
ar
X

iv
:1

20
2.

60
33

v2
 [

cs
.S

I]
 1

1
Ja

n
20

13

The Power of Local Information in Social Networks

Christian Borgs ∗ Michael Brautbar† Jennifer Chayes‡ Sanjeev Khanna §

Brendan Lucier¶

Abstract

We study the power of local information algorithms for optimization problems on social and
technological networks. We focus on sequential algorithms where the network topology is initially
unknown and is revealed only within a local neighborhood of vertices that have been irrevocably
added to the output set. This framework models the behavior of an external agent that does not
have direct access to the network data, such as a user interacting with an online social network.

We study a range of problems under this model of algorithms with local information. When
the underlying graph is a preferential attachment network, we show that one can find the root
(i.e. initial node) in a polylogarithmic number of steps, using a local algorithm that repeatedly
queries the visible node of maximum degree. This addresses an open question of Bollobás and
Riordan. This result is motivated by its implications: we obtain polylogarithmic approximations
to problems such as finding the smallest subgraph that connects a subset of nodes, finding the
highest-degree nodes, and finding a subgraph that maximizes vertex coverage per subgraph size.

Motivated by problems faced by recruiters in online networks, we also consider network cov-
erage problems on arbitrary graphs. We demonstrate a sharp threshold on the level of visibility
required: at a certain visibility level it is possible to design algorithms that nearly match the best
approximation possible even with full access to the graph structure, but with any less information
it is impossible to achieve a non-trivial approximation. We conclude that a network provider’s
decision of how much structure to make visible to its users can have a significant effect on a user’s
ability to interact strategically with the network.

1 Introduction

In the past decade there has been a surge of interest in the nature of complex networks that arise in
social and technological contexts; see [10] for a recent survey of the topic. In the computer science
community, this attention has been directed largely towards algorithmic issues, such as the extent to
which network structure can be leveraged into efficient methods for solving complex tasks. Common
problems include finding influential individuals, detecting communities, constructing subgraphs with
desirable connectivity properties, and so on.

The standard paradigm in these settings is that an algorithm has full access to the network graph
structure. More recently there has been growing interest in local algorithms, in which decisions are
based upon local rather than global network structure. This locality of computation has been
motivated by applications to distributed algorithms [13,20], improved runtime efficiency [11,23], and
property testing [17,21]. In this work we consider a different motivation: in some circumstances, an
optimization is performed by an external user who has inherently restricted visibility of the network
topology.

∗Microsoft Research New England. Email: borgs@microsoft.com.
†Department of Computer and Information Science, University of Pennsylvania. Email: brautbar@cis.upenn.edu.
‡Microsoft Research New England. Email: jchayes@microsoft.com.
§Department of Computer and Information Science, University of Pennsylvania. Email: sanjeev@cis.upenn.edu.
¶Microsoft Research New England. Email: brlucier@microsoft.com.

1

For such a user, the graph structure is revealed incrementally within a local neighborhood of
nodes for which a connection cost has been paid. The use of local algorithms in this setting is
necessitated by constraints on network visibility, rather than being a means toward an end goal of
efficiency or parallelizability.

As one motivating example, consider an agent in a social network who wishes to find (and link
to) a highly connected individual. For instance, this agent may be a newcomer to a community (such
as an online gaming or niche-based community) wanting to interact with influential or popular indi-
viduals. Finding a high-degree node is a straightforward algorithmic problem without information
constraints, but many online and real-world social networks reveal graph structure only within one
or two hops from a user’s existing connections.

In another motivating example, consider the problem faced by a recruiter attempting to build
capital in the form of a network of contacts. Employment-focused social network applications such as
LinkedIn emphasize the importance of having many nodes within few hops of one’s neighborhood of
connections. For instance, a user can browse and perform searchers over individuals that are within
network distance 2 of themselves (i.e. friends of friends). Since it is socially and timely costly to
create connections, a recruiter is motivated to befriend only a small number of individuals that assist
in covering as much of the network as possible. Is it possible for an agent to solve such a problem
given information only about local graph structure, i.e. what is revealed on an online networking
site? This question is relevant not only for individual users, but also to the designer of a social
networking service who must decide how much topological information to reveal.

More generally, we consider graph algorithms in a setting of restricted network visibility. We
focus on optimization problems for which the goal is to return a subset of the nodes in the network;
this includes coverage, connectivity, and search problems. An algorithm in our framework proceeds
by incrementally and adaptively building an output set of nodes, corresponding to those vertices of
the graph that have been queried (or connected to) so far. When the algorithm has queried a set S
of nodes, the structure of the graph within a small radius of S is revealed, guiding future queries.
The principle challenge in designing such an algorithm is that decisions must be based solely on local
information, whereas the problem to be solved may depend on the global structure of the graph. In
addition to these restrictions, we ask for algorithms that run in polynomial time.

For some node coverage problems, such as the recruitment problem described above (i.e. finding a
minimum dominating set), we show how to design local information algorithms for arbitrary networks
whose performances approximately match the best possible even when information about network
structure is unrestricted. We also demonstrate that the amount of local information available is of
critical importance: strong positive results are possible at a certain range of visibility (made explicit
below), but non-trivial algorithms become impossible when less information is made available. This
observation has implications for the design of online networks, such as the amount of information to
provide a user about the local topology: seemingly arbitrary design decisions may have a significant
impact on a user’s ability to interact with the network.

For other problems, such as finding and linking to the most highly connected individual in a social
network, we derive strong lower bounds on the performance of local algorithms for general graphs.
We therefore turn to the class of preferential attachment (PA) graphs, which model properties of
many real-world social and technological networks.

For PA networks, we prove that local information algorithms do surprisingly well at many opti-
mization problems, including finding the k vertices of highest degree and shortest path routing (up
to polylogarithmic factors). The structure of social networks can therefore play an important role in
determining the feasibility of solving an optimization problem under local information constraints.

Results and Techniques Our first set of results concerns algorithms for preferential attachment
(PA) networks. Such networks are defined by a process by which nodes are added sequentially

2

and form random connections to existing nodes, where the probability of connecting to a node is
proportional to its degree.

We first consider the problem of finding the root (first) node in a PA network. A random
walk would encounter the root in Õ(

√
n) steps (where n is the number of nodes in the network).

The question of whether a better local information algorithm exists for this problem was posed by
Bollobás and Riordan [5], who state that “an interesting question is whether a short path between
two given vertices can be constructed quickly using only ‘local’ information” [5]. They conjecture
that such short paths can be found locally in Θ(log n) steps. We make the first progress towards this
conjecture by showing that polylogarithmic time is sufficient: there is an algorithm that finds the
root of a PA network in O(log4(n)) time, with high probability. We show how to use this algorithm
to obtain polylogarithmic approximations for finding the smallest subgraph that connects a subset
of nodes (including shortest path), finding the highest-degree nodes, and finding a subgraph that
maximizes vertex coverage per subgraph size.

The local information algorithm we propose uses a natural greedy approach: at each step, it
queries the visible node with highest degree. Demonstrating that such an algorithm reaches the root
in O(log4(n)) steps requires a probabilistic analysis of the PA process. A natural intuition is that
the greedy algorithm will find nodes of ever higher degrees over time. However, such progress is
impeded by the presence of high-degree nodes with only low-degree neighbors. We show that these
bottlenecks are infrequent enough that they do not significantly hamper the algorithm’s progress.
To this end, we derive a connection between node degree correlations and supercritical branching
processes to prove that a path of high-degree vertices leading to the root is always available to the
algorithm.

Motivated by job recruiting in networks, we then explore local information algorithms for dom-
inating set and coverage problems on general graphs. A dominating set is a set S such that each
node in the network is either in S or the neighborhood of S. We design a randomized local infor-
mation algorithm for the minimum dominating set problem that achieves an approximation ratio
that nearly matches the lower bound on polytime algorithms with no information restriction. As has
been noted in [16], the greedy algorithm that repeatedly selects the visible node that maximizes the
size of the dominated set can achieve a very bad approximation factor. We consider a modification
of the greedy algorithm: after each greedy addition of a new node v, the algorithm will also add a
random neighbor of v. We show that this randomized algorithm obtains an approximation factor
that matches the known lower bound of Ω(log∆) (where ∆ is the maximum degree in the network)
up to a constant factor. We also show that having enough local information to choose the node that
maximizes the incremental benefit to the dominating set size is crucial: any algorithm that can see
only the degrees of the neighbors of S would achieve a poor approximation factor of Ω(n) .

Finally, we extend these results to related coverage problems. For the partial dominating set
problem (where the goal is to cover a given constant fraction of the network with as few nodes as
possible) we give an impossibility result: no local information algorithm can obtain an approximation
better than O(

√
n) on networks with n nodes. However, a slight modification to the local information

algorithm for minimum dominating set yields a a bicriteria result: given ε > 0, we compare the
performance of an algorithm that covers ρn nodes with the optimal solution that covers ρ(1 + ε)n
nodes (assuming ρ(1 + ε) ≤ 1). Our modified algorithm achieves a O((ρε)−1H(∆)) approximation.

(in which we compare performance against an adversary who must cover an additional ε fraction
of the network). We also consider the “neighbor-collecting” problem, in which the goal is to minimize
c|S| plus the number of nodes left undominated by S, for a given parameter c. For this problem we
show that the minimum dominating set algorithm yields an O(c log∆) approximation (where ∆ is
the maximum degree in the network), and that the dependence on c is unavoidable.

3

Related Work Over the last decade there has been a substantial body of work on understanding
the power of sublinear-time approximations. In the context of graphs, the goal is to understand how
well one can approximate graph properties in a sublinear number of queries. See [21] and [15] for
recent surveys. In the context of social networks a recent work has suggested the Jump and Crawl
model, where algorithms have no direct access to the network but can either sample a node uniformly
(Jump) or access a neighbor of a previously discovered node (a Crawl) [7]. Local information
algorithms can be thought of as generalizing the Jump and Crawl query framework to include an
informational dimension. A Crawl query will now return any node in the local neighborhood of
nodes seen so far while Jump queries would allow access to unexplored regions of the network.

Motivated by distributed computation, a notion of local computation was formalized by [22] and
further developed in [1]. The goal of a local computation algorithm is to compute only certain speci-
fied bits of a global solution. In contrast, our notion of locality is motivated by informational rather
than computational constraints imposed upon a sequential algorithm. As a result, the informational
dimension of visibility tends not to play a role in the analysis of local computation algorithms. In
contrast, the main issue in designing a local information algorithm is to find a good tradeoff between
the amount of local information the algorithm is allowed to see to the number of queries it needs to
make in order to solve a network optimization problem.

Local algorithms motivated by efficient computation, rather than informational constraints, were
explored by [2,23]. These works explore local approximation of graph partitions to efficiently find a
global solution. In particular, they explore the ability to find a cluster containing a given vertex by
querying only close-by nodes.

Preferential attachment (PA) networks were suggested by [3] as a model for large social networks.
There has been much work studying the properties of such networks, such as degree distribution
[6] and diameter [5]; see [4] for a short survey. The problem of finding high degree nodes, using
only uniform sampling and local neighbor queries, is explored in [7]. The question of whether a
polylogarithmic time Jump and Crawl algorithm exists for finding a high degree node in preferential
attachment graphs was left open therein.

The low diameter of PA graphs can be used to implement distributed algorithms in which nodes
repeatedly broadcast information to their neighbors [8, 13]. A recent work [8] showed that such
algorithms can be used for fast rumor spreading. Our results on the ability to find short paths in
such graphs differs in that our algorithms are sequential, with a small number of queries, rather than
applying broadcast techniques.

The ability to quickly find short paths in social networks has been the focus of much study,
especially in the context of small-world graphs [14,19]. It is known that local routing using short paths
is possible in such models, given some awareness of global network structure (such as coordinates in
an underlying grid).

In contrast, our shortest-path algorithm for PA graphs does not require an individual know the
graph structure beyond the degrees of his neighbors. However, our result requires that routing can
be done from both endpoints; in other words, both nodes are trying to find each other.

For the minimum dominating set problem, Guha and Khuller [16] designed a local O(log∆)
approximation algorithm (where ∆ is the maximum degree in the network). As a local information
algorithm, their method requires that the network structure is revealed up to distance two from the
current dominating set. By contrast, our local information algorithm requires less information to
be revealed on each step. Our focus, and the motivation behind this distinction, is to determine
sharp bounds on the amount of local information required to approximate this problem (and others)
effectively.

4

2 Model and Preliminaries

Graph Notation We write G = (V,E) for an undirected graph with node and edge sets V and
E, respectively. We write nG for the number of nodes in G, dG(v) for the degree of a vertex v in
G, and NG(v) for the set of neighbors of v. Given a subset of vertices S ⊆ V , NG(S) is the set of
nodes adjacent to at least one node in S. We also write DG(S) for the set of nodes dominated by
S: DG(S) = NG(S) ∪ S. We say S is a dominating set if DG(S) = V . Given nodes u and v, the
distance between u and v is the number of edges in the shortest path between u and v. The distance
between vertex sets S and T is the minimum distance between a node in S and a node in T . Given
a subset S of nodes of G, the subgraph induced by S is the subgraph consisting of S and every edge
with both endpoints in S. Finally, ∆G is the maximum degree in G. In all of the above notation we
often suppress the dependency on G when clear from context.

Algorithmic Framework We focus on graph optimization problems in which the goal is to return
a minimal-cost1 set of vertices S satisfying a feasibility constraint. We will consider a class of
algorithms that build S incrementally under local information constraints. We begin with a definition
of distance to sets and a definition local neighborhoods.

Definition 1. The distance of v from a set S of nodes in a graph G is the minimum, over all nodes
u ∈ S, of the shortest path length from v to u in G.

Definition 2 (Local Neighborhood). Given a set of nodes S in the graph G, the r-closed neighbor-
hood around S is the induced subgraph of G containing all nodes at distance less than or equal to r
from S, plus the degree of each node at distance r from S. The r-open neighborhood around S is
the r-closed neighborhood around S, after the removal of all edges between nodes at distance exactly
r from S.

Definition 3 (Local Information Algorithm). Let G be an undirected graph unknown to the al-
gorithm, where each vertex is assigned a unique identifier. For integer r ≥ 1, a (possibly randomized)
algorithm is an r-local algorithm if:

1. The algorithm proceeds sequentially, growing step-by-step a set S of nodes, where S is initialized
either to ∅ or to some seed node.

2. Given that the algorithm has queried a set S of nodes so far, it can only observe the r-open
neighborhood around S.

3. On each step, the algorithm can add a node to S either by selecting a specified vertex from the
r-open neighborhood around S (a crawl) or by selecting a vertex chosen uniformly at random
from all graph nodes (a jump).

4. In its last step the algorithm returns the set S as its output.

Similarly, for r ≥ 1, we call an algorithm a r+-local algorithm if its local information (i.e. in item
2) is made from the r-closed neighborhood around S.

We focus on computationally efficient (i.e. polytime) local algorithms. Our framework applies
most naturally to coverage, search, and connectivity problems, where the family of valid solutions is
upward-closed.

More generally, it is suitable for measuring the complexity, using only local information, for
finding a subset of nodes having a desirable property. In this case the size of S measures the number

1In most of the problems we consider, the cost of set S will simply be |S|.

5

Algorithm 1 TraverseToTheRoot

1: Initialize a list L to contain an arbitrary node {u} in the graph.
2: while L does not contain node 1 do

3: Add a node of maximum degree in N(L)\L to L.
4: end while

5: return L.

of queries made by the algorithm; we think of the graph structure revealed to the algorithm as having
been paid for by the cost of S.

For our lower bound results, we will sometimes compare the performance of an r-local algorithm
with that of a (possibly randomized) algorithm that is also limited to using Jump and Crawl queries,
but may use full knowledge of the network topology to guide its query decisions. The purpose of
such comparisons is to emphasize instances where it is the lack of information about the network
structure, rather than the necessity of building the output in a local manner, that impedes an
algorithm’s ability to perform an optimization task.

3 Preferential Attachment Graphs

We now focus our attention on algorithms for graphs generated by the preferential attachment (PA)
process, conceived by Barabási and Albert [3]. Informally, the process is defined sequentially with
nodes added one by one. When a node is added it sends m links backward to previously created
nodes, connecting to a node with probability proportional to its current degree.

We will use the following, now standard, formal definition of the process, due to [5]. Given m ≥ 1,
we inductively define random graphs Gt

m, 1 ≤ t ≤ n. The vertex set for Gt
m is [t] where each node is

identified by its creation time (index). G1
m is the graph with node 1 and m self-loops. Given G(t−1)

m ,
form Gt

m by adding node t and then forming m edges from t to nodes in [t], say p1(t), . . . , pm(t). The
nodes pk(t) are referred to as the parents of t. The edges are formed sequentially. For each k, node
s is chosen with probability deg(s)/z if s < t, or (deg(s) + 1)/z if s = t, where z is a normalization
factor.

Note that deg(s) denotes degree in Gt−1
m , counting previously-placed edges.

We first present a 1-local approximation algorithm for the following simple problem on PA graphs:
given an arbitrary node u, return a minimal connected subgraph containing nodes u and 1 (i.e. the
root of Gn

m).
Our algorithm, TraverseToTheRoot, is listed as Algorithm 1. The algorithm grows a set S of

nodes by starting with S = {u} and then repeatedly adding the node in N(S)\S with highest degree.
We will show that, with high probability, this algorithm traverses the root node within O(log4(n))
steps.

Theorem 3.1. With probability 1− o(1) over the preferential attachment process on n nodes, Tra-
verseToTheRoot returns a set of size O(log4(n)).

Remark: For convenience, we have defined TraverseToTheRoot assuming that the algorithm can
determine when it has successfully traversed the root. This is not necessary in general; our algorithm
will instead have the guarantee that, after O(log4(n)) steps, it has traversed node 1 with high
probability.

Before proving Theorem 3.1, we discuss its algorithmic implications below.

6

Algorithm 2 s-t-Connect

1: P1 ← TraverseToTheRoot(G, s)
2: P2 ← TraverseToTheRoot(G, t)
3: Return P1 ∪ P2

3.1 Applications of Fast Traversal to the Root

We now describe how to use TraverseToTheRoot to implement local algorithms for other problems
on PA networks. For ease of readability, the proofs of all auxiliary lemmas will be only presented at
the end of the chapter.

s-t connectivity. In the s-t connectivity (or shortest path) problem we are given two nodes s, t
in an undirected graph and must find a small connected subgraph that contains s and t.

Corollary 3.2. Let G be a PA graph on n nodes. Then, with probability 1−o(1) over the PA process,
Algorithm 2 (listed above), a 1-local algorithm, returns a connected subgraph of size O(log4(n))
containing vertices s and t. Furthermore, for any fixed k, with probability 1 − o(1) over the PA
process, a subset of k nodes can be connected by a local algorithm in O(k log4(n)) steps, using a
subset of size O(k log4(n)).

Proof. Theorem 3.1 implies that, with probability 1 − o(1), algorithm TravesetToTheRoot(G, s)
returns a path from s to node 1 in time O(log4(n)).

Similarly, with probability 1 − o(1), TraverseToTheRoot(G, t) returns a connected path from s
to node 1 in time O(log4(n)). Concatenating the two paths at node 1 is a path of length O(log4(n))
from s to t. Given k terminal one can connect all of them to nodes 1. Theorem 3.1 implies that for
each terminal, with probability 1− o(1), algorithm TravesetToTheRoot(G, s) returns a path from s
to node 1 in time O(log4(n)). For a fixed k, the claim then follows from the union bound.

One may ask whether our results can be extended to arbitrary networks. We next that Corollary
3.2 does not extend to general graphs: local algorithms cannot achieve sublinear approximations.
We provide a strong lower bound: a randomized r-local algorithm will have approximation factor
Ω(n/r2), even if it is allowed to fail with probability 1/3. Furthermore, such a bound holds even if
we ask that the graph be well-connected: the lower bound is Ω(n/kr2) for k-edge-connected graphs.

Theorem 3.3. Let k, r, n ≥ max{k, r}, be positive integers. For any r-local algorithm for the s-t
connectivity problem with success probability bigger than 1

3 , the expected approximation over successful
runs is Ω(n

kr2) for k-edge-connected graphs.

Proof. We first focus our attention on proving the claim for r-local algorithms on k = 1 connected
graphs. The proof will invoke the application of Yao’s minmax principle for the performance of
Monte Carlo randomized algorithms on a family of inputs [24]. The lemma states that the expected
cost of the optimal deterministic Monte Carlo algorithm with failure probability of ε ∈ [0, 1] on an
arbitrary distribution over the family of inputs is a lower bound on the expected cost of the optimal
randomized Monte Carlo algorithm with failure probability of ε

2 over that family of inputs.
To use the lemma we will focus on Monte Carlo deterministic algorithms that have failure prob-

ability smaller than some small constant, say 1
3 , and analyze their performance on a uniformly at

random chosen input from a family of inputs constructed below. Given n we construct the family of
inputs. Each input is a graphs constructed as follows: we have two distinct nodes s and t. We define
a broken path as path on 2r+4 nodes where the ’middle’ edge has been removed. The graph will be
made from n−2−(2r+4)

2r+4 distinct broken paths from s to t together with one distinct connected path

7

connecting s to t. The identity of the connected path would be chosen uniformly at random from the
set of n−2

2r+4 paths. In total the family of inputs contains n−2
2r+4 members. As the algorithm is r-local,

being at s or t it cannot see the middle node on a broken path so it cannot decide if a path is broken
before traversing at least one node in it. A compelling property therefore holds: if the algorithm has
not found the connected path after i queries then the algorithm learns nothing about the identity of
the broken path except that it is not one of the paths it traversed so far. As the connected path is
chosen uniformly at random from all paths, the probability that after 1

2
n−2
2r+4 queries the connected

path is found is at most 1
2 . Thus, conditioned on the algorithm being successful (an event having

probability at least 1
4), the expected cost of finding a path from s to t must be Ω(nr). Using Yao’s

principle applied to Monte Carlo algorithms the worst case expected cost of a randomized algorithm
on at least one of the inputs would be at least Ω(nr). However, on any of the inputs, an algorithm
with full knowledge of the graph can find the connected path in any graph in the family in 2r + 4
queries. The approximation ratio of the r-local algorithm would therefore be worse than Ω(n

r2).
It is not hard to generalize the construction to k connected graphs by replacing parts of each

path in the construction by a complete graph on that nodes. For a detailed description see below.
We create n−2

k(2r+4) distinct paths, connecting s to t, each on k(2r + 4) nodes. We choose all but

one of them to be broken. For a given path, the node at distance k(2r + 2) is chosen to be broken.
In each broken path we form a clique between every consecutive k nodes, starting from s, up to
the point the path is broken at. If we denote the path by p1 = s, p2, . . . , p2r+4 = t, then the first
clique contains nodes p1 = s, p2, . . . , pk and the last is on p r

2−k+1, p r
2−k+2, . . . , p r

2
. Similarly, we form

cliques on the nodes on t side of the broken path on every k consecutive nodes, starting at node
p r

2
+1. The graph then becomes k-edge connected, and we can repeat the argument given above.

Finding high degree nodes. A natural question on graphs is to find a node with maximal degree.
As we now show, the algorithm TraverseToTheRoot obtains a polylogarithmic approximation to this
problem.

Corollary 3.4. Let G be a preferential attachment graph on n nodes. Then, with probability 1−o(1),

• Algorithm TraverseToTheRoot will return a node of degree at least 1
log2(n)

of the maximum

degree in the graph, in time O(log4(n)).

• For any fixed k, algorithm TraverseToTheRoot can be extended to return, with probability 1−
o(1) and in time O(log4(n)), a set of k nodes which provides an O(1/ log3(n)) approximation
to sum of the k largest degrees in the network.

Proof. We first prove part 1 of the corollary. TraveseToTheRoot ends when node 1 is found. In

Appendix A.1 we prove that, with probability 1− o(1), node 1 has degree at least m
√
n

log(n) . However,

from [4] (Theorem 17), with probability 1 − o(1), the maximum degree is less than m
√
n log(n).

As TraveseToTheRoot runs, with high probability, in O(log4(n)) steps we conclude that a node of
degree at least 1

log2(n)
times the maximum degree in the graph is found in time O(log4(n)).

To prove the second part of the corollary, we note that by letting the algorithm run until it
finds node 1, then continue for an additional k steps it achieves a solution that is at least as good
as returning the nodes indexed 1 through k. In other words, the i’th node in the solution set S
returned by the algorithm has degree at least as high as that node i. This follows from a simple
induction. As proven in Appendix A.1, with probability 1 − o(1), the node i has degree at least

Ω(
√
n

log2 n
). As the maximum degree (and hence the degree of node i) is is less than m

√
n log(n), with

probability 1 − o(1), the ratio between the degree of the i’th node in S to the degree of node i is,
with probability 1− o(1), at most O(1/ log3(n)). The result now follows from the union bound.

8

We note that one cannot hope to extend Corollary 3.4 to general graphs. This is discussed at
the end of the proof of Theorem 3.6 below.

Maximizing coverage versus cost. Consider a setting where that accessing a node comes with
some fixed cost c one would like to find a set of nodes S such that the effective “gain per cost” is
maximized, where gain per cost is the ratio between the size of D(S) and the total cost of S, c|S|
(see [18] for an extended variant of the problem). If v is a node of maximum degree in the graph
the solution is to choose such a node v. A potential approximation strategy would be to quickly find
a node of high degree. The following corollary follows from theorem 3.4.

Corollary 3.5. Let G be a preferential attachment graph on n nodes. Then, with probability 1−o(1),
over the probability space generating the preferential attachment graph, algorithm TraveseToTheRoot,
a 1-local information algorithm, returns a set of size at most O(log4(n)) containing a node of maxi-
mum degree in the graph . In particular, TraveseToTheRoot achieves an O(log8(n)) approximation
to the gain per cost coverage problem.

Proof. With probability 1− o(1), after O(log4(n)) steps, a node of degree at least
√
n

4 log3(n)
is found,

achieving a gain per cost of
√
n

5 log7(n)
. As the highest degree is at most

√
n log(n), so is the maximum

gain per cost and the result follows.

Given the positive result for preferential attachment graphs one may ponder whether it could be
extended to work on general graphs. The following theorem would show that in general, algorithms
that even r = n

1
4 -local information algorithms, cannot achieve a good approximation.

Theorem 3.6. Let k, r, n ≥ max{k, r}, be positive integers. For any r-local algorithm for the “gain
per cost” problem with success probability bigger than 1

3 , the expected approximation over successful

runs is Ω(
√
n

kr2) on k-edge-connected graphs.

In particular, for k = 1 and r = o(n
1
4) the approximation ratio grows to infinity with the number

of graph nodes n.

Proof. We first focus our attention on proven the claim for 1-local algorithms on k = 1 connected
graphs. The proof will follow similar lines to that of theorem 3.3. We invoke the application of Yao
minmax principle for the performance of Monte Carlo randomized algorithms [24]. For that we focus
on analyzing the performance of deterministic Monte Carlo algorithms on a uniformly at random
chosen input from a family of inputs. Given n we construct the family of inputs as follows: each
input is a graph made from a complete binary tree on n− 1−

√
n nodes labeled 1, 2, . . . , n− 1−

√
n.

In addition one leaf node s would be a hub for
√
n new spoke nodes. We denote the subgraph on

node s and its neighbors by H. Note that node s is the only node with degree bigger than three and
so any algorithm that want to achieve a good “gain per cost” must find that node.

Each input would correspond to a specific choice of assignment for node i. In total there are
therefore

((n−1−
√
n)/2

2

)

inputs. Such algorithms know only the degrees of the nodes they already
traversed. The input comes with a compelling property: if the algorithm has not found a node in
the subgraph H after i queries then we learned nothing about the identity of s except that it is one

of the leaf nodes not queried so far2. Since s was chosen uniformly at random across all n−1−
√
n

2

leaves, the probability that after
√
n
2 Jump and Crawl queries a node in H is found is less than 5

6 .
To see than we note that with the many Jumps the probability of hitting H, for n large enough is
smaller than 1

e +
1

100 . The probability of hitting the leaf s between all leaf trees, given we don’t hit
the spokes of H is at most 1/2. By the union bound the total probability of finding s is at most

2the deterministic algorithm “knows” the distribution over inputs, i.e. that s is a leaf connected to a star subgraph

9

1
2 + 1

2(
1
e + 1

100) < 5
6 . Thus, for any algorithm that is successful with probability, say 1 − 2

6 , the
expected cost of finding node s is Ω(

√
n).

By Yao’s principle the expected cost of a randomized algorithm on one of the inputs would be
at least Ω(

√
n). However, an algorithm with full knowledge of the graph can find node s with at

most Θ(log(n)) queries on any of the inputs. We conclude that the approximation of any 0-local

algorithm on one of the inputs would be Ω(
√
n

log(n)).

To generalize the problem to k connected graphs we replace each edge (u, v) in the complete
binary tree subgraph in the construction above by a distinct path from u to v of length rk. We then
connect all the first k nodes on each of the new paths replacing edges in the original graph to form
a clique between themselves, and do the same for any next consecutive blocks of k nodes on that
path.

The graph then becomes k edge connected. The total number of nodes becomes C = n + (n −
1)(kr − 2). The same compelling property still hold: if the algorithm has not found a node in H
after i queries then we learn nothing about the identity of s except it is not one of the node queried

so far. The expected cost for finding node s would be at least Θ(
√
C

rk). As an algorithm with full
information of the graph can find node s in at most log(C)r time, the result follows.

We end by noting that as each node has degree at most three except node s the proof also
provides a similar lower bound for finding a node who is at most a poly-logarithmic factor smaller
than the maximum degree, a problem discussed in Section 3.1.

3.2 Analysis of TraverseToTheRoot

Our proof will make use of an alternative specification of the preferential attachment process, which
is now standard in the literature [5], [8]. We will now describe this model briefly. Sample mn pairs
(xi,j , yi,j) independently and uniformly from [0, 1] × [0, 1] with xi,j < yi,j for i ∈ [n] and j ∈ [m].
We relabel the variables such that yi,j is increasing in lexicographic order of indices. We then set
W0 = 0 and Wi = yi,m for i ∈ [n]. We define wi = Wi − Wi−1 for all i ∈ [n]. We then generate
our random graph by connecting each node i to m nodes p1(i), . . . , pm(i), where each pk(i) is a node
chosen randomly with P[pk(i) = j] = wj/Wi for all j ≤ i. We refer to the nodes pk(i) as the parents
of i.

Bollobás and Riordan showed that the above random graph process is equivalent3 to the prefer-
ential attachment process. They also show the following useful properties of this alternative model.
Set s0 = 160 log(n)(log log(n))2 and s1 =

n
225 log2 n

. Let It = [2t + 1, 2t+1]. Define constants β = 1/4

and ζ = 30.

Lemma 3.7 (adapted from [5]). Let m ≥ 2 be fixed. Using the definitions above, each of the following
events holds with probability 1− o(1):

• E1 = {|Wi −
√

i
n | ≤

1
100

√

i
n for s0 ≤ i ≤ n}.

• E2 = {It contains at most β|It| nodes i with wi <
1

ζ
√
in

for log(s0) ≤ t ≤ log(s1)}.

• E3 = {w1 ≥ 4
logn

√
n
}.

• E4 = {wi ≥ 1
log1.9(n)

√
n
for all i ≤ s0}.

• E5 = {wi ≤ log(n)√
in

for s0 ≤ i ≤ n}

3As has been observed elsewhere [8], this process differs slightly from the preferential attachment process in that it
tends to generate more self-loops. However, it is easily verified that all proofs in this section continue to hold if the
probability of self-loops is reduced.

10

Note that we modified these events slightly (from [5]) for our purposes: event E2 uses different
constants β and ζ, and in event E4 we provide a bound on wi for all i ≤ s0 rather than i ≤ n1/5.
Finally, event E5 is a minor variation on the corresponding event from [5]. The proof of the modified
Lemma 3.7 follows that of Bollobás and Riordan [5] quite closely and can be at the end of the
chapter.

Given Lemma 3.7, we can think of theWi’s as arbitrary fixed values that satisfy events E1, . . . , E5,
rather than as random variables. Lemma 3.7 implies that, if we can prove Theorem 3.1 for random
graphs corresponding to all such sequences of Wi’s, then it will also hold for preferential attachment
graphs. We now turn to the proof of Theorem 3.1. Let us provide some intuition. We would like to
show that TraverseToTheRoot queries nodes of progressively higher degrees over time. However, if
we query a node i of degree d, there is no guarantee that subsequent nodes will have degree greater
than d; the algorithm may encounter local maxima. Suppose, however, that there were a path from
i to the root consisting entirely of nodes with degree at least d. In this case, the algorithm will only
ever traverse nodes of degree at least d from that point onward. One might therefore hope that the
algorithm finds nodes that lie on such “good” paths for ever higher values of d, representing progress
toward the root.

Motivated by this intuition, we will study the probability that any given node i lies on a path
to the root consisting of only high-degree nodes (i.e. not much less than the degree of i). We will
argue that many nodes in the network lie on such paths. We prove this in two steps. First, we show
that for any given node i and parent pk(i), pk(i) will have high degree relative to i with probability
greater than 1/2 (Lemma 3.9). Second, since each node i has at least two parents, we use the theory
of supercritical branching processes to argue that, with constant probability for each node i, there
exists a path to a node close to the root following links to such “good” parents (Lemma 3.10).

This approach is complicated by the fact that existence of such good paths is highly correlated
between nodes; this makes it difficult to argue that such paths occur “often” in the network. To
address this issue, we show that good paths are likely to exist even after a large set of nodes (Γ in
our argument below) is adversarially removed from the network. We can then argue that each node
is likely to have a good path independently of many others nodes, as we can remove all nodes from
one good path before testing the presence of another.

We will now proceed with the details of the proof. The proofs of all technical lemmas appear at
the end of this section. Set s0 = 160 log(n)(log log(n))2 and s1 = n

225 log2 n
. We think of vertices in

[1, s0] as close to the root, and vertices in [s1, n] as very far from the root. Let It = [2t + 1, 2t+1] be
a partition of [n] into intervals. Define constants β = 1/4 and ζ = 30. We now define what we mean
by a typical node.

Definition 4 (Typical node). A node i is typical if either wi ≥ 1
ζ
√
in

or i ≤ s0.

Note that event E2 implies that each interval It, log(s0) ≤ t ≤ log(s1) contains a large number
of typical nodes.

The lemma below encapsulates concentration bounds on the degrees of nodes in the network as
well as other useful properties of PA networks.

Lemma 3.8. The following events hold with probability 1− o(1):

• ∀i ≥ s0 : deg(i) ≤ 6m log(n)
√

n
i .

• ∀i ≤ s0 : deg(i) ≥ m
√
n

5 log2(n)
.

• ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
.

• ∀j ≥ i ≥ s0, 1 ≤ k ≤ m : P[pk(j) ≤ i] ≥ 0.9
√
i√

j
.

11

Our next lemma states that, for any set Γ that contains sufficiently few nodes from each interval
It, and any given parent of a node i, with probability greater than 1/2 the parent will be typical,
not in Γ, and not in the same interval as i.

Definition 5 (Sparse set). A subset of nodes Γ ⊆ [n] is sparse if |Γ ∩ It| ≤ |It|/ log log(n) for all
log s0 ≤ t ≤ log s1. That is, Γ does not contain more than a 1/ log log n fraction of the nodes in any
interval It contained in [s0, s1].

Lemma 3.9. Fix sparse set Γ. Then for each i ∈ [s0, s1] and k ∈ [m], the following are true with
probability ≥ 8/15 : pk(i) &∈ Γ, pk(i) ≤ i/2, and pk(i) is typical.

We now claim that, for any given node i and sparse set Γ, there is likely a short path from i to
vertex 1 consisting entirely of typical nodes that do not lie in Γ. Our argument is via a coupling with
a supercritical branching process. Consider growing a subtree, starting at node i, by adding to the
subtree any parent of i that satisfies the conditions of Lemma 3.9, and then recursively growing the
tree in the same way from any parents that were added. Since each node has m ≥ 2 parents, and each
satisfies the conditions of Lemma 3.9 with probability > 1/2, this growth process is supercritical and
should survive with constant probability (within the range of nodes [s0, s1]). We should therefore
expect that, with constant probability, such a subtree would contain some node j < s0.

To make this intuition precise we must define the subtree structure formally. Fix sparse set Γ
and a node i ∈ [s0, s1]. Define HΓ(i) to be the union of a sequence of sets H0,H1, . . . , as follows.
First, H0 = {i}. Then, for each ! ≥ 1, H! will be a subset of all the parents of the nodes in H!−1.
For each j ∈ H!−1 and k ∈ [m], we will add pk(j) to H! if and only if the following conditions hold:

1. pk(j) is typical, pk(j) &∈ Γ, and pk(j) ≤ j/2,

2. pk(j) &∈ Hr for all r ≤ !, and

3. For the interval It containing pk(j), |It ∩ (H0 ∪ . . . ∪H!)| < 10 log log n.

Item 1 contains the conditions of Lemma 3.9. Item 2 is that pk(j) has not already been added
to the subtree; we add this condition so that the set of parents of any two nodes in the subtree are
independent. Item 3 is that the subtree contains at most 10 log log n nodes from each It. We will
use this condition to argue that Γ remains sparse if we add all the elements of HΓ(i) to Γ.

Our next lemma states that any given node i ∈ [s0, s1] has a short path to the root consisting of
only typical nodes with probability at least 3/4.

Lemma 3.10. Fix any sparse set Γ. Then for each node i ∈ [s0, s1], the probability that HΓ(i)
contains a node j ≤ s0 is at least 1/5.

Lemma 3.10 implies the following result, which we will use in our analysis of the algorithm
TraverseToTheRoot. First a definition.

Definition 6 (Good path). A path (j0, j1, ..., jk) is good if jk ≤ s0, each j! is typical and, for each
! > 0, j! ≤ j!−1/2. We say vertex i ∈ [s0, s1] has a good path if there is a good path with j0 = i.

Lemma 3.11. Choose any set T of at most 16 log n nodes from [s0, s1]. Then each i ∈ T has a good
path with probability at least 1/5, independently for each i.

We will apply Lemma 3.11 to the set of nodes queried by TraverseToTheRoot to argue that
progress toward the root is made after every sequence of polylogarithmically many steps.

We can now complete the proof of Theorem 3.1, which we give below.

12

Proof of Theorem 3.1. Our analysis will consist of three steps, in which we consider three phases
of the algorithm. The first phase consists of all steps up until the first time TraverseToTheRoot
traverses a node i < s1 with a good path. The second phase then lasts until the first time the
algorithm queries a node i < s0. Finally, the third phase ends when the algorithm traverses node 1.
We will show that each of these phases lasts at most O(log4(n)) steps.

We note that we will make use of Lemma 3.11 in our analysis by way of considering whether
certain nodes have good paths. We will check at most 16 log n nodes in this manner, and hence the
conditions of Lemma 3.11 will be satisfied.

Analysis of phase 1 Phase 1 begins with the initial node u, and ends when the algorithm traverses
a node i < s1 with a good path. We divide phase 1 into a number of iterations. Iteration zero starts
at node u. Define iteration t as the first time, after iteration t− 1, that the algorithm queries a node
i ≤ s1.

Each new node i considered in iteration t will have i < s1 with probability at least Ws1/1 ≥
1

213 logn , regardless of the previous nodes traversed. By the multiplicative Chernoff bound (B.1), with

probability of at least 1− 1/n2, after at most 5 log2(n) steps such a node i < s1 would be found. By
Lemma 3.11 we know that node i has a good path with probability at least 1/5 independent of all
nodes traversed so far.

By the multiplicative Chernoff bound (B.1), we conclude that after at most 10 log(n) iterations,
and total time of O(log3(n)), the algorithm traverses a node that has both i < s1 and a good path,

with probability at least 1− log(n)
n2 − 1

n .
We note that the number of invocations of Lemma 3.11 made during the analysis of this phase is

at most 2 log n with high probability, and hence the cardinality restriction of Lemma 3.11 is satisfied.

Analysis of phase 2 Phase 2 begins once the algorithm has traversed some node i < s1 with a
good path, and ends when the algorithm traverses a node j < s0. We split phase 2 into a number of
epochs. For each log s0 < t ≤ log s1, we define epoch t to consist of all steps of the algorithm during
which some node i ∈ It with a good path has been traversed, but no node in any I! for ! < t with a
good path has been traversed. Define random variable Yt to be the length of epoch t. Note phase 2
ends precisely when epoch log s0 ends. Further, the total number of steps in phase 2 is

∑log s1
t=log s0

Yt.
Fix some log s0 ≤ t ≤ log s1 and consider Yt. Suppose the algorithm is in epoch t, and let i ∈ It

be the node with a good path that has been traversed by the algorithm. Then, from the definition
of a good path and event E7, i has a parent j ∈ I! for some ! < t with deg(j) ≥ m

2ζ

√

n
i . This

node j is a valid choice to be traversed by the algorithm, so any node queried before j must have
degree at least m

2ζ

√

n
i . Moreover, traversing node j would end epoch t, so every step in epoch t

traverses a node with degree at least m
2ζ

√

n
i . By event E6, any such node ! satisfies ! < zi log2(n) for

constant z = (4ζ)2. But we now note that, for any node ! < zi log2(n) traversed by the algorithm,

the probability that ! has a parent4 r < i/2 is at least
Wi/ log2(n)

W!
≥ 1

4ζ log2 n
. Any such node r has

degree greater than any node in It, again by Lemma 3.8, so if a queried node had such a parent then
the subsequent step must query a node of index at most 2t. Moreover, Lemma 3.11 implies that
this node of index at most 2t has a good path with probability at least 1/5. Thus each step of the
algorithm results in the end of epoch t with probability at least 1

20ζ log2 n
. We conclude that Yt is

stochastically dominated by a geometric random variable with mean 20ζ log2 n. Also, the number of
invocations of Lemma 3.11 made during epoch t is dominated by a geometric random variable with
mean 5.

4Note that even if the algorithm queried node ! via its connection to one of its parents, it will still have at least
one other parent that is independent of prior nodes queried by the algorithm since m ≥ 2.

13

We conclude that
∑log s1

t=log s0
Yt is dominated by the sum of at most log n geometric random vari-

ables, each with mean 20ζ log2 n = 600 log2 n. Concentration bounds for geometric random variables
(Lemma B.3) now imply that, with high probability, this sum is at most 210 log3 n. We conclude
that phase 2 ends after at most 210 log3 n steps with high probability. Similarly, the total number
of invocations of Lemma 3.11 made during the analysis of this phase is at most 6 log n with high
probability, again by Lemma B.3.

Analysis of phase 3 We turn to analyze the time it takes from the first time the algorithm
encountered a node of i ≤ s0 until node 1 is found. We start by noting that the induced graph on
the first s0 nodes is connected with probability 1− o(1) (see for example corollary 5.15 in [8], used

with n := log(n)). We note that by Lemma 3.8 every node j ≤ s0 has degree at least d = m
√
n

5 log1.9(n)
.

As there is a path from i to node 1 where all nodes have degree at least d, the algorithm, as it follows
the highest neighbor of its current set S, will reach node 1 before it had traversed any node of degree
less than d. We can therefore assume that the algorithm only traverses nodes of degree greater than
d.

By Lemma 3.8, each node j > s0 has deg(j) ≤ 6m log(j)
√

n
j with high probability, and therefore

any node j with degree > d must satisfy j < (60ζ)2 log5.8(n). For any such node, E1 implies that

Wj ≤ 11
10

(60ζ) log2.9(n)√
n

. Thus, for each such j, the probability that j is connected to the root is

w1/Wj ≥ 1
211 log3.9(n)

, by event E3. Chernoff bounds (Lemma B.1) then imply that such an event

will occur with high probability after at most O(log4(n)) steps. Thus, with high probability, phase
3 will end after at most s0 +O(log4(n)) = O(log4(n)) steps.

4 Omitted Proofs from Section 3.2

4.1 Proof of Lemma 3.7

We provide details for the proof of Lemma 3.7. This result follows that of Bollobás and Riordan [5]
quite closely; we present the differences only briefly for completeness.

The proof that events E1, E2, and E3 hold with high probability follows entirely without change,
except for the modification of certain constants. We therefore omit the details here.

We next show that event E4 holds with high probability, by showing that Pr[Ec
4 ∩ E1] = o(1).

Suppose that Ec
4 ∩ E1 holds and let δ = 1

log1.9(n)
√
n
. As E1 holds we have Ws0 ≤ 11 log log(n)

√
log(n)

10
√
n

.

As E3 does not hold there exists some interval [x, x + δ] with 0 ≤ x ≤ 11 log log(n)
√

log(n)

10
√
n

that

contains two of the Wi and hence two of the yi,j. Each such interval is contained in some interval

Jt = [tδ, (t + 2)δ] for 0 ≤ t ≤ δ−1 11 log log(n)
√

log(n)

10
√
n

< 2 log2.5(n). The probability that some yi,j

lands in such an interval is (4t + 4)δ2, so the probability that at least two lie in Jt is at most
m2n2(4t+ 4)2δ4/2 < 32m2/ log2.6(n). Thus

P(Ec
4 ∩ E1) ≤

2 log2.5(n)
∑

t=0

32m2/ log2.6(n) = o(1)

as required, given k ≥ 2.
We will next show that the event E5 holds with high probability. Recall that event E5 is {wi ≤

log(n)√
in

for s0 ≤ i ≤ n}. We will show that P(Ec
5 ∩E1) = o(1), which will imply that P(E5) = 1− o(1)

as required.

14

Suppose that Ec
5∩E1 holds. Then there is some i ≥ s0 is such that wi >

log(n)√
in

. Define δ = log(n)√
in

;

it must therefore be that the interval (Wi−1,Wi−1 + δ] does not contain Wi, and hence contains at
most m − 1 of the yi,j. Since E1 holds, we must have Ws0 ≥ 9

10

√ s0
n . We now define a partition of

[9
10

√ s0
n , 1] into intervals Jt = [xt, xt+1) for t ≥ 0, where we define x0 =

9
10

√ s0
n and xt = xt−1+

log(n)
xt−1nm

for all t ≥ 1, until xt ≥ 1. We note that there are at no more than mn intervals Jt in total. We also
note that, since E1 holds, each interval (Wi−1,Wi−1 + δ] contains at least m − 1 intervals Jt, each
satisfying xt ≥ Wi−1, one of which must contain no yi,j since E4 does not hold.

For a given t satisfying xt ≥ Wi−1, the number of yi,j in Jt has a Bi(mn, pt) distribution with

pt = x2t+1 − x2t ≤ 2xt
log(n)

xtnm
=

2 log(n)

nm
.

The probability that no yi,j lies in this interval is thus

(1− pt)
mn ≤ e−mnpt < e−2 log(n) = o(n−1).

Summing over the O(n) values of t shows that Pr(Ec
4 ∩E1) = o(1), as required.

4.2 Proof of Lemma 3.8

We will first prove that the following events hold with probability 1− o(1):

• E6 = {∀i ≥ s0 : deg(i) ≤ 6m log(n)
√

n
i }.

• E7 = {∀s0 ≤ i ≤ s1 that is typical : deg(i) ≥ m
2ζ

√

n
i }.

• E8 = {∀i ≤ s0 : deg(i) ≥ m
√
n

5 log2(n)
}.

Note that event E7 states that typical nodes have typical degree, motivating our choice of ter-
minology.

We start by noting that deg(i) =
∑n

j=i+1

∑m
k=1 Yk,j where each of the Yi,js is an i.i.d Bernoulli

random variable that gets the value of one with success probability of wi
Wj

. This follows from the fact

the each new node j sends m edges backwards and the probability of each hitting node i is exactly
wi
Wj

. From E1 and E5,

E(deg(i)) ≤
n
∑

j=i+1

m
log(n) 1√

in

9
10

√

j
n

 =
n
∑

j=i+1

(

m log(n)
10

9

1√
ij

)

.

By estimating the sum with an integral we get

E(deg(i)) ≤ 10m

9
log(n)

√
n√
i
.

From the multiplicative Chernoff bound (B.1) we conclude that with probability bigger than 1−1/n2,

deg(i) ≤ 3m log(n)
√
n√
i
for a given node i. By using the union bound, event E6 then holds with

probability 1− 1/n.
To prove E7 holds with probability 1− 1/n, we first recall that, for a typical node i, wi ≥ m

ζ
√
in
.

This implies, similarly to the first part of the proof, that

E(deg(i)) ≥ 10m

11

√
n

ζ
√
i
.

15

As Exp(deg(i)) ≥ 16m log(n) for any s0 ≤ i ≤ s1 (since s1 = n
225 log2 n

), we can invoke the Chernoff

bound (B.1) to get that E7 holds with probability bigger than 1 − 1/n2 for a given node i. This
follows by thinking of deg(i) as a sum of Bernoulli random variables Yi,j, where Yi,j succeeds with

probability
1

ζ
√

in

Wj
. By using the union bound, event E7 then holds with probability 1− 1/n.

The proof that E8 holds with probability 1− 1/n follows similarly to the proof for such a claim
for E7, by using the property that wi ≥ 1

log1.9(n)
√
n
.

To complete the proof of Lemma 3.8, we must show that

• ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
, and

• ∀j ≥ i ≥ s0, 1 ≤ k ≤ m : P[pk(j) ≤ i] ≥ 0.9
√
i√

j
.

The first item follows from events E1 and E3 of Lemma 3.7, plus the fact that P[pk(i) = 1] = w1
Wi

for
every i and k. The second item follows from event E1 of Lemma 3.7, plus the fact that P[pk(j) ≤
i] = Wi

Wj
.

4.3 Proof of Lemma 3.9

We first recall the statement of the lemma. Fix any sparse set Γ. Then for each i, s0 ≤ i ≤ s1,
and each k ∈ [m], the following statements are all true with probability at least 8/15 : pk(i) &∈ Γ,
pk(i) ≤ i/2, and pk(i) is typical.

Fix i and k. For each of the three statements in the lemma, we will bound the probability of
that statement being false.

First, we will show that P[pk(i) not typical] < 1/15. Note that, given that pk(i) falls within an
interval It, this probability is bounded by the total weight of atypical nodes in It divided by the
total weight of It. Since each atypical node j has weight at most 1

10
√
jn

and j > 2t for all j ∈ It, E4

implies that the total weight of atypical nodes in It is at most

β|It|
1

10
√
2tn

= β

√
2t

10
√
n
.

Also, E1 implies that the total weight of It is

W2t+1 −W2t ≤
√

2t

n

(

99

100

√
2− 101

100

)

.

Since these bounds hold for all t, we conclude that

P[pk(i) not typical] <
10β

99
√
2− 101

which will be at most 1/15 for β = 1/4.
Next, we will show that P[pk(i) > i/2] < 1

3 . Event E1 implies that

P[pk(i) > i/2] = 1−Wi/2/Wi ≤ 1− 99

101
√
2
<

1

3
.

Finally, we will show that P[pk(i) ∈ Γ] < 1/15. Given that pk(i) falls within an interval It, this
probability is bounded by the total weight of It ∩ Γ divided by the total weight of It. In this case,

due to the assumed sparsity of Γ and E5, the former quantity is at most |It| 1
(log logn)

√
2tn

≤
√

2t
n .

Also, as above, the total weight of It is at most
√

2t
n (

99
10

√
2 − 101

10). Since these bounds hold for all

t, we conclude that P[pk(i) ∈ Γ] < 1
99

√
2−101

which is at most 1/15.

Taking the union bound over these three events, we have that the probability none of them occur
is at least 8/15 as required.

16

4.4 Proof of Lemma 3.10

Let us first recall the statement of the lemma. Fix any sparse set Γ. Then for each node i ∈ [s0, s1],
the probability that HΓ(i) contains a node j ≤ s0 is at least 1/5.

Fix Γ and i, and write H = HΓ(i). Let C = [s0], the set of all nodes with index s0 or less. We
will show that the probability that H ∩ C = ∅ is at most 4/5.

Let ! be such that i ∈ I!. We will say that H saturates a given interval It if |H∩It| = 10 log log n.
(Note that we must have |H ∩ It| ≤ 10 log log n, from the definition of H). Let us first consider the
probability that H ∩ C = ∅ and H does not saturate any intervals. Since H does not saturate any
intervals, and since the set H ∪ Γ is itself a sparse set, then for each node j ∈ H and k ∈ [m] the
parent pk(j) will be added to H precisely if the conditions of Lemma 3.9 hold, which occurs with
probability at least 8/15. We can therefore couple the growth of the subtree H within the range
[s0, i] with the growth of a branching process in which each node spawns up to two children, each
with probability at least 8/15. In this coupling, the event H ∩ C = ∅ implies the event that this
branching process generates only finitely many nodes. Write p for the probability that the branching
process generates infinitely many nodes. Then p = 8

15p+(1− 8
15p)

8
15p, from which we obtain p = 15

64 .
We therefore have P[H ∩ C = ∅] ≤ 1 − p = 49

64 conditional on H not saturating any intervals. Next
consider the probability that H ∩C = ∅ given that H does saturate some interval. In this case, there
is some smallest t such that It is saturated by H. Then, given that H saturates It but no interval It′
for t′ < t, then we can again couple the growth of subtree H from interval It onward with 10 log log n
instances of the branching process described above, each one starting at a different node in H∩It. In
this case, the probability that H ∩C = ∅ is bounded by the probability that each of these 10 log log n
copies of the branching process all generate only finitely many children. This probability is at most
(49/64)10 log logn = o(1

log2(n)
). Thus, taking the union bound over all possibilities for the value of t

(of which there are at most log n), the probability that H ∩ C = ∅ given that H saturates some
interval is at most o(log n/ log2(n)) = o(1).

Combining these two cases, we see that P[H ∩ C = ∅] ≤ 49/64 + o(1) < 4/5.

4.5 Proof of Lemma 3.11

Write T = {t1, . . . , tk}. We will apply Lemma 3.10 to each node ti in sequence. First, for node t1,
define Γ1 = ∅. Lemma 3.10 with Γ = Γ1 implies that HΓ1(t1) contains a node j ≤ s0 with probability
at least 1/5.

For each subsequent node ti, define Γi = Γi−1 ∪ HΓi−1(i − 1). We claim that this Γi is sparse.
To see this, recall that each HΓ(ti−1) contains at most 10 log log n nodes in each interval It, and
Γi is the union of at most 16 log n such sets, so |Γi ∩ It| ≤ 160 log(n) log log(n) for each t. Since
|It| ≥ s0 ≥ 160 log(n)(log log(n))2, we have that |Γi ∩ It| ≤ |It|/ log log(n) and hence Γi is sparse.
Lemma 3.10 with Γ = Γi then implies that HΓi(ti) contains a node j ≤ s0 with probability at least
1/5. Moreover, this probability is independent of the events for nodes t1, . . . , ti−1, since HΓi(ti) is
constrained to not depend on nodes in Γi, which contains all nodes that influenced the outcome for
t1, . . . , ti−1.

We conclude that, for each i, HΓi(ti) contains a node j ≤ s0 with probability at least 1/5,
independently for each ti. For any given i, in the case that this event occurs and by the definition
of HΓi(ti), HΓi(ti) contains a path P from ti to j consisting entirely of typical nodes, all of which
are at most ti, and each node on the path P has creation time (index) at most half of that of its
immediate predecessor.

17

Algorithm 3 AlternateRandom

1: Select an arbitrary node u from the graph and initialize S = {u}.
2: while D(S) != V do

3: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.
4: if N(x)\S != ∅ then

5: Choose y ∈ N(x)\S uniformly at random and add y to S.
6: end if

7: end while

8: return S.

5 Minimum Dominating Set on Arbitrary Networks

We now consider the problem of finding a dominating set S of minimal size for an arbitrary graph G.
Even with full (non-local) access to the network structure, it is known to be hard to approximate the
Minimum Dominating Set Problem to within a factor of H(∆) in polynomial time, via a reduction
from the set cover problem, where H(n) ≈ ln(n) is the nth harmonic number. In this section we
explore how much local network structure must be made visible in order for it to be possible to
match this lower bound.

Guha and Khuller [16] design an O(H(∆))-approximate algorithm for the minimum dominating
set problem, which can be interpreted in our framework as a 2+-local algorithm. Their algorithm
repeatedly selects a node that greedily maximizes the number of dominated nodes, considering only
nodes within distance 2 of a previously selected node. As we show, the ability to observe network
structure up to distance 2 is unnecessary if we allow the use of randomness: we will construct
a randomized O(H(∆)) approximation algorithm that is 1+-local. We then show that this level
of local information is crucial: no algorithm with less local information can return a non-trivial
approximation.

5.1 A 1+-local Algorithm

We now present a 1+-local randomized O(H(∆))-approximation algorithm for the min dominating
set problem. Our algorithm obtains this approximation factor both in expectation and with high
probability in the optimal solution size5.

Roughly speaking, our approach is to greedily grow a subtree of the network, repeatedly adding
vertices that maximize the number of dominated nodes. Such a greedy algorithm is 1+-local, as this
is the amount of visibility required to determine how much a given node will add to the number
of dominated vertices. Unfortunately, this greedy approach does not yield a good approximation;
it is possible for the algorithm to waste significant effort covering a large set of nodes that are all
connected to a single vertex just beyond the algorithm’s visibility. To address this issue, we introduce
randomness into the algorithm: after each greedy addition of a node x, we will also query a random
neighbor of x. The algorithm is listed above as Algorithm 3 (AlternateRandom).

We now show that AlternateRandom obtains an O(H(∆)) approximation, both in expectation
and with high probability. In what follows, OPT will denote the size of the optimal dominating set
in an inplicit input graph.

Theorem 5.1. AlternateRandom is 1+-local and returns a dominating set S where E[|S|] ≤ 2(1 +
H(∆))OPT + 1 and P[|S| > 2(2 +H(∆))OPT] < e−OPT .

5Our algorithm actually generates a connected dominating set, so it can also be seen as an O(H(∆)) approximation
to the connected dominating set problem.

18

Proof. Correctness follows from line 2 of the algorithm. To show that it is 1+-local, it is enough
to show that line 3 can be implemented by a 1+-local algorithm. This follows because, for any
v ∈ N(S), |N(v)\D(S)| is precisely equal to the degree of v minus the number of edges between v
and other nodes in D(S).

We will bound the expected size of S via the following charging scheme. Whenever a node x
is added to S on line 4, we place a charge of 1/|N(x)\D(S)| on each node in N(x)\D(S). These
charges sum to 1, so sum of all charges increases by 1 on each invocation of line 4. We will show
that the total charge placed during the execution of the algorithm is at most (1 + H(∆))OPT in
expectation. This will imply that E[(|S|− 1)/2] ≤ (1 +H(∆))OPT as required.

Let T be an optimal dominating set. Partition the nodes of G as follows: for each i ∈ T , choose
a set Si ⊆ D({i}) containing i such that the sets Si form a partition of G. Choose some i ∈ T
and consider the set Si. We denote by a “step” any execution of line 4 in which charge is placed
on a node in Si. We divide these steps into two phases: phase 1 consists of steps that occur while
Si ∩ S = ∅, and phase 2 is all other steps. Note that since we never remove nodes from S, phase 1
occurs completely before phase 2.

We first bound the total charge placed on nodes in Si in phase 1. In each step, some number
k of nodes from Si are each given some charge 1/z. This occurs when |N(x)\D(S)| = z and
(N(x)\D(S)) ∩ Si = k. In this case, if phase 1 has not ended as a result of this step, there is a k/z
probability that a node in Si is selected on the subsequent line 6 of the algorithm, which would end
phase 1. We conclude that if the total charge added to nodes in Si on some step is p ∈ [0, 1], phase
1 ends for set Si with probability at least p. The following probabilistic lemma now implies that the
expected sum of charges in phase 1 is at most 1.

Lemma 5.2. For 1 ≤ i ≤ n, let Xi be a Bernoulli random variable with expected value pi ∈ [0, 1].
Let T be the random variable denoting the smallest i such that Xi = 1 (or n if Xi = 0 for all i).

Then ET

[

∑T
i=1 pi

]

≤ 1.

Proof. We proceed by induction on n. The case n = 1 is trivial. For n > 1, we note that

ET

[

T
∑

i=1

pi

]

= p1 + (1− p1)ET

[

T
∑

i=2

pi | X1 = 0

]

≤ p1 + (1− p1) · 1 = 1

where the inequality follows from the inductive hypothesis applied to X2, . . . ,Xn.

Consider the charges added to nodes in Si in phase 2. During phase 2, vertex i is eligible to be
added to S in step 4. Write uj = |Si\D(S)| for the number of nodes of Si not dominated on step j
of phase 2. Then, on each step j, uj − uj+1 nodes in Si are added to D(S), and at least uj nodes
in G are added to D(S) (since this many would be added if i were chosen, and each choice is made
greedily). Thus the total charge added on step j is at most uj−uj+1

uj
. Since u∆ = 0, the total charge

over all of phase 2 is at most
∑∆−1

j=1
uj−uj+1

uj
≤

∑∆−1
j=1

1
j ≤ H(∆). So the expected sum of charges

over both phases is at most 1 +H(∆).
We now turn to show that P[|S| > 2(2 +H(∆))OPT] < e−OPT .

We will use the same charging scheme we defined in the main text; it suffices to show that the total
charge placed, over all nodes in G, is at most (2 +H(∆))OPT with probability at least 1− e−OPT .
Note that our bound on the charges from phase 2 in the analysis of the expected size of |S| holds
with probability 1. it is therefore sufficient to bound the probability that the sum, over all i, of the
charges placed in phase 1 of Si is at most 2OPT .

For each node x added to S on line 4, consider the total number of nodes in N(x)\D(S) that lie
in sets Si that are in phase 1. Suppose there are k such nodes, and that |N(x)\D(S)| = z. Then

19

the sum of charges attributed to phase 1 increases by k/z on this invocation of line 4. Also, the
probability that any of these k nodes is added to S on the next execution of line 6 is at least k/z,
and this would end phase 1 for at least one set Si.

We conclude that, if the sum of charges for phase 1 increases by some p ∈ [0, 1], then with
probability p at least one set Si leaves phase 1. Also, no more charges can be attributed to phase
1 once all sets Si leave phase 1, and there are OPT such sets. The event that the sum of charges
attributed to phase 1 is greater than 2OPT is therefore dominated by the event that a sequence of
Bernoulli random variables X1, . . . ,Xn, each Xi having mean pi with

∑

pi > 2OPT , has sum less
than OPT . However, by the multiplicative Chernoff bound (lemma B.1), this probability is at most

P

[

n
∑

i=1

Xi < OPT

]

= P

[

n
∑

i=1

Xi <
1

2
E[

n
∑

i=1

Xi]

]

< e−OPT

as required.

We end this section by showing that 1+-locality is necessary for constructing good local approx-
imation algorithms.

Theorem 5.3. For any randomized 1-local algorithm A for the min dominating set problem, there
exists an input instance G for which E[|S|] = Ω(n)OPT , where S denotes the output generated by
A on input G.

Proof. We consider a distribution over input graphs G = (V,E) of size n, described by the following
construction process. Choose n− 2 nodes uniformly at random from V and form a clique on these
nodes. Choose an edge at random from this clique, say (u, v), and remove that edge from the
graph. Finally, let the remaining two nodes be u′ and v′, and add edges (u, u′) and (v, v′) to E. By
the Yao’s minmax principle [24], it suffices to consider the expected performance of a deterministic
1-local algorithm on inputs drawn from this distribution.

Note that each such graph has a dominating set of size 2, namely {u, v}. Moreover, any domi-
nating set of G must contain at least one node in C = {u, v, u′, v′}, and hence a 1-local algorithm
must query a node in C. However, if no nodes in C have been queried, then nodes u and v are
indistinguishable from other visible unqueried nodes (as they all have degree n− 1). Thus, until the
algorithm queries a node in C, any operation is equivalent to querying an arbitrary unqueried node
from V \{u′, v′}. With high probability, Ω(n) such queries will be executed before a node in C is
selected.

5.2 Partial Coverage Problems

We next study problems in which the goal is not necessarily to cover all nodes in the network, but
rather dominate only sections of the network that can be covered efficiently. We consider two central
problems in this domain: the partial dominating set problem and the neighbor collecting problem.

Partial Dominating Set In the partial dominating set problem we are given a parameter ρ ∈
(0, 1]. The goal is to find the smallest set S such that |D(S)| ≥ ρn.

We begin with a negative result: for any constant k and any k-local algorithm, there are graphs
for which the optimal solution has constant size, but with high probability Ω(

√
n) queries are required

to find any ρ-partial dominating set. Our example will apply to ρ = 1/2, but can be extended to
any constant ρ ∈ (0, 1).

20

Algorithm 4 AlternateRandomAndJump

1: Initialize S = ∅.
2: while D(S) "= V do

3: Choose a node u uniformly at random from the graph and add u to S.
4: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.
5: if N(x)\S "= ∅ then

6: Choose y ∈ N(x)\S uniformly at random and add y to S.
7: end if

8: end while

9: return S.

Theorem 5.4. For any randomized k-local algorithm A for the partial dominating set problem with
ρ = 1/2, there exists an input G with optimal partial dominating set OPT for which the expected
size of the output returned is E[|S|] = Ω(

√
n) · |OPT |, where S denotes the output generated by A

on input G.

Proof. Fix n and write r = n/2−
√
n−1

k . We define a distribution over input graphs on n nodes
corresponding to the following construction process. Build two stars, one with n/2−

√
n− 1 leaves

and one with
√
n − 1 leaves, where the nodes in these stars are chosen uniformly at random. Let

v and u be the roots of these stars, respectively. Construct r paths, each of length k + 1, again
with the nodes being chosen uniformly at random. Connect one endpoint of each path to a separate
leaf of the star rooted at v. Choose one of these r paths and connect its other endpoint to node u.
Last, add

√
n isolated nodes to get the number of nodes equal n in the construction. By the Yao

minmax principle [24], it suffices to consider the expected performance of a deterministic algorithm
on a graph chosen from this distribution.

For any such graph, the optimal solution contains two nodes: the root of each star. We claim that
any k-local algorithm performs at least

√
n queries in expectation. First, if the algorithm does not

return the root of the smaller star as part of its solution, then it must return at least O(
√
n) nodes

and hence it must use Ω(
√
n) queries. On the other hand, suppose that the algorithm does return

the root of the smaller star. Then it must have either traversed the root some node along the path
connecting the centers of the stars, or else found a node in the smaller star via a random jump query.
The latter takes Ω(

√
n) Jump queries, in expectation. For the former, note that an algorithm cannot

distinguish the path connecting the two stars from any other path connected to node v, until after a
vertex on one of the two paths has been queried. It would therefore take Ω(r) = Ω(n/k) queries in
expectation to traverse one of the nodes on the path between the two stars. We therefore conclude
that any algorithm must perform at least Ω(

√
n) queries in expectation in order to construct an

admissible solution.

Motivated by this lower bound, we consider a bicriteria result: given ε > 0, we compare the per-
formance of an algorithm that covers ρn nodes with the optimal solution that covers ρ(1+ ε)n nodes
(assuming ρ(1 + ε) ≤ 1). We show that a modification to Algorithm 3, in which jumps to uniformly
random nodes are interspersed with greedy selections, yields an O((ρε)−1H(∆)) approximation.

Theorem 5.5. Given any ρ ∈ (0, 1), ε ∈ (0, ρ−1 − 1), and set of nodes OPT with |D(OPT)| ≥
ρ(1 + ε)n, Algorithm 4 (AlternateRandomAndJump) returns a set S of nodes with |D(S)| ≥ ρn and
E[|S|] ≤ 3|OPT |(ρε)−1H(∆).

Proof. We apply a modification of the charging argument used in Theorem 5.1. Let OPT be a set
of nodes as in the statement of the theorem. We will partition the nodes of D(OPT) as follows:
for each i ∈ OPT , choose a set Si ⊆ D({i}) containing i, such that the sets Si form a partition of
D(OPT).

21

During the execution of algorithm 4, we will think of each node in D(OPT) as being marked
either as Inactive, Active, or Charged. At first all nodes in D(OPT) are marked Inactive.
During the execution of the algorithm, some nodes may have their status changed to Active or
Charged. Once a node becomes Active it never subsequently becomes Inactive, and once a node
is marked Charged it remains so for the remainder of the execution. Specifically, all nodes in
D(OPT) ∩D(S) are always marked Charged, in addition to any nodes that have been assigned a
charge by our charging scheme (described below). Furthermore, for each i ∈ OPT , the nodes in Si

that are not Charged are said to be Active if i ∈ D(S); otherwise they are Inactive.
Our charging scheme is as follows. On each iteration of the loop on lines 2-7, we will either

generate a total charge of 0 or of 1. Consider one such iteration. Let u be the node that is queried
on line 2 of this iteration. If u #∈ D(OPT)\D(S) then we will not generate any charge on this
iteration. Suppose instead that u ∈ D(OPT)\D(S). If no nodes are Active after u has been
queried6 then we place a unit of charge on u. Otherwise, let x be the node selected on line 4. Let
z = |N(x)\D(S)| be the number of new nodes dominated by x, and let z′ be the number of Active

nodes. Let w = min{z, z′}. We will then charge 1/w to w different vertices, as follows. First, we
charge 1/w to each vertex in D(OPT)∩ (N(x)\D(S)) (note that there are at most w such nodes). If
fewer than w nodes have been charged in this way, then charge 1/w to (arbitrary) additional Active

nodes until a total of w nodes have been charged. We mark all charged nodes as Charged.
We claim that the total expected charge placed over the course of the algorithm will be ρε|S|/3. To

see this note that, on each iteration of the algorithm, there are at least ρεn nodes in D(OPT)\D(S)
(since the algorithm has not yet completed). Thus, with probability at least ρε, a node from
D(OPT)\D(S) will be chosen on line 2. Thus, in expectation, at least a ρε fraction of iterations
will generate a charge. Thus, on algorithm termination, the sum of the charges on all vertices is
expected to be at least ρε|S|/3.

Choose some i ∈ OPT and consider set Si. We will show that the total expected charge placed on
the nodes of Si during the execution of algorithm A2 is at most (1 +H(∆)). Since there are |OPT |
such sets, and since only nodes in sets Si ever receive charge, this will imply that the total expected
charge over all nodes is at most (1+H(∆))OPT . We then conclude that ρε|S|/3 ≤ (1+H(∆))|OPT |,
completing the proof.

The analysis of the total charge placed on nodes of Si is similar to the analysis in Theorem 5.1.
In expectation, a total charge of 1 will be placed on the nodes of Si before i ∈ D(S) (this is phase
1 in the proof of Theorem 5.1). After i ∈ D(S), all nodes in Si\D(S) are marked Active. When a
node is crawled on line 4, if k > 0 nodes in Si\D(S) are Active, then it must be that i ∈ D(S) but
i #∈ S. Thus, i is a valid choice for the node selected on line 4. So, on any such iteration, it must be
that the node selected on line 4 dominates at least k new nodes. We conclude that each node that
is charged on this iteration receives a charge of at most 1/k.

To summarize, if k nodes of Si are Active on a given iteration, then any nodes in Si can be
charged at most 1/k on that iteration. Since |Si| ≤ ∆, we conclude in the same manner as in Theorem
5.1 that the total charge allocated to nodes in Si, after the first node in Si becomes Active, is at
most

∑∆
k=1

1
k = H(∆). We conclude that the total expected charge placed on all nodes in Si is at

most 1 +H(∆), as required.

The Neighbor Collecting Problem We next consider the objective of minimizing the total cost
of the selected nodes plus the number of nodes left uncovered: choose a set S of G that minimizes
f(S) = c|S| + |V \D(S)| for a given parameter c > 0. This problem is motivated by the Prize-
Collecting Steiner Tree problem.

6This situation can occur only when u is the only node in Si\D(S) for some i.

22

Note that when c < 1 the problem reduces to the minimum dominating set problem: it is always
worthwhile to cover all nodes. Assuming c ≥ 1, the 1+-local algorithm for the minimum dominating
set problem achieves an O(cH(∆)) approximation.

Theorem 5.6. For any c ≥ 1 and set OPT minimizing f(OPT), algorithm AlternateRandom
returns a set S for which E[f(S)] ≤ 2c(1 +H(∆))f(OPT).

We also give a lower bound of Ω(c,H(∆)) for this problem, illustrating that the show that the
dependency on c is unavoidable. We also show that Theorem 5.6 cannot be extended to 1-local
algorithms without significant loss.

Proof of Theorem 5.6. We have f(OPT) = |V−D(OPT)|+c|OPT | and f(OPT ∪{V−D(OPT)}) =
c|OPT ∪ {V −D(OPT)}| = c|OPT | + c|V −D(OPT)| ≥ c|T ∗| where T ∗ is a minimum dominat-
ing set of the graph. Next, we know from Theorem 5.1 that |T ∗| ≥ (2(1 + H(∆)))−1E[|S|] =
(2(1 +H(∆)))−1c−1f(S).

Finally, f(OPT) = |V − D(OPT)| + c|OPT | so c|OPT | + c|V − D(OPT)| ≤ cf(OPT). We
conclude that f(S) ≤ 2(1 +H(∆))cf(OPT).

Since the neighbor-collecting problem contains the minimum dominating set problem as a special
case (i.e. when c = 1), we cannot hope to avoid the dependency on H(∆) in the approximation factor
in Theorem 5.6. As we next show, the dependence on c in the approximation factor we obtain in
Theorem 5.6 is also unavoidable.

Theorem 5.7. For any randomized k-local algorithm A for the neighbor-collecting problem where
k = o(n), there exists an input instance G for which E[f(S)] = Ω(max{c, log∆}) · f(OPT), where
S denotes the output generated by A on input G.

Proof. Give n we construct a connected graph on n nodes in the following way. Create two star
subgraphs one on n −

√
n − 2k nodes and one on

√
n nodes. We connect one arbitrary leaf of the

big star subgraph to one arbitrary leaf of the smaller star subgraph. To complete the construction
we choose k spoke nodes from the bigger star subgraph and connect each of them to one new node
of degree one. This gives us a connected graph on n vertices. Note that OPT is at most 2c + k as
it can always choose the hubs of the two stars. The worse cost of the min dominating set algorithm
is at most (1 + 2k + 2)c. This happens when the algorithms starts from a spoke in the bigger
star component and need to traverse all k spokes that were assigned one new neighbor. Only after
traversing all such nodes we move into the spoke of the small star subgraph and then the ub of the
smaller star subgraph. Thus the approximation ratio is at least (1+2k+2)c

2c+k . This expression is the
biggest (as a function of k) for k = Θ(c). In that case the expression is Θ(c).

Finally, one cannot move from 1+-local algorithms to 1-local algorithms without significant loss:
every 1-local algorithm has a polynomial approximation factor.

Theorem 5.8. For any randomized 1-local algorithm A for the neighbor-collecting problem, there
exists an input instance G for which E[f(S)] = Ω(

√
n/c) · f(OPT), where S denotes the output

generated by A on input G.

Proof. We construct our graph G as follows. Build a clique on n−
√
n vertices and remove one edge

(u, v). Next build a star with
√
n− 1 leaves, say with root r, and label one of the leaves v′. Finally,

add edge (v, v′).
For this graph, the set {r, v} has cost 2c. Consider the set S returned by a 1-local algorithm; we

will show that S will have cost at least
√
n with high probability. If S does not include r or v then

it must leave
√
n nodes uncovered (or else contain at least

√
n vertices), in which case it has cost at

least
√
n. So S must contain some node in the star centered at r. A node in the star can be found

23

either via a random query or by querying node v. Since the star contains
√
n nodes, it would take

Ω(
√
n) random queries to find a node in the star with high probability. On the other hand, node v

is indistinguishable from the other nodes in the (n −
√
n)-clique until after it has been queried; it

would therefore take Ω(n) queries to the nodes in the clique to find v, again with high probability.
We conclude that the cost of S is at least

√
n with high probability, as required.

6 Conclusions

We presented a model of computation in which algorithms are constrained in the information they
have about the input structure, which is revealed over time as expensive exploration decisions are
made. Our motivation lies in determining whether and how an external user in a network, who
cannot make arbitrary queries of the graph structure, can efficiently solve optimization problems in
a local manner. Our results suggest that inherent structural properties of social networks may be
crucial in obtaining strong performance bounds.

Another implication is that the designer of a network interface, such as an online social network
platform, may gain from considering the power and limitations that come with the design choice
of how much network topology to reveal to individual users. On one hand, revealing too little
information may restrict natural social processes that users expect to be able to perform, such
as searching for potential new connections. On the other hand, revealing too much information
may raise privacy concerns, or enable unwanted behavior such as automated advertising systems
searching to target certain individuals. Our results suggest that even minor changes to the structural
information made available to a user may have a large impact on the class of optimization problems
that can be reasonably solved by the user.

Acknowledgments

The author Sanjeev Khanna was supported in part by NSF awards CCF-1116961 and IIS-0904314,
and by ONR MURI grant N00014-08-1-0747.

References

[1] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In SODA, pages 1132–1139, 2012.

[2] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using pagerank
vectors. In FOCS, pages 475–486, 2006.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–512,
1999.

[4] Béla Bollobás. Mathematical results on scale-free random graphs. in Handbook of Graphs and
Networks: From the Genome to the Internet, 2003.

[5] Béla Bollobás and Oliver Riordan. The diameter of a scale-free random graph. Combinatorica,
24(1):5–34, 2004.

[6] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor E. Tusnády. The degree sequence of a
scale-free random graph process. Random Struct. Algorithms, 18(3):279–290, 2001.

[7] Mickey Brautbar and Michael Kearns. Local algorithms for finding interesting individuals in
large networks. In Innovations in Theoretical Computer Science (ITCS), pages 188–199, 2010.

24

[8] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in
sublogarithmic time. In STOC, pages 21–30, 2011.

[9] D. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized algo-
rithms. Cambridge University Press, 2009.

[10] D. Easley and J. Kleinberg. Networks, Crowds, and Markets, reasoning about a Highly Connected
World. Cambridge University Press, 2010.

[11] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast discovery of connection
subgraphs. In KDD, pages 118–127, 2004.

[12] Abraham Flaxman, Alan Frieze, and Trevor Fenner. High degree vertices and eigenvalues in
the preferential attachment graph. In Sanjeev Arora, Klaus Jansen, Jos Rolim, and Amit
Sahai, editors, Approximation, Randomization, and Combinatorial Optimization.. Algorithms
and Techniques, volume 2764 of Lecture Notes in Computer Science, pages 795–806. Springer
Berlin / Heidelberg, 2003.

[13] George Giakkoupis and Thomas Sauerwald. Rumor spreading and vertex expansion. In SODA,
pages 1623–1641, 2012.

[14] George Giakkoupis and Nicolas Schabanel. Optimal path search in small worlds: dimension
matters. In STOC, pages 393–402, 2011.

[15] Oded Goldreich. Introduction to testing graph properties. In Property Testing, pages 105–141,
2010.

[16] Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

[17] Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In FOCS, pages 22–31, 2009.

[18] Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem. Inf.
Process. Lett., 70(1):39–45, 1999.

[19] Jon M. Kleinberg. The small-world phenomenon: an algorithm perspective. In STOC, pages
163–170, 2000.

[20] Moni Naor and Larry Stockmeyer. What can be computed locally? In Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing, STOC ’93, pages 184–193, New
York, NY, USA, 1993. ACM.

[21] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM Journal on Discrete
Math, 25:1562–1588, 2011.

[22] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
ITCS, pages 223–238, 2011.

[23] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and
its application to nearly-linear time graph partitioning. CoRR, abs/0809.3232, 2008.

[24] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In FOCS, pages 222–227, 1977.

25

APPENDIX

A Omitted proofs from Section 3.1

A.1 Degree of the First Fixed k Nodes in Preferential Attachment Networks

In this section we prove that for any fixed k, with high probability, the root node in a preferential
attachment network has degree at least m

√
n/ log(n) and the degree of the i’th node, i ≤ k, is at

least m
√
n

4 log2(n)
.

Lemma A.1. Let k be fixed. Consider a preferential attachment network on n nodes in which

each node generates m links. Then, with probability at least 1 − o(n−1), deg(1) ≥ m
√
n

logn and for all

i ≤ k : deg(i) ≥ m
√
n

4 log2 n
.

Proof. We will use the notation from Appendix 4. In the PA formulation of Appendix 4 we have
that deg(1) =

∑n
j=2

∑m
k=1 Yk,j where each of the Yk,js is an i.i.d Bernoulli random variable that gets

the value of one with success probability w1
Wj

. From E1 and E3 in Lemma 3.7, we have

E(deg(1)) >
n
∑

j=s0

m
4/ log(n)

√
n

9
10

√

j
n

 =
n
∑

j=s0

(

m
40

9

1

log(n)
√
j

)

.

By estimating the sum with an integral we get

E(deg(1)) >
39m

9

√
n

log(n)
.

From the multiplicative Chernoff bound (B.1) we conclude that with probability bigger than 1−1/n,

deg(1) ≥ m
√
n

log(n) , as required. By repeating the same proof and using the lower bound on the wight

of a node with small index (event E4 instead of event E3), we get that for any i ≤ k, with probability
bigger than 1− 1/n,

deg(i) ≥ m
√
n

4 log2(n)
.

The complete claim follows from the union bound.

B Concentration Bounds

Lemma B.1. (Multiplicative Chernoff Bound) Let Xi be n i.i.d. Bernoulli random variables with
expectation µ each. Define X =

∑n
i=1Xi. Then,

For 0 < λ < 1, P r[X < (1− λ)µn] < exp(−µnλ2/2).
For 0 < λ < 1, P r[X > (1 + λ)µn] < exp(−µnλ2/4).
For λ > 1, P r[X > (1 + λ)µn] < exp(−µnλ/2).

Lemma B.2. (Additive Chernoff Bound) Let Xi be n i.i.d. Bernoulli random variables with expec-
tation µ each. Define X =

∑n
i=1Xi. Then, for λ > 0,

Pr[X < µn− λ] < exp(−2λ2/n).
Pr[X > µn+ λ] < exp(−2λ2/n).

Lemma B.3. (Concentration of Geometric Random Variables) Let Yi be n i.i.d. Geometric random
variables with expectation µ each. Define Y =

∑n
i=1 Yi. Then, for λ > 0,

Pr[Y > (1 + λ)µn] < exp(−2nλ2).

Lemma B.3 can be found, for example, in Chapter 2 of [9].

26

