Rule 1,
choosing the vertex v in another component.

Phase 2: All assigned valencies are on the same connected component. Consider only paths of
assigned degree-2 vertices that are incident to two distinct faces:

1. If there exists a path that is longer than kmax, let u denote the right endvertex vk of the
longest path π = v1, . . . vk. Choose v as the first assigned vertex found by a right-first
search along the boundary of f , starting from u.

2. If all paths have length at most kmax, apply Rule 1, choosing v as follows:
Let v1, v2 denote the first assigned vertices not adjacent to u found by a left- and right-
first search along the boundary of f , starting at u. If S is a branch and one of v1, v2 has
degree 2, choose it as v. In all other cases choose v = v1.

Lemma 5. Assume A satisfies the parity, matching, and planarity condition for f and let e be
an edge chosen according to Rule 2. Then A satisfies all conditions also for f + e.

Proof. Let A be a node assignment that satisfies the parity condition and the matching condition
for f . Let A further satisfies the planarity condition for f . Suppose e = uv is chosen by one
of the subrules of Rule 2. If e is chosen by one of the second subrules of Rule 2, which refer to
Rule 1, let S denote the set of vertices defined by Rule 1 in order to determine u. Otherwise,
define S as the longest path (or cycle) from which the rule choses u. In both cases it is u ∈ S
and v /∈ S. If S originates from Rule 1, we define k := kmax. Otherwise, k denotes the number
of valencies provided by S. Note that in the former case k also describes the number of valencies
provided by S, unless S is an indicator set of type (7).

Let π denote a maximum path (or cycle) in f + e. We denote the length of π by |π|. Recall
that a maximum path consists of |π| ≥ 3 assigned degree-2 vertices that are incident to two
distinct faces. We distinguish two cases. The first case considers a maximum path (or cycle) π
in f + e that already exists in f . This is, π does not contain e. We write e 6⊆ π. In f π is not
necessarily maximum. The second case considers a maximum path (or cycle) π in f + e that
contains e, i.e., that arises due to the insertion of e. In the following we prove that the demand
of π is satisfied in f + e in both cases. Since π is maximum, this implies that the demand of all
paths (or cycles) considered in the planarity condition is satisfied. Thus, the planarity condition
is satisfied for f + e. The parity condition is obviously satisfied in f + e, since the number of
assigned valencies decreases by 2 due to the insertion of e. In a final step we will prove that the
matching condition is satisfied for f + e. We first focus on the planarity condition.

Case I: e 6⊆ π. Then, it is |π| ≤ k. Otherwise the rule would have chosen π for S in f .
Furthermore, π does not intersect with S, i.e., π is either contained in S or S and π are disjoint.
If π intersected with S, S would contain at least one degree-2 vertex that is incident to two
distinct faces. If S originates from Rule 1, S is an indicator set, and the only indicator sets that
contain such a vertex are pairs and jokers. These, however, only occur for kmax ≤ 2. Thus, in
this case π with |π| ≥ 3 does not exist. If S is defined by the first subrules of Rule 2, it is either
a maximum path (or cycle) or it contains no degree-2 vertex incident to two faces. The latter
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may happen if subrule 1 of Phase 1 chooses an “inner” path (one that is not incident to two
distinct faces) for S. In the former case the assumption that π intersects S yields a longer path
(or cycle) in f contradicting the maximality of S. We distinguish cases based on the position
of π in f + e.

Case A: π ∩S = ∅. The set S provides at least k− 1 valencies in f + e. Recall that |π| ≤ k.
If |π| < k the demand of π is satisfied by S. If |π| = k there are at least k + (k − 1) valencies
assigned to f + e. Since the parity condition is obviously preserved by the insertion of e, the
parity condition for f + e guarantees a further valency outside π. Thus, the demand of π is
satisfied.

Case B: π ⊆ S. Then S is either a path of at least three or a cycle of at least four assigned
degree-2 vertices in f that are incident to two distinct faces. Thus, e is chosen by one of the
first subrules of Rule 2. Recall that S looses one valency due to the insertion. We distinguish
whether π is a path or a cycle.

Suppose S is a path of length k ≥ 3 in Phase 1, where f is incident to distinct connected
components. In this case the insertion of e splits S into two paths π1 and π2, both of length
(k − 1)/2 if k is odd, and |π1| = k/2 and |π2| = k/2− 1 if k is even. It is π = π1. In the latter
case, if k is even, the parity condition for f guarantees a further valency outside S besides the
valency at v. Thus, π2 together with this valency satisfies the demand of π. Analogously, π and
π2 mutually satisfy their demands if k is odd.

Now suppose S is a path of length k ≥ 3 in Phase 2, where f is incident to one component.
Then u is chosen as an endvertex of S and the resulting path π demands k − 1 valencies in
f + e. Since the planarity condition is satisfied for f , the demand of S in f is satisfied by k
valencies outside S. Recall that the demand of S can not be satisfied by a valency from a
different component, since there are no valencies assigned to distinct components in Phase 2.
Thus, in f + e remain at least k− 1 valencies outside S, and hence, outside π, which satisfy the
demand of π.

Suppose S is a cycle of length k ≥ 4 in Phase 1. In this case u ∈ S is connected to a vertex
v at a different component, and S becomes a path of length k − 1 ≥ 3, which is π. Since the
planarity condition is satisfied for f , the demand of S in f is satisfied by two further valencies
from two further components or by k assigned valencies outside S. In the first case remains at
least one component in f + e, which satisfies the demand of π. In the second case remain at
least k − 1 valencies outside S in f + e, which satisfy the demand of π. Phase 2 considers no
cycles.

Case II: e ⊆ π. In order to create a new path (or cycle) of assigned degree-2 vertices that are
incident to two distinct faces, e must connect two degree-1 vertices from the same component.
Thus, the only rule possibly choosing such an edge is the second subrule in Phase 2. Note
that in Phase 2 it is kmax ≤ 3, since any indicator set of demand 4 would induce an additional
connected component. If this rule is applied for kmax = 2, the longest path (or cycle) that
can occur consists of two vertices, which is no path (or cycle) as considered in the planarity
condition. If this rule is applied for kmax = 3, S is a branch, and the rule connects the degree-1
vertex u ∈ S to a second degree-1 vertex v. This yields a path π of length 3. Note that creating
a cycle in this way is not possible, since f is incident to only one component.

Suppose the rule creates a new path π of length 3. Then no feasible degree-2 vertex could be
reached by a left first or right first search from u ∈ S. Otherwise, the rule would have connected
u to this vertex. This is, the degree-2 vertex r ∈ S is adjacent to a degree-3 vertex and the
first valency found in the opposite direction from v also belongs to a degree-1 vertex w. Thus,
there are at least 3 + 2 + 2 = 7 valencies from S, v and w assigned to f . Due to the parity
condition for f there is a further assigned valency outside S. In f +e this valency together with
w satisfies the demand of the newly created path π.

Finally we prove that the matching condition is satisfied in f + e. The second subrules of
Rule 2 inherit these property from Rule 1. Thus, we focus on the first subrules, where S is a
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path (or cycle) of length k > kmax in f . In order to prove the matching condition let S′ denote
a maximum indicator set in f + e. We prove that the demand of S′ is satisfied in f + e. Then
the matching condition is satisfied for f + e, according to Lemma 2 and Theorem 2.

Note that the insertion of e does not create any new indicator set, since u becomes a degree-3
vertex in f + e. Observe further that S′ ∩ S = ∅, unless S′ is a pair, which indicates kmax = 2.

First suppose S′ ∩ S = ∅ and recall that k > kmax. This is, S still provides kmax valencies
at kmax degree-2 vertices in f + e. Obviously, this satisfies the demand of S′ in f + e.

Now suppose S′ ⊆ S is a pair. If k ≥ 5, S provides at least two valencies outside S′ in
f + e, which satisfy the demand of S′. If k = 4, S provides one valency outside S′ in f + e.
However, the parity condition for f + e guarantees a further valency outside S, such that the
demand of S′ is satisfied. The case k = 3 occurs only in Phase 2. In Phase 1 k = 3 would not
yield a pair S′ ⊆ S in f + e. Thus, if k = 3, S becomes S′ in f + e, and the planarity condition
for f guarantees at least three further valencies outside S. Thus, in f + e remain at least two
valencies outside S′, which satisfy the demand of S′.

Given a node assignment A and a face f satisfying the parity, matching, and planarity
condition, iteratively picking edges according to Rule 2 hence yields a planar realization of A
for f . Applying this to every face yields the following theorem.

Theorem 3. There exists a planar realization W of A if and only if A satisfies for each face
the parity, matching, and planarity condition; W can be computed in O(n) time.

Proof. We construct the planar realization for each face individually. To construct a local
realization for a face with a positive number of assigned vertices, we repeatedly apply Rule 2
to select an edge. By Lemma 5 this yields a planar local realization. It is not hard to see
that repeatedly applying Rule 2 for a face f can be done in time proportional to the number
of vertices incident to f . To allow fast left-first and right-first searches, we maintain a circular
list containing the vertices incident to f with degree less than 3, and remove vertices reaching
degree 3 from this list. Thus, also in phase 2 of Rule 2 the second vertex can be found in O(1)
time.

3.2 Globally Realizable Node Assignments and Planarity

In this section we show how to compute a node assignment that is realizable in a planar way
if one exists. By Theorem 3, this is equivalent to finding a node assignment satisfying for each
face the parity, matching, and planarity condition. In a first step, we show that the planarity
condition can be neglected as an assignment satisfying the other two conditions can always be
modified to additionally satisfy the planarity condition.

Lemma 6. Given a node assignment A that satisfies the parity and matching condition for all
faces, a node assignment A′ that additionally satisfies the planarity condition can be computed
in O(n) time.

Proof. Assume that f is a face for which the planarity condition is not satisfied, and let π =
v1, . . . , vk denote a largest path (or cycle) of degree-2 vertices, all assigned to f , that violates
the planarity condition. Let f ′ denote the other face (distinct from f) incident to π. Let u = v1.
Choose v = v3 if k = 3, and v = vd(k+1)/2e otherwise. We modify A by reassigning u and v
to f ′. We claim that this reassignment has two properties, namely 1) f ′ satisfies exactly the
same conditions as before the reassignment, and 2) f satisfies the parity condition, the matching
condition and the planarity condition.

Note that since π is either a path of length more than 2 or a cycle of length more than 3,
the two vertices u and v are distinct and non-adjacent. To see property 1) consider the new
assignment. Obviously, the reassignment preserves the parity condition. For the matching
condition assume that M is an augmentation of f ′ with respect to A. Then M ∪ {uv} is an
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augmentation of f ′ with respect to A′, thus the matching condition is preserved. Moreover,
if M is a planar augmentation, then uv can be added in a planar way, showing that also the
planarity condition is preserved.

Concerning property 2), the reassignment obviously preserves the parity condition for f . For
the matching and the planarity condition assume that there exists a set T of vertices assigned
to f that demand k′ additional free valencies by either the matching condition or the planarity
condition. First observe that k′ ≤ k − 1, as π would not have violated the planarity condition,
otherwise. If k′ = k−1, then T is disjoint from π, which provides k−2 free valencies (recall that u
and v have been reassigned), and the parity condition implies the existence of an additional
free valency assigned to f , thus ensuring that the demand of T is satisfied. The same argument
works for all cases where T is disjoint from π. Thus assume that T and π are not disjoint.
Since π was chosen as a maximal path or cycle, and all sets with demands that contain degree-2
vertices it follows that T is a subset of π. Note that the reassignment splits π into two disjoint
subpaths π1 and π2 consisting of d(k − 2)/2e and b(k − 2)/2c vertices, respectively. Observe
that π2, possibly together with an additional free valency provided by the parity condition (if k
is odd) provides the necessary valencies for π1 and vice versa. Thus the new assignment satisfies
the matching condition and the planarity condition as well, and property 2) holds.

Observe that once a largest path violating the planarity condition has been found, the
reassignment for a face f takes only O(1) time. Moreover, since we only need to consider
maximal sequences of assigned degree-2 vertices, such a path can be found in time proportional
to the size of f . The test whether the planarity condition for this path is satisfied can be
performed in the same running time. Thus A′ can be computed from A by simply traversing
all faces, spending time proportional to the face size in each face. Thus, computing A′ from A
takes O(n) time.

Lemma 6 and Theorem 3 together imply the following characterization.

Theorem 4. G admits a planar 3-regular augmentation if and only if it admits a node assign-
ment that satisfies for all faces the parity and matching condition.

To find a node assignment satisfying the parity and matching condition, we compute a
(generalized) perfect matching in the following (multi-)graph GA = (V ? , E′), called assignment
graph. It is defined on V ? , and the demand of a vertex in V i is 3 − i for i = 0, 1, 2. For a
face f let V ?

f ⊆ V ? denote the vertices incident to f . For each face f of G, GA contains the

edge set Ef =
(V ?

f

2

)
\E, connecting non-adjacent vertices in V ? that share the face f . We seek

a perfect (generalized) matching M of GA satisfying exactly the demands of all vertices. The
interpretation is that we assign a vertex v to a face f if and only if M contains an edge incident
to v that belongs to Ef . It is not hard to see that for each face f the edges in M ∩ Ef are
a (non-planar) realization of this assignment, implying the parity condition and the matching
condition; the converse holds too.

Lemma 7. A perfect matching of GA corresponds to a node assignment that satisfies the parity
and matching condition for all faces, and vice versa.

Proof. First assume that M is a perfect matching of GA, and let A be the corresponding
assignment. Observe that for each face f , the edge set Ef ∩M is exactly a realization of A
for f , and hence, by Theorem 2, A satisfies the parity condition and the matching condition
for f . Conversely, again by Theorem 2, for a node assignment A that satisfies the parity
condition and the matching condition for each face f , we find a realization Wf for each face.
Note that by definition of Ef we have Wf ⊆ Ef , and thus

⋃
f∈F Wf yields a perfect matching

of GA inducing A.

Since testing whether the assignment graph admits a perfect matching can be done in O(n2.5)
time [7], this immediately implies the following theorem.
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Theorem 5. FERA can be solved in O(n2.5) time.

Proof. For a given planar input graph G with n vertices we first construct the assignment
graph GA = (V ? , E′) in O(n2) time. We then check whether GA admits a perfect matching in
O(
√
|V ? ||E′|) = O(n2.5) time, using an algorithm due to Gabow [7]. If no perfect matching ex-

ists, then G does not admit a planar 3-regular augmentation by Lemma 7. Otherwise, we obtain
by the same lemma a node assignment A that satisfies the parity condition and the matching
condition for each face. Using Lemma 6 we obtain in O(n) time a node assignment A′ that
additionally satisfies the planarity condition for each face. A corresponding planar realization
of A′ can then be obtained in O(n) time by Theorem 3.

4 C-connected FERA

In this section we generalize the results obtained for FERA to efficiently solve c-connected
FERA for c = 1, 2. The triconnected case is shown to be NP-hard in Section 5. We start with
the connected case.

4.1 Connected FERA

Observe that an augmentation makes G connected if and only if in each face all incident con-
nected components are connected by the augmentation. We characterize the node assignments
admitting such connected realizations and modify the assignment graph from the previous sec-
tion to yield such assignments.

Let G = (V,E) be a planar graph with a fixed planar embedding, let f be a face of G, and
let zf denote the number of connected components incident to f . Obviously, an augmentation
connecting all these components must contain at least a spanning tree on these components,
which consists of zf −1 edges. Thus the following connectivity condition is necessary for a node
assignment to admit a connected realization for f .

Condition 4 (connectivity). (1) If zf > 1, each connected component incident to f must have
at least one vertex assigned to f .

(2) The number of valencies assigned to f must be at least 2zf − 2.

It is not difficult to see that this condition is also sufficient (both in the planar and in the
non-planar case) since both Rule 1 and Rule 2 gives us freedom to choose the second vertex v
arbitrarily. We employ this degree of freedom to find a connected augmentation by choosing v
in a connected component distinct from the one of u, which is always possible due to the
connectivity condition.

Theorem 6. There exists a connected realization W of A if and only if A satisfies the parity,
matching, and connectivity condition for all faces. Moreover, W can be chosen in a planar
way if and only if A additionally satisfies the planarity condition for all faces. Corresponding
realizations can be computed in O(n) time.

Proof. Clearly the conditions for both statements are necessary. We prove that they are also
sufficient. Let A be a node assignment satisfying the parity condition, the matching condition,
and the connectivity condition for all faces of G. We construct a connected realization of A for
each face f ; together they form a connected realization of A.

To construct a connected (possibly non-planar) realization for f , we repeatedly choose edges
according to Rule 1 (which yields a realization by Lemma 4), making use of the freedom in the
rule to reduce the number of connected components. Rule 1 prescribes one endpoint u of the
edge that will be selected, and we are free to choose v ∈ V ? arbitrarily, as long as it is not
incident to u. We then choose v in a connected component different from the one containing u
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as long as several connected components exist. While the number zf of connected components
incident to f is greater than 2, there exists a connected component assigning at least two
valencies to f , due to connectivity condition (2). We choose v such that at least one of u and v
is contained in such a connected component. We then consider the node assignment A for f+e.
By Lemma 4 A satisfies the parity condition and the matching condition for f + e. Moreover,
our choice of v ensures that after adding the edge uv determined by the rule, connectivity
condition (1) is satisfied for the resulting connected component. Connectivity condition (2) is
trivially preserved, showing that A satisfies the connectivity condition for f + e. Thus, the
construction can be repeated, eventually yielding a connected realization for f . The planar case
works completely analogously, using Rule 2 and Lemma 5 instead of Rule 1 and Lemma 4. The
running time can be argued as in the proof of Theorem 3.

The following corollary follows from Theorem 3 by showing that the reassignment which
establishes the planarity condition preserves the connectivity condition.

Corollary 1. Given a node assignment A that satisfies the parity, matching and connectivity
condition for all faces, a node assignment A′ that additionally satisfies the planarity condition
can be computed in O(n) time.

Proof. To see this, recall that Theorem 3 reassigns from each face at most two vertices to a
distinct face if the planarity condition is not satisfied. Clearly, assigning more vertices to a
face does not invalidate the connectivity condition. Thus, an invalidation of the connectivity
condition for a face f may only happen when two vertices assigned to f are reassigned to a
different face. Note that if zf > 2, the planarity condition is implied by connectivity condition
(1). Thus a reassignment only happens for faces with zf = 1, 2. If zf = 1, the connectivity
condition holds trivially. If zf = 2, observe that connectivity condition (2) is implied by
condition (1), and since the reassignment does not reassign the last valency of a connected
component, connectivity condition (1) is preserved

Corollary 1 and Theorem 6 together imply the following characterization.

Theorem 7. G admits a connected planar 3-regular augmentation iff it admits a node assign-
ment that satisfies the parity, matching and connectivity condition for all faces.

We describe a modified assignment graph, the connectivity assignment graph G′A, whose
construction is such that there is a correspondence between the perfect matchings of G′A and
node assignments satisfying the parity, matching and connectivity condition.

To construct the connectivity assignment graph a more detailed look at the faces and how
vertices are assigned, is necessary. A triangle is a cycle of three degree-2 vertices in G. An
empty triangle is a triangle that is incident to a face that does not contain any further vertices.
The set Vin (for inside) contains all vertices from V 0 ∪ V 1 , all degree-2 vertices incident to
bridges (they are all incident to only a single face), and all vertices of empty triangles (although
technically they are incident to two faces, no augmentation edges can be embedded on the empty
side of the triangle). We call the set of remaining vertices Vb (for boundary). We construct
a preliminary assignment Ã that assigns the vertices in the set Vin of G whose assignment is
basically unique. The remaining degree of freedom is to assign vertices in Vb to one of their
incident faces. The connectivity assignment graph G′A again has an edge set E′f for each face f
of G. Again the interpretation will be that a perfect matching M of G induces a node assignment
by assigning to f all vertices that are incident to edges in M ∩ E′f .

If a face f is incident to a single connected component, we use for E′f the ordinary assignment
graph; the connectivity condition is trivial in this case. Now let f be a face with zf > 1 incident
connected components. For each component C incident to f that does not contain a vertex
that is preassigned to f , we add a dummy vertex vC,f with demand 1 and connect it to all
degree-2 vertices of C incident to f ; this ensures connectivity condition (1). Let cf denote the
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Figure 4: Graph (dashed lines; preassigned vertices are empty) and its connectivity assignment
graph (solid lines, dummy vertices as boxes).

number of these dummy vertices, and note that there are exactly cf valencies assigned to f

due to these dummy vertices. Let ãf denote the number of free valencies assigned by Ã, and

let d̃f denote the number of valencies a maximum indicator set in f with respect to Ã misses.
To ensure that the necessary valencies for the matching condition are present, we need that
at least d̃f − cf vertices of Vb are assigned to f . For connectivity condition (2) we need at
least 2zf − 2 − ãf − cf such vertices assigned to f . We thus create a dummy vertex vf whose

demand is set to sf = max{2zf −2− ãf −cf , d̃f −cf , 0}, possibly increasing this demand by 1 to
guarantee the parity condition. Finally, we wish to allow an arbitrary even number of vertices
in Vb to be assigned to f . Since some valencies are already taken by dummy vertices, we do not
just add to E′f edges between non-adjacent vertices of Vb incident to f but for all such pairs.

The valencies assigned by Ã and the dummy vertices satisfy the demand of any indicator set.
Fig. 4 shows an example; for clarity edges connecting vertices in Vb are omitted in f and the
outer face.

Lemma 8. A perfect matching of G′A (together with Ã) corresponds to a node assignment that
satisfies parity, matching, and connectivity condition for all faces, and vice versa.

Proof. Let M be a perfect matching of G′A and let A denote the corresponding node assignment.
Let f be a face of G, we show that A satisfies the parity condition, the matching condition,
and the parity condition for f . If zf = 1, the connectivity condition holds trivially and the
remaining conditions follow from Theorem 2 since M ∩ Ef is a realization of A for f . Hence,
let zf ≥ 2.

Using the definition from above, there are ãf valencies assigned to f by Ã, cf valencies from
vertices adjacent to the dummy vertices vC,f , sf valencies from vertices incident to the dummy

vertex vf and 2kf valencies from kf edges in M ∩
(Xf

2

)
. In total this are ãf + cf + sf + 2kf

valencies, which is even due to the choice of sf , and hence the parity condition holds.
For the connectivity condition, observe that the dummy vertices vC,f imply connectivity

condition (1) and the choice of sf implies connectivity condition (2).
It remains to prove that the matching condition is satisfied. Let T denote an indicator set

of f (for A). Observe that the vertices of an indicator set are either all in Vin or all in Vb.
If T ⊆ Vin, then T was already an indicator set for Ã, and its demand is satisfied due to the
choice of sf . If T ⊆ Vb, it is a joker, a pair, or a 3-cycle. However, as argued before, a 3-cycle can
be excluded as it is either contained in Vin or one of its vertices must be matched to a dummy
vertex in another face, and hence is not assigned to f . For a joker the necessary valency exists
due to the parity condition. If T is a pair (consisting of two adjacent vertices of degree 2),
its vertices are contained in the same connected component. Since zf ≥ 2 and connectivity
condition (1) is satisfied, at least one more vertex must be assigned to f . It then follows from
the parity condition, that the demand of T is satisfied. Thus the matching condition holds,
finishing this direction of the proof.

Conversely, let A be a node assignment that satisfies for each face f the parity condition,
the matching condition, and the connectivity condition. We construct for each face f a match-
ing Mf ⊆ Ef satisfying exactly the demands of all vertices assigned to f and the dummy vertices
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associated with f . Clearly the matching M =
⋃

f∈FMf , where F denote the set of faces of G,
then satisfies the demands of all vertices in G′A, that is it is a perfect matching of G′A.

Let f be a face. If zf = 1, we choose Mf as an arbitrary realization of A for f , which exists by
Theorem 2, and the condition is satisfied by construction. Hence assume zf ≥ 2. Connectivity
condition (1) implies that each connected component either contains a vertex in Vin or a vertex
in Vb assigned to f . We pick for each connected component C that does not contain a vertex
in Vin an arbitrary assigned vertex of Vb and match it to vC,f . The matching condition implies

that the number r of remaining vertices in Vb assigned to f is at least d̃f − cf , and connectivity
condition (2) implies that r is at least 2zf − 2 − ãf − cf . Thus, we can match arbitrary sf
vertices in Vb to vf , satisfying its demand. The remaining yet-unmatched vertices assigned to f
are an even number and an arbitrary pairing of them completes the matching Mf .

Together with the previous observations this directly implies an algorithm for finding con-
nected 3-regular augmentations.

Theorem 8. Connected FERA can be solved in O(n2.5) time.

4.2 Biconnected FERA

In this section we show that also biconnected FERA can be solved efficiently. Again, we first
give a local characterization of node assignments admitting biconnected augmentations and
then construct a biconnectivity assignment graph whose perfect matchings correspond to such
node assignments.

Local characterization of biconnectivity. Let G = (V,E) be a planar graph with a fixed
embedding and let f be a face of G. We consider the bridge forest Bf of f , which is constructed
as follows. Remove all bridges from G and consider the connected components of this graph
that are incident to f . We create a node for each such connected component and connect them
by an edge if and only if they are connected by a bridge in G. Similarly, we can define the
bridge forest of f with respect to an augmentation W , where we only remove bridges of G+W .
Observe that each leaf component in a bridge forest with respect to W contains a subgraph that
corresponds to a leaf component in the associated bridge forest of G. Clearly, an augmentation
is connected if and only if the bridge graph of each face is connected, and it is biconnected if and
only if each bridge forest consists of a single node. Observe that the bridge forest Bf contains
a connected component for each connected component of G incident to f . We say that such a
component is trivial if its corresponding connected component in Bf consists of a single node.
A 2-edge connected component of G incident to f is a leaf component if its corresponding node
in Bf has degree 1. Figure 5 shows an example.

Next, we study necessary and sufficient conditions for when a node assignment A admits for a
face f a planar 3-regular augmentation Wf such that the resulting bridge forest is a single node.
Obviously, if there is more than one connected component incident to f , each of them must
assign at least two valencies to f ; if none is assigned, the augmentation will not be connected,
if only one is assigned the single edge incident to this valency will form a bridge. Additionally,
each leaf component must assign at least one valency, otherwise its incident bridge in Bf will
remain a bridge after the augmentation. Thus the following biconnectivity condition is necessary
for a face f with zf incident connected components to admit a biconnected augmentation.

Condition 5 (Biconnectivity condition).

(1) If zf > 1, each connected component incident to f must have at least two valencies assigned
to f , and

(2) each leaf component of f must assign at least one valency to f .
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Figure 5: A face f (right) and its corresponding bridge forest Bf (right); bridges are dashed,
red edges. The bridges b7 and b8 are not incident to f and hence not contained in Bf .

We show that these conditions are also sufficient, both in the planar and in the non-planar
case.

Theorem 9. Let G be a planar maxdeg-3 graph on n vertices with a fixed embedding, and let A
be a node assignment. Then the following statements hold.

(i) A admits a biconnected realization if and only if A satisfies the parity condition, the
matching condition, and the biconnectivity condition for all faces of G.

(ii) The realization can be chosen to be planar if and only if A additionally satisfies the pla-
narity condition for faces of G. A corresponding realization for A can be computed in O(n)
time.

Proof. Clearly the conditions for both statements are necessary. We prove that they are also
sufficient. Let A be a node assignment satisfying the parity condition, the matching condition,
and the biconnectivity condition for all faces of G. We construct a biconnected realization of A
for each face f ; together they form a biconnected realization of A.

First assume that the bridge graph Bf of f is connected, that is G has only one connected
component incident to f . Let Wf be a realization of A for f and assume that it is not a
biconnected realization. Then there exists a bridge b in G + Wf whose endpoints are incident
to f in G. Without loss of generality we assume b such that it is incident to a leaf of the bridge
forest Bf with respect to Wf . Consider the subtrees of Bf on distinct sides of b. Each of them
contains a leaf, and thus a vertex assigned to f . Let x1, x2 denote two such vertices on distinct
sides of b, choosing x1 and x2 as endpoints of b if possible, and let e1 = x1y1 and e2 = x2y2
denote two edges of Wf incident to x1 and x2, respectively. Since b is a bridge in G+Wf , we have
that x1, x2, y1 and y2 are pairwise disjoint, and except for possibly x1 and x2, which might be
joined by b, they are pairwise non-adjacent. It is then not hard to see that replacing in Wf the
edges x1y1 and x2y2 by x1y2 and x2y1 yields a new augmentation W ′f of G whose bridge forest
has fewer leaves. Applying this construction iteratively yields a biconnected realization. Now
assume that the bridge graph of f is not connected and consists of zf connected components.
By correctness of Rule 1, we may first add a set W ′′f of zf − 1 edges such that G becomes
connected. Observe that G+W ′′f is still a planar graph and contains the face f . Consider the
assignment A′ induced by A on G + W ′′f . The bridge forest B′f of G + W ′′f for f is connected,
and each leaf component of G+W ′′f either is a connected component of G, or was already a leaf
component in G. In both cases it follows that the leaf component contains at least one vertex
assigned to f , which is incident to an edge from W ′′f that is not a bridge. Hence the construction
also works for the case that Bf is not yet connected, finishing the proof of claim (i).
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Figure 6: Illustration of the rewiring step from the proof of Theorem 9; x1, x2 are not adjacent
(left), and x1, x2 are adjacent (right). The dashed black edges are part of an augmentation and
are replaced by the dashed red edges. Afterwards the edge b is not a bridge anymore.

For claim (ii) observe that by the same argument (applying Rule 2) instead of Rule 1), we
may again assume that Bf is connected. Now let Wf be any planar realization of A for a face f
of G and let b be a bridge that is incident to a leaf of Bf (with respect to Wf ). We again choose
vertices x1, x2, y1, y2 for rewiring, but slightly more carefully. Namely observe that in G + Wf

the bridge b is incident to a face f ′ in G+Wf , and by the same argument as above this face must
be bounded by at least two edges x1y1 and x2y2 of Wf , having their endpoints on distinct sides
of b. We assume that the clockwise order of occurrence along the boundary of f ′ is x1x2y2y1.
If x1 and x2 are not adjacent, we replace x1y1 and x2y2 by the two edges x1x2 and y1y2, which
clearly is planar. If x1 and x2 are adjacent, that is b = x1x2, we replace them by y2x1 and x2y1,
which is again planar since b is incident to f ′ on both sides; see Fig. 6. As above it can be seen
that the bridge graph of G + Wf has fewer leaves, and thus iteratively applying the rewiring
step yields the desired realization.

Concerning the running time, recall that, by applying Rule 2, zf − 1 edges can be added to
each face in G in O(n) time such that G becomes connected. A planar (possibly not biconnected)
realization Wf of A for each face f in the connected graph G can be computed in linear time
by Theorem 6. For the rewiring we apply a right-first search along the boundary of f handling
the bridges that are incident to leaves of the bridge forest consecutively.

We start from a vertex outside a leaf component and search for the first bridge b that is
incident to a leaf component of Bf (with respect to Wf ). After crossing b in the direction of the
leaf, we follow the boundary of the face f ′ in G+Wf that is incident to b on both sides (instead
of the boundary of f in G). We store an edge y1x1 ∈Wf at the leaf component (which exists by
the arguments above) and the first edge x2y2 ∈Wf on the other side of b, i.e., after crossing the
bridge the second time. These edges are then rewired. If x2y2 was an edge in a leaf component
before, there are no further bridges connected to the boundary of f between x2 to y2 and we
continue the search for the next bridge that is incident to a leaf from y2, now again along the
boundary of f . Otherwise, we recursively search for the next bridge starting from x2 along the
boundary of f , and apply the rewiring. When we reach y2 again, the previously rewired edge
incident to y2 might be rewired again, however, at this point all bridges between x2 and y2 are
remedied. The search continues at y2 and finally stops at y1 at the latest. Then Bf consists of
a single node. Hence, this search and the rewiring can be done in linear time with respect to
the number of vertices incident to f .

Next, we extend Theorem 3 to this setting, allowing us to additionally enforce the planarity
condition for an assignment already satisfying the parity condition, the matching condition
and the biconnectivity condition. Similar to the proof of Corollary 1, it can be seen that the
rewiring performed in the proof of Theorem 3 does not invalidate the biconnectivity condition.
It reassigns vertices to other faces only if a face is assigned an insufficient number of additional
valencies, which only shortens long paths of degree-2 vertices but never reduces the number of
assigned valencies of a leaf component to zero or of a connected component below two. We thus
have the following corollary.
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Corollary 2. Let G be a planar maxdeg-3 graph with a fixed embedding and let A be a node
assignment satisfying the parity condition, the matching condition, and the biconnectivity con-
dition. Then a modified assignment A′ that additionally satisfies the planarity condition can be
computed from A in O(n) time.

The biconnectivity assignment graph. We now show how to test efficiently whether such
an augmentation exists. The idea is, as in the connected case, to consider a corresponding bicon-
nectivity assignment graph that models the additional requirements. Let G = (V,E) be a planar
maxdeg-3 graph with a fixed embedding. We construct the biconnectivity assignment graph G′′A
of G using similar techniques as for the connectivity assignment graph. In particular, we again
consider the partition of the vertices of V ? into the sets Vin with a fixed assignment and Vb that
may be assigned to two different faces, and the corresponding preliminary assignment Ã. We
note that unlike in the connectivity case, a graph that contains a non-empty triangle generally
does not admit a biconnected augmentation as one of the edges incident to such a triangle nec-
essarily forms a bridge. Hence if G admits a biconnected 3-regular augmentation, all triangles
are empty, and thus assigned by Ã.

Again the biconnectivity assignment graph G′′A = (V ′′, E′′) is formed on a superset V ′′ ⊇ Vb
of the vertices without a fixed assignment. We now describe an edge set Ef for each face f .
As before, the final interpretation will be that in the assignment induced by a (generalized)
perfect matching M of G′′A a vertex v ∈ Vb is assigned to f if and only if it is incident to an
edge in M ∩ Ef . If a face f is incident to a single connected component whose bridge forest
consists of a single node, we use the ordinary assignment graph, where Ef consists of edges
between all non-adjacent pairs of vertices from V ? incident to f . Now assume that f does not
have this property. To enforce the biconnectivity condition, we consider the leaf components
of f . For each leaf component L that does not contain vertices preassigned to f , we add a
dummy vertex vL,f with demand 1 and connect it to all vertices from Vb of L incident to f ; this
clearly enforces biconnectivity condition (2). Moreover, for each connected component of f that
contains a bridge this also enforces biconnectivity condition (1). If G is not connected, we add
for each connected component C that neither contains a bridge nor any vertices preassigned
to f , a dummy vertex vC,f with demand 2 and connect it to all vertices of C that are in Vb
and incident to f . Note that these components are no leafes by definition. Let cf denote the
number of valencies demanded by dummy vertices vC,f and `f the number of valencies demanded

by dummy vertices vL,f . We compute the demand d̃f of the preassigned vertices as in the

construction of the connectivity assignment graph. To satisfy this demand, at least d̃f − cf − `f
additional vertices from Vb need to be assigned to f . We thus set nf = max{d̃f − cf − `f , 0}.
To ensure this and the parity condition, we add a new dummy vertex vf with demand sf ,
where sf = nf if nf + ãf + cf + `f is even and sf = nf + 1, otherwise. Finally, we allow an
arbitrary even number of vertices of Vb incident to f to be matched by adding to Ef all edges

in
(Xf

2

)
, where Xf denotes the vertices in Vb incident to f . The connectivity assignment graph

in Figure 4 coincides with the biconnectivity assignment graph for the given graph, except for
the demands of vC1,f and vC2,f . They are set to 2 here, because the corresponding components
neither contain a bridge nor any preassigned vertices. Recall that, for reasons of clarity, the
edges between vertices of Vb incident to the face f are omitted.

Lemma 9. Let G be a maxdeg-3 graph with a fixed embedding and let G′′A be its biconnectivity
assignment graph. Then each perfect matching M of G′′A induces (together with the preliminary

assignment Ã) a node assignment that satisfies for each face the parity condition, the matching
condition, and the biconnectivity condition. Conversely, for each such node assignment A there
exists a perfect matching M of G′A that induces it.

Proof. Let M be a perfect matching and let A be the corresponding node assignment. For
faces f that are incident to a single connected component whose bridge graph consists of a
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single node, Ef is chosen as in the ordinary assignment graph, and thus A satisfies the parity
condition and the matching condition for f . The biconnectivity condition holds trivially for
these faces. Now assume that f is a face not having this property. Clearly, the demand of sf
ensures that an even number of valencies is assigned to f , and hence A satisfies the parity
condition. Moreover, the dummy vertices vC,f and vL,f explicity ensure the biconnectivity
condition. For the matching condition, recall that sf was chosen such that the demands of all
matching indicator sets consisting of vertices in Vin are satisfied. Thus, if there is a matching
indicator set whose demand is not satisfied, it would consist of vertices in Vb, and hence would
be a joker, a pair or a 3-cycle. Let T be such an indicator set. That the demands of jokers and
pairs are satisfied can be argued as in Lemma 8. If T is a 3-cycle, it forms a non-empty triangle
(as it would be preassigned otherwise), but then, as argued above, a biconnected augmentation
does not exists. Hence this case cannot occur, and the matching condition is satisfied.

Conversely let A be a node assignment satisfying the parity condition, the matching con-
dition, and the biconnectivity condition. We construct for each face f a matching Mf ⊆ Ef

satisfying exactly the demands of all vertices assigned to f and the dummy vertices associated
with f . If f is incident to a single connected component of G, and the bridge forest of this com-
ponent is a single node, a realization of A for f , which exists by Theorem 9, forms the desired
matching. Otherwise, the conditions satisfied by A imply that we can find enough vertices of Vb
assigned to f and match them to the dummy vertices associated with f . The choice of their
demands and the parity condition imply that the number of unmatched vertices in Vb assigned
to f is even, and they can be paired arbitrarily in G′′A to form Mf .

To decide biconnected FERA for a given maxdeg-3 graph on n vertices with a fixed em-
bedding, we thus first construct in O(n2) time the biconnectivity assignment graph G′′A and
compute in O(n2.5) time a perfect (generalized) matching in it. If such a matching does not
exist, then a biconnected augmentation does not exist by Theorem 9 (i). Otherwise, such a
matching induces a node assignment satisfying the parity condition, the matching condition,
and the biconnectivity condition by Lemma 9. Using Corollary 2, we modify it in O(n) time to a
node assignment additionally satisfying the planarity condition. A corresponding augmentation
can then be found in O(n2) time by Theorem 9(ii).

Theorem 10. Biconnected FERA can be solved in O(n2.5) time.

5 Proof of Completeness of Triconnected FERA

Theorem 11. Triconnected FERA is NP-complete, even if the input graph is already bicon-
nected.

Proof. Triconnected FERA is in NP since, given a planar graph G with a fixed embedding, we
can guess a set W ⊆

(
V
2

)
of non-edges of G and then test efficiently whether the graph G+W is

3-regular, planar, and triconnected, and that W respects the given embedding of G (the latter
can be checked using an algorithm due to Angelini et al. [3]). We prove NP-hardness by reducing
from the problem MonotonePlanar3Sat, which is known to be NP-hard [4]. It is a special
variant of Planar3Sat, which we use in the next section for the hardness proof of PRA. A
monotone planar 3Sat formula is a 3Sat formula whose clauses either contain only positive
or negative literals and whose variable–clause graph is planar. A monotone rectilinear repre-
sentation of a monotone planar 3Sat formula is a drawing of the variable–clause graph such
that the variables correspond to axis-aligned rectangles on the x-axis and clauses correspond
to non-crossing three-legged “combs” above the x-axis if they contain positive variables and
below the x-axis otherwise; see Fig. 7. An instance of MonotonePlanar3Sat is a monotone
rectilinear representation of a monotone planar 3Sat formula ϕ. We now construct a bicon-
nected graph Gϕ with a fixed planar embedding that admits a planar 3-regular triconnected
augmentation if and only if ϕ is satisfiable.
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Figure 7: Layout of a (monotone) planar 3Sat formula.

The graph Gϕ consists of so-called gadgets, that is subgaphs that represent the variables,
literals, and clauses of ϕ; see Fig. 8. For each gadget, we will argue that there are only a
few ways to augment it to be 3-regular, triconnected and planar. Note that our construction
connects variable gadgets corresponding to neighboring variables in the layout of the variable–
clause graph of ϕ. Hence Gϕ is always connected. Additionally, we identify the left boundary
of the leftmost variable gadget with the right boundary of the rightmost variable gadget. In the
figure vertices with degree less than 3 are highlighted by white disks. All bends and junctions
of line segments represent vertices of degree at least 3. Vertices of degree greater than 3 are
actually modeled by small cycles of vertices of degree 3, as indicated in the left of Fig. 8. The
(black thick and thin) solid line segments between adjacent vertices represent the edges of Gϕ;
the dotted line segments represent non-edges of Gϕ that are candidates for an augmentation
of Gϕ. Gaps in the thick black line segments of the literal gadgets indicate positions where
further subgraphs can be plugged in depending on the number of clauses containing the literal.

Each variable gadget consist of two symmetric parts, which correspond to the two literals.
These literal (sub)gadgets are separated by (thick) horizontal edges. The degree-2 vertex u is
incident to both literal gadgets. The thin triangle at the right side is called the parity triangle
(see Fig. 8). Each literal gadget contains a subgraph that is attached to the horizontal edges
separating the literals in only two vertices, which thus form a separator of size 2. We call
this subgraph the literal body. The literal body can be considered as a path of smaller (thin)
subgraphs connected by thick black edges. The thin subgraphs can be characterized as a triangle
at the front side (front triangle) that is based on another triangular shaped subgraph (triangle
basement) and further oppositely placed pairs of triangles. In Fig. 8 we exemplarily marked a
front triangle with its triangle basement and a pair of triangles. In the construction the number
of pairs of triangles in the literal body corresponds to the number of clauses containing the
literal. Note that w.l.o.g. we may assume that each literal appears in at least one clause. The
necessary number of pairs of triangles can be plugged in at the gap. The corresponding clauses
are attached to the outer boundary of the literal gadget, as exemplarily shown in Fig. 8. Each
attached clause thereby induces a pair of adjacent degree-2 vertices at the boundary that are
incident to the literal gadget and to the clause gadget. We call the corresponding valencies the
boundary valencies of the literal gadget. Thus, each literal gadget has twice as many boundary
valencies as clauses contain the literal.

Consider the graph G′ϕ that we obtain by deleting the literal bodies, contracting the parity
triangles and ignoring degree-2 vertices. We claim that G′ϕ is 3-vertex connected. This is
true since (a) the subgraph of G′ϕ induced by the variable gadgets is 3-connected and (b) each
subgraph induced by a clause gadget is also 3-connected and is attached to the former (variable
gadget) subgraph in twelve vertices. Hence, a 3-regular triconnected augmentation of Gϕ only
needs to care for the connectivity at the literal bodies and the parity triangles. Note that
Gϕ is already biconnected since it is obtained from a 3-connected graph by subdividing edges,
replacing degree-2 vertices by (parity) triangles and adding paths of biconnected subgraphs
(literal bodies) between existing endpoints. In the following we call a 3-regular, triconnected,
planar augmentation a valid augmentation. We show two properties of Gϕ:
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Figure 8: Variable gadget for variable x and clause gadget for clause (y ∨ x ∨ z) in graph Gϕ.
The augmentation (dotted edges) corresponds to the assignment x =ture, ¬x =false.

(P1) Let W denote a valid augmentation and x a variable gadget. Then for at least one literal
gadget in x the augmentation W assigns all boundary valencies to the incident literal face.

(P2) Given a literal L and a (sub)set of clauses containing L, there exists a valid augmentation
of the corresponding variable gadget that uses all boundary valencies of L apart from
those that are incident to the given clauses.

We start with (P1). Consider the exemplary variable gadget in Fig. 8. The valency of u
is incident to both literal (sub)gadgets, and hence, is either assigned to x or ¬x by a valid
augmentation. Without loss of generality, assume that u is assigned to x. The opposite case is
symmetric. The two degree-2 vertices in the triangle basement in ¬x are thus connected since
the inner face of the literal body provides no further valencies. Let ` denote the number of
clauses containing ¬x. The outer face of the literal body of ¬x is incident to 2(`+ 1) valencies;
` + 1 stem from the triangles at the literal body, ` are boundary valencies and one additional
valency is placed at the triangle to the right. We argue that the valencies at the triangles of
the literal body are not connected to each other by a valid augmentation. This is true since
such an edge would immediately induce a subgraph that is separated from the rest by only two
vertices; namely the vertices where the connected triangles are attached to the literal body.
Consequently, a valid augmentation must assign all ` boundary valencies of ¬x to the literal
face. The last valency, which is necessary due to the parity condition, is provided by the vertex
at the thick triangle to the right.

For the proof of (P2) consider again Fig. 8 and let (without loss of generality) x denote the
given literal. The number of clauses containing x is `, 0 ≤ s ≤ ` denotes the cardinality of the
given subset of the clauses containing x. In order to construct a valid augmentation W of the
variable gadget such that W uses exactly 2(` − s) boundary valencies of x, we connect u to a
valency in x. This induces an augmentation of ¬x as described in the proof of (P1). Note that
this augmentation makes the triangle basement in ¬x triconnected and all the triangles of the
literal body are connected to vertices outside the literal body, which also makes the literal body
triconnected. In the literal gadget for x the only vertex that can be connected to u belongs to
the triangle basement. Hence, the two remaining degree-2 vertices at the front side of the literal
body are also connected. Furthermore, we connect the valency at the parity triangle to the
only possible vertex at the opposite thick edge, which makes the parity triangle triconnected.
Finally, we choose the s upper pairs of triangles at the literal body and connect each by an
edge. In contrast to the proof of (P1) connecting opposite triangles at the literal body is feasible,
since the new edge incident to u ensures triconnectivity. The remaining 2(` − s) valencies at
the literal body can be obviously connected in a planar way to the 2(`− s) boundary valencies
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Figure 9: Part of the graph Gϕ for a SAT formula ϕ that contains the clause (x∨¬y ∨ z). The
augmentation (dotted edges) corresponds to the assignment x = y =false and z =true.

that are not incident to the given clauses, which finally ensures the triconnectivity of the whole
augmented variable gadget.

With the help of (P1) and (P2) it is now easy to show that if Gϕ admits a valid augmentation
then ϕ is satisfiable. Assume that W is a valid augmentation. Then W connects the two
degree-2 vertices of each clause to two boundary valencies of literal gadgets since connecting
those degree 2 to each other would yield a parallel edge. This selects a set of literal gadgets
in that sense that a gadget is selected if at least one of its boundary valencies is assigned to a
clause face. According to (P1) the boundary valencies of the negated literal gadget of a selected
gadget are all assigned to the literal face, and hence, a literal and its negation are never selected
at the same time. Thus, the literal selection induces a truth assignment of the variables, which
satisfies ϕ since each clause selects at least one (true) literal.

Conversely, we need to show that if ϕ is satisfiable then Gϕ admits a valid augmentation.
Assume we have a satisfying truth assignment for ϕ. For each clause, we choose exactly one
true literal L and connect the two degree-2 vertices of the clause to the two boundary valencies
of L that are incident to the clause gadget. This ensures triconnectivity at the former degree-2
vertices of the clause and the former degree-2 vertices providing the boundary valencies, and
thus, yields a valid augmentation of the clause gadgets. Recall that G′ϕ is already triconnected.
With the help of (P2) this can be finally extended to a valid augmentation of Gϕ.

6 Proof of Completeness of PRA

Theorem 1. PRA is NP-complete, even if the input graph is biconnected.

Proof. PRA is in NP since given a planar graph G we can guess a set W ⊆
(
V
2

)
of non-edges

of G and then test efficiently whether G+W is 3-regular and planar. We prove NP-hardness by
reducing from the problem Planar3Sat, which is known to be NP-hard [11]. The reduction
is inspired by and indeed very similar to a reduction of Rutter and Wolff [14], showing that it
is NP-hard to find a smallest edge set that augments a given graph to be 2-edge connected and
planar.

An instance of Planar3Sat is a 3Sat formula ϕ whose variable–clause graph is planar.
Such a graph can be laid out (in polynomial time) such that the variables correspond to pair-
wise axis-aligned rectangles on the x-axis and clauses correspond to non-crossing three-legged
“combs” above or below the x-axis [10]; see Fig. 7. We now construct a biconnected planar
graph Gϕ that admits a planar 3-regular augmentation if and only if ϕ has a satisfying truth
assignment.
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The graph Gϕ again consists of gadgets, which are subgaphs that represent the variables,
literals, and clauses of ϕ; see Fig. 9. For each gadget, we will argue that there are only a
few ways to embed and augment it to be 3-regular and planar. Note that our construction
connects variable gadgets corresponding to neighboring variables in the layout of the variable–
clause graph of ϕ. Hence Gϕ is always connected. Additionally, we identify the left boundary
of the leftmost variable gadget with the right boundary of the rightmost variable gadget. In
the figure vertices with degree less than 3 are highlighted by small black disks. All bends and
junctions of line segments represent vertices of degree at least 3. Vertices of degree greater
than 3 are actually modeled by small cycles of vertices of degree 3, as indicated in the left of
Fig. 9. The (black and dark gray) solid line segments between adjacent vertices represent the
edges of Gϕ; the thick dotted line segments represent non-edges of Gϕ that are candidates for
an augmentation of Gϕ. The set of solid black edges forms a subgraph of Gϕ that we call the
frame. The dark gray solid edges form free chains, which connect two degree-2 vertices to the
frame. Consider the graph G′ϕ that is obtained from the frame by contracting all vertices of
degree 2 and all cycles that are used to model vertices of degree greater than 3. The graph G′ϕ
coincides with the one used by Rutter and Wolff in their reduction [14], and they show that it
is 3-connected, and thus has a unique planar embedding [17].

Since subdividing edges and replacing a vertex of degree at least 4 by a cycle preserves
3-connectedness, the frame has a unique embedding as well. In other words, the embedding
of Gϕ is fixed up to embedding the free chains, which may be embedded in two distinct faces,
each.

A 3-regular planar augmentation of Gϕ yields an embedding of Gϕ and an assignment of
the degree-2 vertices of Gϕ to incident faces (a vertex v is assigned to the face f if in the planar
embedding of G+W the edge of W incident to v is embedded in the (former) face f) such that

(P1) each face is assigned an even number of vertices,

(P2) each face that is assigned two adjacent vertices is assigned at least four vertices.

We call such an assignment of degree-2 vertices to faces valid. Conversely, it is readily seen that
given a valid assignment, a planar 3-regular augmentation can always be constructed. We thus
need to show that if Gϕ admits an embedding with a valid assignment, then ϕ is satisfiable.

Our variable gadget consists of two rows of square faces where the horizontal edge between
the two leftmost faces and the horizontal edge between the two rightmost faces is missing. Ef-
fectively, the inner faces of a variable box form a cycle. Starting from the leftmost (rectangular)
face, we call the faces odd and even. Each interior vertical edge is subdivided by a degree-2
vertex. Due to property (P1), these subdivision vertices must either all be assigned to the odd
faces or all to the even faces of the variable. If the vertices are assigned to the even faces, then
the corresponding variable is true, and vice versa.

A literal gadget consists of a square face that lies immediately above or below the variable
gadget. A positive literal (such as the one labeled with x in Fig. 9) is attached to an even face,
a negated literal (such as the one labeled with ¬y in Fig. 9) is attached to an odd face. A literal
gadget contains two adjacent subdivision vertices at the edge it shares with the clause gadget,
and a free chain containing two adjacent vertices of degree 2. The latter is attached to the
boundary shared by the literal gadget with the variable gadget. Due to property (P2) the free
chain must either be embedded inside the literal gadget and all incident degree-2 vertices are
assigned to the face of the literal gadget, or the chain is embedded inside the attached variable
gadget and the two subdivision vertices are assigned to the adjacent clause gadget. Again due
to property (P2) the free chain must be embedded inside the literal gadget if no vertices are
assigned to the adjacent face of the variable gadget. In this case the literal has the value false.
If two vertices are assigned to the adjacent face of the variable gadget, the free chain can (but
does not have to) be embedded inside the variable and the two subdivision vertices are assigned
to the clause.
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Finally, each clause gadget consists of a single rectangular face that contains two adjacent
subdivision vertices. If Gϕ admits an embedding with a valid assignment, then, due to prop-
erty (P2), at least two other degree-2 vertices are assigned to the clause gadget face. This means
that for each clause gadget, the two subdivision vertices of at least one literal are assigned to
the clause gadget. In other words, at least one of the literals that make up the clause is true.
Hence, ϕ has a satisfying truth assignment.

Conversely, it is easy to see that if ϕ has a satisfying truth assignment, then an embedding
with a corresponding assignment can be found. We use a constant number of vertices and
edges for each literal and clause gadget, thus our reduction—including the computation of
the embedding of the variable–clause graphs—is polynomial. Moreover, since the graph Gϕ

is obtained from a 3-connected graph by subdividing edges and adding some paths between
existing endpoints, the graph Gϕ is biconnected.

7 Conclusion

In this paper we have given efficient algorithms for deciding whether a given planar graph with
a fixed embedding admits a 3-regular planar augmentation. We note that the running time of
O(n2.5) is due to the potentially quadratic size of our assignment graphs. Recently, we succeeded
in constructing equivalent assignment graphs with only O(n) edges. This immediately improves
the running time of all our algorithms to O(n1.5).
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