Skip to main content

Constructive Completeness for Modal Logic with Transitive Closure

  • Conference paper
Certified Programs and Proofs (CPP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7679))

Included in the following conference series:

Abstract

Classical modal logic with transitive closure appears as a subsystem of logics used for program verification. The logic can be axiomatized with a Hilbert system. In this paper we develop a constructive completeness proof for the axiomatization using Coq with Ssreflect. The proof is based on a novel analytic Gentzen system, which yields a certifying decision procedure that for a formula constructs either a derivation or a finite countermodel. Completeness of the axiomatization then follows by translating Gentzen derivations to Hilbert derivations. The main difficulty throughout the development is the treatment of transitive closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Inf. 20, 207–226 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical Big Operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Algebr. Program. 76(2), 216–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doczkal, C., Smolka, G.: Coq formalization accompanying this paper, http://www.ps.uni-saarland.de/extras/cpp12/

  5. Doczkal, C., Smolka, G.: Constructive Formalization of Hybrid Logic with Eventualities. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 5–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)

    Article  MATH  Google Scholar 

  7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. System Sci., 194–211 (1979)

    Google Scholar 

  9. Fitting, M.: Intuitionistic logic, model theory and forcing. Studies in Logic. North-Holland Pub. Co. (1969)

    Google Scholar 

  10. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel (1983)

    Google Scholar 

  11. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Abrahams, P.W., Lipton, R.J., Bourne, S.R. (eds.) POPL, pp. 163–173. ACM Press (1980)

    Google Scholar 

  12. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Research Report RR-6455, INRIA (2008), http://hal.inria.fr/inria-00258384/en/

  15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)

    Google Scholar 

  16. Kaminski, M., Schneider, T., Smolka, G.: Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 196–210. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Smullyan, R.M.: First-Order Logic. Springer (1968)

    Google Scholar 

  18. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formalized Reasoning 2(1) (2009)

    Google Scholar 

  19. The Coq Development Team, http://coq.inria.fr

  20. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory, 2nd edn. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doczkal, C., Smolka, G. (2012). Constructive Completeness for Modal Logic with Transitive Closure. In: Hawblitzel, C., Miller, D. (eds) Certified Programs and Proofs. CPP 2012. Lecture Notes in Computer Science, vol 7679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35308-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35308-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35307-9

  • Online ISBN: 978-3-642-35308-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics