Skip to main content

A Fully Implicit Compressible Euler Solver for Atmospheric Flows

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

  • 2073 Accesses

Abstract

Numerical methods for global atmospheric modeling have been widely studied in many literatures [5, 7, 9]. It is well-recognized that the global atmospheric flows can be modeled by fully compressible Euler equations with almost no approximations necessary [7]. However, due to the multi-scale nature of the global atmosphere and the high cost of computation, other simplified models have been favorably used in most community codes.

CY was supported in part by NSFC under 61170075 and 91130023, in part by 973 and 863 Programs of China under 2011CB309701 and 2010AA012301. XCC was supported in part by NSF under DMS-0913089 and EAR-0934647.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. PETSc Users Manual. Argonne National Laboratory, 2010.

    Google Scholar 

  2. X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput., 21:792–797, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. L. Carpenter Jr., K. K. Droegemeier, P. R. Woodward, and C. E. Hane. Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev., 118:586–612, 1990.

    Article  Google Scholar 

  4. T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal., 20:187–209, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. J. Evans, M. A. Taylor, and J. B. Drake. Accuracy analysis of a spectral element atmospheric model using a fully implicit solution framework. Mon. Wea. Rev., 138:3333–3341, 2010.

    Article  Google Scholar 

  6. F. X. Giraldo and M. Restelli. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227:3849–3877, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, editors. Numerical Techniques for Global Atmospheric Models. Springer, 2011.

    Google Scholar 

  8. M.-S. Liou. A sequel to AUSM, part II: AUSM+-up for all speeds. J. Comput. Phys., 214:137–170, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. D. Nair, H.-W. Choi, and H. M. Tufo. Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comp. Fluids, 38:309–319, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Robert. Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci., 50:1865–1873, 1993.

    Article  Google Scholar 

  11. A. St-Cyr and D. Neckels. A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver. In ICCS 2009, part II, vol. 5545 of Lecture Notes in Computer Science, pages 243–252. Springer-Verlag, 2009.

    Google Scholar 

  12. P. A. Ullrich, C. Jablonowski, and B. van Leer. High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys., 229:6104–6134, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Yang and X.-C. Cai. Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere. J. Comput. Phys., 230:2523–2539, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Cai, XC. (2013). A Fully Implicit Compressible Euler Solver for Atmospheric Flows. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_81

Download citation

Publish with us

Policies and ethics