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1 Introduction

For a bounded open subset Ω ⊂ R2, suppose we want to solve

(η −Δ)u= f on Ω , u= g on ∂Ω (1)

for η ≥ 0 using the optimized Schwarz method (OSM)

(η −Δ)uki = f |Ωi
on Ωi, uki = g|∂Ωi

on ∂Ωi∩∂Ω

∂uki
∂ni

+ pi ju
k
i =

∂uk−1
j

∂ni
+ pi ju

k−1
j on Γi j for all Γi j �= /0

(2)

for k = 1,2, . . . and i = 1, . . . ,n, where Ωi ⊂ Ω are non-overlapping subdomains,
Γi j = ∂Ωi ∩Ω j is the interface between Ωi and an adjacent subdomain Ω j, j �= i,
and pi j > 0 are Robin parameters along Γi j. In [7], the powerful technique of energy
estimates is used to show convergence of (2) for η = 0 under very general settings.
Similar techniques have been used to prove convergence results for other types of
equations, cf. [2] for the Helmholtz equation and [5] for the time-dependent wave
equation. While one often assumes that the proof carries over trivially to finite-
element discretizations, it has been reported in the literature (cf. [9, 8]) that discrete
OSMs can diverge when the domain decomposition contains cross points, i.e., when
more than two subdomains share a common point. This is in apparent contradiction
with Lions’ proof, and such difficulties contribute to the limited use of OSMs in
practice. The goal of this paper is to explain why the presence of cross points makes
it possible for the discrete OSM to diverge despite the proof of convergence at the
continuous level, and why this difference in behavior is generally unavoidable.

The remainder of the paper proceeds as follows. In Section 2, we recall Lions’ en-
ergy estimate argument. In Section 3, we explain why it is impossible to convert the
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continuous energy estimate into a discrete one in a generic way, without sacrificing
continuity of the solutions across subdomain boundaries. In section 4, we mention
two modifications that preserve continuity of the discrete solutions, but both must be
used with Krylov methods to avoid divergent iterations. Finally, we show in Section
5 that a Lions-type discrete estimate can only hold under very stringent conditions;
thus, continuous estimates generally do not predict the behavior of discrete OSMs.

2 Continous Energy Estimates

We briefly recall the argument in [7] proving the convergence of (2). We assume
pi j = p ji to be a positive function that is bounded away from zero and defined on
Γi j = Γji. To show that (2) converges for all initial guesses, we first write the error
equations

(η −Δ)eki = 0 on Ωi, eki = 0 on ∂Ω ∩∂Ωi,

∂eki
∂ni

+ pi je
k
i =

∂ek−1
j

∂ni
+ pi je

k−1
j on Γi j for all Γi j �= /0,

(3)

where ei = uki −u|Ωi
with u being the exact solution to (1). We then multiply the first

equation in (3) by eki and integrate to get

0= ai(e
k
i ,e

k
i )−

�

∂Ωi

eki
∂eki
∂ni

= ai(e
k
i ,e

k
i )− ∑

(i, j)∈E

�

Γi j
eki

∂eki
∂ni

,

where the last sum is over all pairs of subdomains (i, j) that share an interface, and
ai(ui,vi) =

�
Ωi
(∇u ·∇v+ηuv)dx is the energy bilinear form defined on subdomain

Ωi, so that ai(e
k
i ,e

k
i ) =

�
Ωi

η |eki |
2+ |∇eki |

2 dx ≥ 0 is the energy of the error on sub-
domain Ωi. We now rewrite the product term as

eki
∂eki
∂ni

=
1

4pi j

��∂eki
∂ni

+ pi je
k
i

�2
−
�
−

∂eki
∂ni

+ pi je
k
i

�2
�

=:
�
Tk
+i j

�2
−
�
Tk
−i j

�2
,

where Tk
±i j =

1√
4pi j

(±
∂eki
∂ni

+ pi je
k
i ). Since

∂ekj
∂ni

=−
∂ekj
∂n j

on Γi j, the interface condition

in (3) can be written as Tk
+i j = Tk−1

− ji , which means

ai(e
k
i ,e

k
i ) = ∑

(i, j)∈E

�

Γi j

��
Tk
+i j

�2
−
�
Tk
−i j

�2
�
ds= ∑

(i, j)∈E

�

Γi j

��
Tk−1
− ji

�2
−
�
Tk
−i j

�2
�
ds.

Thus,

ai(e
k
i ,e

k
i )+ ∑

(i, j)∈E

�

Γi j

�
Tk
−i j

�2
ds= ∑

(i, j)∈E

�

Γi j

�
Tk−1
− ji

�2
ds. (4)

If we sum (4) through all subdomains i, we get

N

∑
i=1

ai(e
k
i ,e

k
i )+

N

∑
i=1

∑
(i, j)∈E

�

Γi j

�
Tk
−i j

�2
ds=

N

∑
i=1

∑
(i, j)∈E

�

Γi j

�
Tk−1
− ji

�2
ds. (5)
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We can now sum (5) over k and simplify to get

K

∑
k=0

N

∑
i=1

ai(e
k
i ,e

k
i )+BK = B0, (6)

where Bk := ∑N
i=1 ∑(i, j)∈E

�
Γi j

�
Tk
−i j

�2
ds ≥ 0. Since BK ≥ 0 and each ai(e

k
i ,e

k
i ) ≥ 0,

we see that ∑K
k=0 ai(e

k
i ,e

k
i ) ≤ B0 for all i and all K; hence ai(e

k
i ,e

k
i ) → 0 as k → ∞

for all i. This implies that �eki �H1(Ωi)
→ 0 when η > 0, so ui → u|Ωi

in the H1 norm.
A similar argument holds for η = 0. Note that the possible presence of cross points
does not cause any difficulty in the proof, since they form a subset of measure zero
in ∂Ωi and thus do not contribute to the boundary terms when integrating by parts.

3 Finite Element Discretization

We now try to mimic Lions’ proof in the finite element case. The finite element
method uses the weak form of (2), i.e., we must multiply the PDE by a test function
φ and integrate by parts. The problem becomes

Find ui ∈Vh ⊂ H1(Ωi) s.t. for all φ ∈Wh ⊂ H1
0 (Ω)∩H1(Ωi),

�

Ωi

(∇φ ·∇uki +ηφuki )−
�

∂Ωi

φ
∂uki
∂ni

=
�

Ωi

φ f . (7)

We now suppose that φ is a basis function corresponding to a degree of freedom
along Γi j, whose support does not contain any cross points, see Figure 1(a). To

obtain an expression for
�

∂Ωi
φ

∂uki
∂ni

, we multiply the interface condition by φ and
integrate to get �

Γi j
φ(

∂uki
∂ni

+ puki ) =
�

Γi j
φ(

∂uk−1
j

∂ni
+ puk−1

j ). (8)

Substituting into (7) gives

ai(φ ,u
k
i )+

�

Γi j
φ puki −

�

Γi j
φ

∂uk−1
j

∂ni
=

�

Ωi

φ f +
�

Γi j
φ puk−1

j . (9)

Thus, we are faced with the same problem of finding an expression of
�

Γi j
φ

∂uk−1
j

∂ni
.

Fortunately, we can use the weak form of the PDE from Ω j

a j(φ ,u
k−1
j )−

�

∂Ω j

φ
∂uk−1

j

∂n j
=

�

Ω j

φ f . (10)

Since ni =−n j on Γi j, adding (9) and (10) and rearranging gives

ai(φ ,u
k
i )+

�

Γi j
φ puki =

�

Ωi

φ f −a j(φ ,u
k−1
j )+

�

Γi j
φ puk−1

j , (11)

which is just the usual block-Jacobi splitting of the stiffness matrix along Γi j.
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(a) (b)

Fig. 1 Finite element discretization (a) without cross points and (b) with a cross point.

Now assume that the support of φ contains cross points, see Figure 1(b). Here
Ωi is adjacent to two distinct subdomains Ω j and Ωl , j �= l, and φ is non-zero on
all three subdomains. Since the two parts of the interface, Γi j and Γil , must satisfy

different interface conditions, we must separate
�

∂Ωi
φ

∂uki
∂n into contributions along

Γi j and Γil ,

ai(φ ,u
k
i )−

�

Γi j
φ

∂uki
∂ni

−
�

Γil

φ
∂uki
∂ni

=
�

Ωi

φ f ,

where the two boundary terms can be replaced using the interface conditions

�

Γi j
φ(

∂uki
∂ni

+ puki ) =
�

Γi j
φ(

∂uk−1
j

∂ni
+ puk−1

j ),

�

Γil

φ(
∂uki
∂ni

+ puki ) =
�

Γil

φ(
∂uk−1

l

∂ni
+ puk−1

l ).

But now we cannot use the PDE on Ω j and Ωl to eliminate the terms
�

Γi j
φ

∂uk−1
j

∂ni

and
�

Γil
φ

∂uk−1
l

∂ni
, since the PDE on Ω j will involve the Robin trace of u j with another

subdomain that is not Ωi, and similarly for Ωl . Thus, it is impossible to discretize
(2) without introducing extra unknowns to represent the combined Robin traces (in-
tegrated against a test function) for each subdomain at the cross point. Note that,
unlike in the continuous setting, the discrete Robin traces are integrated along a
subset of ∂Ωi of non-zero measure straddling both interfaces Γi j and Γil , and piece-
wise interface quantities are not available. Thus, the traces cannot be transmitted
separately along Γi j and Γil , unlike in the continuous case.

One way of circumventing the problem is to use mortar methods [1, 6], which
are designed for non-conforming grids. In these methods, the interface conditions
are imposed using mortar functions, which have one fewer degree of freedom at
the ends of intervals. Thus, there is no equation at the cross point, and the problem
of unavailable Robin traces goes away. However, since the interface conditions are
only enforced weakly, the method does not generally converge to the exact solution
of the global FEM problem, but rather to a discontinuous solution (Figure 2) that is
O(hp)-accurate, where p is the order of the finite element method.
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Fig. 2 (a) The solution of −Δu = f with four subdomains on Ω = [−1,1]2, with right-hand side
f (x,y) = sin(xy). The interface conditions are imposed using a mortar space. (b) Discontinuity of
the composite solution near the origin.

4 Two Lagrange Multiplier and Primal-Dual Methods

If we want to formulate subdomain problems that are equivalent to the discrete
global FEM problem, we need to introduce extra variables to represent the total
Robin traces. Thus, at the cross point, we impose for each Ωi

ai(φ ,u
k
i )+

�

∂Ωi

pφ ·uki +λ k
i =

�

Ωi

φ f , (12)

where λ k
i are Lagrange multipliers for ensuring consistency with the global problem.

A cross point touching r subdomains requires r such Lagrange multipliers, so we
also need r constraints to be satisfied at convergence:

• Continuity constraints (r−1 equations): at the cross point, we must have u1 =
u2 = · · ·= ur.

• PDE constraint (1 equation): if we sum (12) over the r subdomains and then
subtract the global PDE ∑r

i=1 ai(φ ,ui) =
�

Ω φ f from the result, we get

N

∑
i=1

�

∂Ωi

pφui+
N

∑
i=1

λi = 0.

This gives two types of algorithms:

1. Primal-Dual methods: the continuity constraints are enforced for every iteration.
Thus, it suffices to introduce one extra variable (typically a coarse-grid basis
function that has the value one at the cross point), and the PDE constraint is
used as part of the coarse problem. This approach is similar to FETI-DP [3],
except it is usually formulated with Neumann rather than Robin traces.

2. Two-LagrangeMultiplier methods: the λ k
i are retained, but the uki are eliminated

using the PDE in the interior of the subdomain. This leads to a substructured
problem formulated on the interface, which is then solved using a precondi-
tioned Krylov method such as GMRES. This is known as the Two-Lagrange
Multiplier (2LM) method and has been studied in detail in [8].
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Fig. 3 Eigenvalues of the 2LM-preconditioned system for Poisson’s equation (η = 0), using a
4×4 decomposition of the unit square with mesh size h = 1/64 and Robin parameter p =C/

√
h

for all interface nodes.

Note that neither formulation is an exact discretization of (2) at cross points; thus,
Lions’ convergence analysis does not apply there. In fact, one can show [4] that the
eigenvalues of the iteration matrix of the 2LM method may lie outside the unit disc
when cross points are present, as seen in the 4× 4 example shown in Figure 3. In
such cases, the method would diverge. However, convergence can be restored if one
uses Robin parameters with a different scaling at the cross points [4].

5 Conditions for Existence of Discrete Energy Estimates

To see what conditions are needed for Lions’ estimates to hold in the discrete case,
let us consider solving −Δu = f on Ω = [−1,1]2 using P1 finite elements on a
structured triangular mesh. This yields the system Au= f , where A is identical to the
matrix obtained from finite differences. If we now divide Ω into four subdomains
corresponding to the four quadrants of the plane, then an optimized Schwarz method
must solve

(Ai+Li)u
k
i = gki on each Ωi.

Here, Ai is the partially assembled stiffness matrix for Ωi, Li corresponds to trans-
mission conditions, and gki is a function of f and uk−1

j for j �= i. To define the dis-
crete error function, let us write u∗i = u∗|Ωi

, where u∗ is the exact solution to Au= f .
Then the error on Ωi is e

k
i = uki −u∗i , with discrete energy ai(e

k
i ,e

k
i ) = (eki )

TAie
k
i > 0

whenever eki �= 0, since each subdomain touches a Dirichlet boundary. Now observe
that

Aie
k
i = Aiu

k
i −Aiu

∗
i = Aiu

k
i − fi at interior nodes.

Since the stencils of Ai and A coincide at interior nodes, we see that Aie
k
i must be

zero away from the interfaces. Thus, we in fact have

ai(e
k
i ,e

k
i ) = ∑

v∈∂Ωi\∂Ω

eki (v) · (Aie
k
i )(v) = ∑

v∈∂Ωi\∂Ω

[(Tk
+i(v))

2− (Tk
−i(v))

2],
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where Tk
±i(v) are the “Robin traces” at an interface point v:

Tk
+i(v) =

1√
4p

�
(Aie

k
i )(v)+ peki (v)

�
, Tk

−i(v) =
1√
4p

�
−(Aie

k
i )(v)+ peki (v)

�
.

Hence, if we let Tk
+i(v) = Tk−1

− j (v) at every point v on the interface, then the energy
estimate holds exactly the same way as in the continuous case, and we have conver-
gence of the method. This allows us to deduce the correct interface conditions for v
away from the cross point. Using the definition eki = uki −u∗i , we have

(Ai(u
k
i −u∗i ))(v)+ p(uki (v)−u∗i (v)) =−(Aj(u

k−1
j −u∗j))(v)+ p(uk−1

j (v)−u∗j(v)).
(13)

But since
(Aiu

∗
i )(v)+(Aju

∗
j)(v) = f (v), (14)

we can simplify (13) to get

(Aiu
k
i )(v)+ puki (v) = f (v)− (Aju

k−1
j )(v)+ puk−1

j (v).

In other words, we need

(Liu
k
i )(v) = puki (v), gki (v) = f (v)− (Aju

k−1
j )(v)+ puk−1

j (v).

On the other hand, if v is a cross point, then (14) is no longer valid, since f (v) is the
sum of many subdomain contributions. Thus, it is in general impossible to find Li

and gki such that the relation Tk
+i(v) = Tk−1

− j (v) holds at the cross point for some j.
In our model problem, however, the stencil at the cross point has a special form for
the first and third quadrant:

(A1u
∗
1)(0,0) = u∗(0,0)− 1

2u
∗(0,h)− 1

2u
∗(h,0),

(A3u
∗
3)(0,0) = u∗(0,0)− 1

2u
∗(0,−h)− 1

2u
∗(−h,0).

Thus, we actually have (A1u
∗
1)(0,0)+(A3u

∗
3)(0,0) =

1
2 f (0,0), a known quantity! A

similar relation holds between Ω2 and Ω4, so it is actually possible to find transmis-
sion conditions at the cross point that satisfy the discrete energy estimate. For Ω1,
this reads

(A1u
k
1)(v)+ puk1(v) =

1
2 f (v)− (A3u

k−1
3 )(v)+ puk−1

3 (v).

Figure 4 shows the convergence of the method for p= π
2
√
h
, which gives the optimal

contraction factor ρ = 1−O(
√
h), just as in the two-subdomain case. Since the

discrete energy estimate holds, the converged subdomain solutions always coincide
with the exact discrete solution u∗, unlike the mortar case. In general, discrete energy
estimates can only be derived if for every cross point v, its set of neighbors can be
partitioned into disjoint pairs (i, j) such that (Aiu

∗
i )(v)+(Aju

∗
j)(v) = fi j(v) can be

calculated without knowing u∗. For cross points with wide stencils or an odd number
of neighbors, this would not be possible. In such cases, the methods in Section 4 are
still excellent choices in practice, but one cannot use Lions’ estimates to deduce
convergence for arbitrary positive Robin parameters p.



12 Martin J. Gander and Felix Kwok

�� �� �� ��
��

��

��
��

��
��

��
��

��
�

����������

�
�
��
��

��
�
�

�

�

������

������

������

������

�������

(a)

�� �� �� �� ���

��
��

��
�

���

�
�

��
��

��
�

�

�

�

���

���
���

�

(b)

Fig. 4 (a) Convergence for different grid spacing h; (b) Contraction rate versus h.
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