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1 Introduction

Transmission conditions between subdomains have a substantial influence on the
convergence of iterative domain decomposition algorithms. For Maxwell’s equa-
tions, transmission conditions which lead to rapidly converging algorithms have
been developed both for the curl-curl formulation of Maxwell’s equation, see
[2, 3, 1], and also for first order formulations, see [7, 6]. These methods have well
found their way into applications, see for example [9] and the references therein.
It turns out that good transmission conditions are approximations of transparent
boundary conditions. For each form of approximation chosen, one can try to find the
best remaining free parameters in the approximation by solving a min-max problem.
Usually allowing more free parameters leads to a substantially better solution of the
min-max problem, and thus to a much better algorithm. For a particular one param-
eter family of transmission conditions analyzed in [4], we investigate in this paper
a two parameter counterpart. The analysis, which is substantially more complicated
than in the one parameter case, reveals that in one particular asymptotic regime there
is only negligible improvement possible using two parameters, compared to the one
parameter results. This analysis settles an important open question for this family of
transmission conditions, and also suggests a direction for systematically reducing
the number of parameters in other optimized transmission conditions.
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2 Schwarz Methods for Maxwell’s Equations

We consider in this paper a boundary value problem associated to three time-
harmonic Maxwell equations with an impedance condition on the boundary of the
computational domain Ω ,

−iωεE+ curl H−σE = J, iωµH+ curl E = 0, Ω
Bn(E,H) := n× E

Z +n× (H×n) = s, ∂Ω .
(1)

with E,H being the unknown electric and magnetic fields and ε,µ,σ being respec-
tively the electric permittivity, magnetic permeability and the conductivity of the
propagation medium and n the outward normal to ∂Ω .
A family of Schwarz methods for (1) with a possibly non-overlapping decompo-
sition of the domain Ω into Ω1 and Ω2, with interfaces Γ12 := ∂Ω1 ∩ Ω2 and
Γ21 := ∂Ω2 ∩Ω1, is given by

−iωεE1,n+curl H1,n−σE1,n = J in Ω1,
iωµH1,n + curl E1,n = 0 in Ω1,

(Bn1+S1Bn2)(E1,n,H1,n) = (Bn1+S1Bn2)(E2,n−1,H2,n−1) on Γ12,
−iωεE2,n+curl H2,n−σE2,n = J in Ω2,

iωµH2,n + curl E2,n = 0 in Ω2,
(Bn2+S2Bn1)(E2,n,H2,n) = (Bn2+S2Bn1)(E1,n−1,H1,n−1) on Γ21,

(2)

where S j, j = 1,2 are tangential operators. For the case of constant coefficients and
the domain Ω =R2, with the Silver-Müller radiation condition limr→∞ r (H×n−E)=
0 and the two subdomains Ω1 = (0,∞)×R, Ω2 = (−∞,L)×R, L ≥ 0, the following
convergence result was obtained in [4] using Fourier analysis:

Theorem 1. For σ > 0, if S j , j = 1,2 have the constant Fourier symbol

σ j = F (S j) =− s− iω̃
s+ iω̃

, ω̃ = ω
√

εµ, s ∈ C, (3)

then the optimized Schwarz method (2), has the convergence factor

ρ(k, ω̃,Z,σ ,L,s) =

�����

�√
k2 − ω̃2 + iω̃σZ − s√
k2 − ω̃2 + iω̃σZ + s

�
e−

√
k2−ω̃2+iω̃σZL

����� . (4)

In order to obtain the most efficient algorithm, we choose σ j, j = 1,2 such that ρ is
minimal over the range of numerical frequencies k ∈ K = [kmin,kmax], e.g. kmin = 0
and kmax = C

h with h the mesh size and C a constant. We look for s of the form
s = p+ iq, such that (p,q) is solution of the min-max problem

ρ∗ := min
p,q≥0

�
max
k∈K

ρ(k, ω̃,Z,σ ,L, p+ iq))
�
. (5)
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In [4] we have solved this min-max problem for the case p = q without overlap, and
we have obtained the following result:

Theorem 2. For σ > 0 and L = 0, the solution of the min-max problem (5) with
p = q is for h small given by

p∗ =
(ωσ µ)

1
4
√

C

2
1
4
√

h
and ρ∗

1 = 1− 2
3
4 (ωσ µ)

1
4
√

h√
C

+O(h). (6)

For the overlapping case, we obtained in [8]:

Theorem 3. For σ > 0 and L = h, a local minimum of the min-max problem (5) with
p = q is for h small given by

p∗ =
(2ωσ µ) 1

3

2h
1
3

and ρ∗
1L = 1−2

7
6 (ωσ µ)

1
6 h

1
3 +O(h

2
3 ). (7)

3 Analysis of the two parameter family of transmission
conditions

As before, we set kmin = 0, kmax =
C
h and denote by (p∗,q∗) a local minimum of (5).

We first consider the non-overlapping case.

Theorem 4. For σ > 0 and L = 0, a local minimum (p∗,q∗) of (5) is for h small
given by

p∗ =
3

3
8 (ωσ µ) 1

4
√

C

2
3
4
√

h
, q∗ =

3
7
8 (2ωσ µ) 1

4
√

C
6
√

h
, ρ∗

2 = 1− 3
3
8 (2ωσ µ) 1

4
√

h√
C

+O(h).

(8)

Proof. By solving the min-max problem (5) numerically for different parameter
values and different mesh sizes h, we observe that the solution of (5) equioscillates
once, i.e. (p∗,q∗) is solution of

ρ(k̄, ω̃,σ ,Z,0, p∗+ iq∗) = ρ(kmax, ω̃,σ ,Z,0, p∗+ iq∗), (9)

where k̄ is an interior local maximum of ρ . We also observe the asymptotic behavior

k̄ ∼ C̄, p∗ ∼Cph−
1
2 , q∗ ∼Cqh−

1
2 .

In order to determine the constants C̄, Cp and Cq, it is necessary to have three equa-
tions. The first is (9), the second describes the interior local maximum of ρ in k,

∂ρ
∂k

(k̄, ω̃,σ ,Z,0, p∗+ iq∗)) = 0,
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and the third is the necessary condition for a local minimum of the min-max prob-
lem,

dρ
dq (kmax, ω̃,σ ,Z,0, p∗+ iq∗) =

∂ρ
∂q (kmax, ω̃,σ ,Z,0, p∗+ iq∗)+ ∂ρ

∂ p (kmax, ω̃,σ ,Z,0, p∗+ iq∗) ∂ p
∂q = 0.

Since dρ
dq (kmax, ω̃,σ ,Z,0, p∗+ iq∗) = dρ

dq (k̄, ω̃,σ ,Z,0, p∗+ iq∗) a similar expansion
together with the previous one, gives

∂ p
∂q

=−
∂ρ
∂q (kmax, ω̃,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂q (k̄, ω̃,σ ,Z,0, p∗+ iq∗)
∂ρ
∂ p (kmax, ω̃,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂ p (k̄, ω̃,σ ,Z,0, p∗+ iq∗)
,

and thus asymptotically, the three equations lead to the system

(
�

A1 +C̄2 − ω̃2)(ACp +BCq)−2
�

A1BCq = 0,

2Cp(C2
p +C2

q)−C(BCp +ACq) = 0,

A(C2
q −C2

p)+2CpCqB = 0,

where A =
�

2
√

A1 −A2, B =
�

2
√

A1 +A2, A1 = C̄4 − 2(C̄ω̃)2 + ω̃4 + (ω̃σZ)2

and A2 = 2(C̄2 − ω̃2). The solution of this system is

C̄ =

�
ω̃
�
−Zσ

√
3+3ω̃

�

√
3

, Cp =
3

3
8 (ω̃σZ)

1
4
√

C

2
3
4

, Cq =
3

7
8 (2ω̃σZ)

1
4
√

C
6

,

from which (8) follows. It remains to show that (p∗,q∗) is a local minimum, i.e. for
any variation (δ p,δq) and k ∈ {k̄,kmax}, we must have

ρ(k, ω̃,σ ,Z,0, p∗+δ p+ i(q∗+δq))≥ ρ(k, ω̃,σ ,Z,0, p∗+ iq∗).

By the Taylor formula, it suffices to prove that there is no variation (δ p,δq) such
that for k ∈ {k̄,kmax}

δ p
∂ρ
∂ p

(k, ω̃,σ ,Z,0, p∗+ iq∗)+δq
∂ρ
∂q

(k, ω̃,σ ,Z,0, p∗+ iq∗)< 0. (10)

We prove this by contradiction, and it is necessary to obtain the next higher order
terms in the expansions of p∗, q∗ and k̄. After a lengthy computation, we find that
asymptotically

k̄ ∼ C̄+C̃h, p∗ ∼Cph−
1
2 +C̃ph

3
2 , q∗ ∼Cqh−

1
2 +C̃qh

1
2 .

The computation of these new three constants allows us to obtain the partial deriva-
tives of ρ
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∂ρ
∂ p (k̄)∼

2
C h, ∂ρ

∂q (k̄)∼− 3
1
4 (2ωσ µ)

1
2

C2 h2,

∂ρ
∂ p (kmax)∼− 2

C h, ∂ρ
∂q (kmax)∼ 3

1
4 (2ωσ µ)

1
2

C2 h2.

Introducing these results into (10), we get δ p 2
C h−δq 3

1
4 (2ωσ µ)

1
2

C2 h2 < 0 and -δ p 2
C h+

δq 3
1
4 (2ωσ µ)

1
2

C2 h2 < 0, clearly a contradiction, and thus (p∗,q∗) is a local minimum.

We see that for h small, both the one parameter and two parameter transmission
conditions can be written as ρ∗

1 = 1−α1
√

h+O(h) and ρ∗
2 = 1−α2

√
h+O(h).

The ratio α2
α1

is equal to 3
3
8 /
√

2 ≈ 1.067, which shows that the convergence factors
are almost equal. Hence the hypothesis p = q, used in [4] to simplify the analysis,
is justified.

We treat now the overlapping case of (5), with an overlap of one mesh size.

Theorem 5. For σ > 0 and L = h, a local minimum (p∗,q∗) of (5) is for h small
given by

p∗ =
3

1
2 (ωσ µ) 1

3

2
4
3 h

1
3

, q∗ =
(ωσ µ) 1

3

2
4
3 h

1
3

, ρ∗
2L = 1−2

5
6 3

3
8 (ωσ µ)

1
6 h

1
3 +O(h

2
3 ). (11)

Proof. As in the proof of Theorem 4, we first observe numerically that the solution
of (5) equioscillates once, i.e. (p∗,q∗) is solution of

ρ(k̄1, ω̃,σ ,Z,h, p∗+ iq∗) = ρ(k̄2, ω̃,σ ,Z,h, p∗+ iq∗),

where k̄1 and k̄2 are interior local maxima of ρ , and we obtain asymptotically for h
small

k̄1 ∼Cb1 , k̄2 ∼Cb2h−
2
3 , p∗ ∼Cph−

1
3 and q∗ ∼Cqh−

1
3 .

It remains to find Cb1 , Cb2 , Cp and Cq. Proceeding as before, we obtain four equations
from the necessary conditions of a minimum, with solution

Cp =
3

1
2 (2ωσ µ) 1

2

2
,Cq =

Cp√
3
,Cb1 =

�
ω̃
�
−Zσ

√
3+3ω̃

�

√
3

,Cb2 =
�

2Cp,

which leads to (11). To prove that (p∗,q∗) is a local minimum, proceeding as before,
we obtain after a lengthy computation the higher order expansion

k̄1 ∼Cb1 +C̃b1 h
2
3 , k̄2 ∼Cb2h−

2
3 +C̃b2 , p∗ ∼Cph−

1
3 +C̃ph

1
3 ,q∗ ∼Cqh−

1
3 +C̃qh

1
3 .

The computation of these four new constants allows us then to obtain the partial
derivatives of ρ ,
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∂ρ
∂ p (k̄1)∼ 8·2

1
6 h

2
3

3
1
4 (ωσ µ)

1
6
, ∂ρ

∂q (k̄1)∼− 2·2
5
6 (ωσ µ)

1
6 h

4
3

3
1
4

,

∂ρ
∂ p (k̄2)∼− 4·2

1
6 h

2
3

3
1
4 (ωσ µ)

1
6
, ∂ρ

∂q (k̄2)∼ 2
5
6 (ωσ µ)

1
6 h

4
3

3
1
4

.
(12)

In order to reach a contradiction, we assume again there exists, by the Taylor theo-
rem, a variation (δ p,δq) such that δ p ∂ρ

∂ p (k, ω̃,σ ,Z,h, p∗+iq∗)+δq ∂ρ
∂q (k, ω̃,σ ,Z,h, p∗+

iq∗)< 0, for k ∈ {k̄1,k2}. Using (12), we get 8 2
1
6 h

2
3

3
1
4 (ωσ µ)

1
6

δ p−2 2
5
6 (ωσ µ)

1
6 h

4
3

3
1
4

δq < 0

and −4 2
1
6 h

2
3

3
1
4 (ωσ µ)

1
6

δ p+ 2
5
6 (ωσ µ)

1
6 h

4
3

3
1
4

δq < 0, clearly a contradiction, and thus (p∗,q∗)

is a local minimum.

We also observe in this case that for h small, both convergence factors can be written
as ρ∗

1L = 1−α1L h
1
3 +O(h

2
3 ) and ρ∗

2L = 1−α2Lh
1
3 +O(h

2
3 ), and the ratio α2L

α1L
is equal

to 3
1
4 /2

1
3 ≈ 1.044, hence both convergence factors are almost equal. We show an

example of these convergence factors in Figure 1.
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Fig. 1 Convergence factor comparison of algorithms with one and two parameters for ω = 2π ,
σ = 2 and µ = ε = 1, for the non-overlapping case, L = 0, on the left, and the overlapping case,
L = h = 1

100 , on the right

4 Numerical results

We present now a numerical test in order to compare the performance of both the
one and two parameter algorithms. We compute the propagation of a plane wave
in a heterogeneous medium. The domain is Ω = (−1,1)2. The relative permittivity
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and the conductivity of the background media is ε1 = 1.0 and σ1 = 1.8, while that of
the square material inclusion is ε2 = 8.0 and σ2 = 7.5, see the left picture of Fig. 2.
The magnetic permeability µ is constant in Ω and we impose on the boundary an
incident field (Hinc

x ,Hinc
y ,Einc

z ). The domain Ω is decomposed into two subdomains
Ω1 = (−1,L)× (−1,1) and Ω2 = (0,1)× (−1,1); L is the overlapping size and is
equal to the mesh size. We use, in each subdomain, a discontinuous Galerkin method
(DG) with a uniform polynomial approximation of order one, two and three, denoted
by DG-P1, DG-P2 and DG-P3, see [5]. The results are shown in Fig. 3, and are in
good agreement with our analytical results.

Y

X

e1

e2

 ( inc
,E H

inc)

Fig. 2 Configuration of our test problem on the left, and the numerical solution on the right
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One parameter : DG−P2
One parameter : DG−P3
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O(h−1/3)

Fig. 3 Number of iterations against the mesh size h, to attain a relative residual reduction of 10−8



12 M. El Bouajaji, V. Dolean, M. J. Gander and S. Lanteri

5 Conclusion

We compared in this paper a one and a two parameter family of transmission condi-
tions for optimized Schwarz methods applied to Maxwell’s equations. Our asymp-
totic analysis reveals that the addition of a second parameter does not lead to a
significant improvement of the algorithm, and it is therefore justified to consider
only the simpler case of a one parameter family of transmission conditions. These
results are also confirmed by our numerical experiments.
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