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1. INTRODUCTION
Selfish routing is a fundamental problem in algorithmic game theory, and was one of
the first problems which were intensively studied in this field [Koutsoupias and Pa-
padimitriou 2009; Mavronicolas and Spirakis 2001; Roughgarden and Tardos 2002;
Czumaj 2004]. A main question in this field concerns the cost of selfishness: how
much performance is lost because agents behave selfishly, without regard for the other
agents or for any global objective function?

The established measure for this performance loss is the price of anarchy
(PoA) [Koutsoupias and Papadimitriou 2009]. This is the worst-case ratio between the
value of a Nash equilibrium, where no player can deviate unilaterally to improve, and
the value of the optimal routing.
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Of particular interest to computer science are network congestion games, where
agents choose routing paths and experience delays (latencies) depending on how much
other players also use the edges on their paths. Such games are guaranteed to admit
at least one Nash equilibrium [Rosenthal 1973]. Generally, the PoA for a selfish rout-
ing problem may depend on the network topology, the number of players (including the
non-atomic case where an infinite number of players each controls a negligible fraction
of the solution), the type of latency functions on the links, and the objective functions
of the players and of the system (the latter is often called the social cost function).

Most of the existing research has focused on the PoA for minimizing the total la-
tency of all the players [Roughgarden 2003; Aland et al. 2006]. Indeed, this measure
is so standard that it is often not even mentioned in titles or abstracts. In most cases,
a symmetric setting was considered where all players have the same source node and
the same destination node, and hence the same strategy set. Christodoulou and Kout-
soupias [2005] and Awerbuch et al. [2005] independently proved that the PoA of the
atomic congestion game (symmetric or asymmetric) with linear latency is at most 2.5.
This bound is tight. The bound grows to 2.618 for weighted demands [Awerbuch et al.
2005], which is again a tight bound. In non-atomic congestion games with linear laten-
cies, the PoA is at most 4/3 [Roughgarden and Tardos 2002]. This is witnessed already
by two parallel links. The same paper also obtained a generalized result for polynomial
latencies.

In this work, we regard as social cost function the maximum latency a player expe-
riences. While this cost function was suggested already in [Koutsoupias and Papadim-
itriou 1999], it seems much less understood. For general topologies, the maximum PoA
of atomic congestion games with linear latency is 2.5 in single-commodity networks
(symmetric case, all player choose paths between the same pair of nodes), but it grows
to Θ(

√
k) in k-commodity networks (asymmetric case, k players have different nodes to

connect via a path) [Christodoulou and Koutsoupias 2005]. The PoA further increases
with additional restrictions to the strategy sets. Gairing et al. [2006] showed that when
the graph consists of n parallel links and each player’s choice can be restricted to a par-
ticular subset of these links, the maximum PoA lies in the interval [n− 1, n).

For non-atomic selfish routing, Lin et al. [2011] showed that the PoA of symmetric
games on n-node networks with arbitrary continuous and non-decreasing latency func-
tions is n− 1, and exhibited an infinite family of asymmetric games whose PoA grows
exponentially with the network size.

Our setting:. In this work, we analyze the price of anarchy of a maximum latency
network congestion game for a concrete and useful network topology, namely rings.
Rings are frequently encountered in communication networks. Seven self-healing
rings form the EuroRings network, the largest, fastest, best-connected high-speed net-
work in Europe, spanning 25,000 km and connecting 60 cities in 18 countries.

As its name suggests, the Global Ring Network for Advanced Applications Devel-
opment [GLORIAD 2013] is an advanced science internet network constructed as an
optical ring around the Northern Hemisphere. The global ring topology of the network
provides scientists, educators and students with advanced networking tools, and en-
ables active, daily collaboration on common problems.

It is therefore worthwhile to study this topology in particular. Indeed, considerable
research has already gone into studying rings, in particular in the context of designing
approximation algorithms for combinatorial optimization problems [Anshelevich and
Zhang 2008; Blum et al. 2001; Cheng 2004; Schrijver et al. 1998; Wang 2005].

As in most previous work, we assume that traffic may not be split, because this
causes the problem of packet reassembly at the receiver and is therefore generally
avoided. Furthermore, we assume that the edges (“links”) have linear latency func-
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tions. That is, each link e has a latency function `e(x) = aex+be, where x is the number
of players using link e and ae and be are nonnegative constants.

For the problem of minimizing the maximum latency on a ring, even assuming a
central authority, the question of how to route communication requests optimally is
nontrivial; to the best of our knowledge, it is not known whether this problem is in P.
It is known for general (directed or undirected) network topologies that already the
price of stability (PoS), which is the ratio of the value of the best Nash equilibrium to
that of the optimal solution [Anshelevich et al. 2004], is unbounded for this objective
function even for linear latency functions [Chen et al. 2010; 2013]. However, this is not
the case for rings. It has been shown that for any instance on a ring, either its PoS
equals 1, or its PoA is at most 6.83, giving a universal upper bound 6.83 on PoS for the
selfish ring routing [Chen et al. 2010]. The same paper also gave a lower bound of 2 on
the PoA. Recently, an upper bound of 16 on the PoA was obtained [Chen et al. 2013].

Our results:. In this paper, we show that the PoA for minimizing the maximum la-
tency on rings is exactly 2. This improves upon the previous best known upper bounds
on both the PoA and the PoS [Chen et al. 2013; 2010]. Achieving the tight bound re-
quired us to upper bound a high-dimensional nonlinear optimization problem. Our
result implies that the performance loss due to selfishness is relatively low for this
problem. Thus, for ring routing, simply allowing each agent to choose its own path will
always result in reasonable performance.

Additional Remarks. The lower bound example (see Figure 1) can be modified to give
a lower bound of 2d for latency functions that are polynomials of degree at most d, cf.
Section 8. Furthermore, we show that, for a generalization of this problem which we
will call complement games, the PoA is at most 2.15.

Proof overview:. Our proof consists of two main parts: first, we analyze for Nash
equilibria the maximum ratio of the latency of any player to the latency of the entire
ring, and then we analyze the ratio of the latency of the entire ring in a Nash equilib-
rium to the maximum player latency in an optimal routing. In the first part we show
that this ratio is at most roughly 2/3; the precise value depends on whether or not
every link of the ring is used by at least one player in the Nash equilibrium.

For the second ratio, we begin by showing the very helpful fact that it is sufficient
to consider only instances where no player uses the same path in the Nash routing as
in the optimal routing. For such instances, we need to distinguish two cases. The first
case deals with instances for which there exists a link that in the Nash equilibrium is
not used by any player. For such instances we use a structural analysis to bound the
second ratio from above by 2 + 2/k, where k is the number of agents in the system.

For the main case in which the paths of the players in the Nash equilibrium cover
the ring, we show that the second ratio is at most 3. We begin by using the standard
technique of adding up the Nash inequalities which state that no player can improve
by deviating to its alternative path. This gives us a constraint which must be satisfied
for any Nash equilibrium, but this does not immediately give us an upper bound for the
second ratio. Instead, we end up with a nonlinear optimization problem: maximize the
ratio under consideration subject to the Nash constraint. The analysis of this problem
was the main technical challenge of this paper. We use a series of modifications to reach
an optimization problem with only five variables, which, however, is still nonlinear. It
can be solved by Maple, but we also provide a formal solution.

2. THE SELFISH RING ROUTING MODEL
Let I = (R, `, (si, ti)i∈[k]) be a selfish ring routing (SRR) instance, where R = (V,E)
is a ring and where for each agent i ∈ [k] the pair (si, ti) denotes the source and the
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destination nodes of agent i. We sometimes refer to the agents as players. For every
link e ∈ E we denote the latency function by `e(x) = aex+ be, where ae and be are non-
negative constants; without loss of generality we assume that ae, be are nonnegative
integers. This is feasible since real-valued inputs can be approximated arbitrarily well
by integers by scaling the input appropriately.

For any subgraph P of R (written as P ⊆ R), we slightly abuse the notation and
identify P with its link set E(P). If Q is a path on R with end nodes s and t, we use
P\Q to denote the graph obtained from P by removing all nodes in V (P)∩V (Q) \ {s, t}
(all internal nodes of Q which are contained in P), and all links in P ∩Q (all links of Q
which are contained in P).

For any feasible routing π = {P1, . . . ,Pk}, where Pi is a path on R between si and ti,
i = 1, . . . , k, we denote by M(π) := maxi∈[k] `(Pi, π) the maximum latency of any of the
k agents. Here we abbreviate by `(P, π) the latency

`(P, π) :=
∑
e∈P

(ae|{i ∈ [k] | e ∈ Pi}|+ be)

of a subgraph P ⊆ R in π. We say that π is a Nash equilibrium (routing) if no agent
i ∈ [k] can reduce its latency `(Pi, π) by switching Pi to the alternative path R\Pi,
provided other agents do not change their paths.

Sometimes we are only interested in the latency caused by one additional agent and
we write ||P||a :=

∑
e∈P ae. Similarly we abbreviate ||P||b :=

∑
e∈P be.

Let πN = {N1, . . . ,Nk} be some fixed worst Nash routing (i.e., a Nash equilibrium
with maximum system latency M(πN )), and let Π∗ be the set of optimal routings of I.

For any π = {Q1, . . . ,Qk} ∈ Π∗, let

h(π) := |{i ∈ [k] : Ni 6= Qi}|.
I.e., h(π) is the number of agents for which their Nash routings are not the same as
their optimal routings. We choose π∗ = {Q1, . . . ,Qk} ∈ Π∗ to be an optimal routing that
minimizes h = h(π∗). Without loss of generality, we assume that {i ∈ [k] : Ni 6= Qi} =
[h] := {1, . . . , h}. We call the agents 1, . . . , h switching agents and we refer to the agents
in [k]\[h] as non-switching ones.

For brevity, we write P ∗ := `(P, π∗) and P := `(P, πN ). Similarly, we let M :=M(πN )
and M∗ :=M(π∗). Abusing notation, for any link e ∈ R, we set

π∗(e) := |{i ∈ [h] | e ∈ Qi}|,
the number of switching players whose optimal paths traverse e. Analogously, πN (e) :=
|{i ∈ [h] | e ∈ Ni}|.

3. MAIN RESULT AND OUTLINE OF THE PROOF
The purpose of this paper is the proof of the following statement.

THEOREM 3.1. The price of anarchy for selfish ring routing with linear latencies
is 2.

As mentioned in the introduction, a simple example for which the price of anarchy
is two has been given already in [Chen et al. 2010]. This is the example depicted in
Figure 1. As is easy to verify, M∗ = 1 and M = 2. Hence, our result is tight. It suffices
to prove the upper bound in Theorem 3.1. That is, we need to show that for all SRR
instances I the ratio M/M∗ is at most two.

3.1. Main Steps
The main steps for proving M/M∗ ≤ 2 are as follows.
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Fig. 1. A 2-player SRR instance with PoA = 2.

1. We begin by restricting the set of Nash routings we need to consider. We show that
we can assume without loss of generality that in πN there is at most one player
that uses the same path as in π∗, i.e., h ≥ k − 1 (Section 3.2). We call the case
where there is such a player the singular case; if there is not such a player, we are
in the nonsingular case.

2. We say that the Nash equilibrium πN is a covering equilibrium if the Nash paths
of the switching agents 1, . . . , h cover the ring, i.e., if ∪i∈[h]Ni = R. For any non-
covering equilibrium, we use a structural analysis of πN to show (Section 4) that
the PoA is less than two for h ≥ 3.

3. We proceed by showing (Lemma 5.1) that for every covering equilibrium, the ratio
M/R is at most 2/3, where R = `(R, πN ) is the total latency of all links on R under
the Nash routing πN .

4. Finally, in the remainder of Section 5, we show that R/M∗ ≤ 3 for any covering
equilibrium πN . This is the main part of the proof. Combining this with the third
statement concludes the proof of Theorem 3.1 for covering equilibria.

Some specific cases with small values of h need to be handled separately. Our proof
needs the following technical lemma which is true for both covering and non-covering
equilibria. It shows that any two Nash paths of agents that use different paths in πN

and in π∗ share at least one common link.

LEMMA 3.2. For all i, j ∈ [h], the optimal paths Qi and Qj do not jointly cover the
entire ring, equivalently their complements Ni and Nj are not link-disjoint.

PROOF. Assume there exist two agents i, j ∈ [h] such that Qi ∪ Qj = R. Consider
the routing π′ which is exactly the same as π∗, except for these two agents i and j. For
any link e ∈ Qi∩Qj we have π′(e) = π∗(e)−2, and for every link e ∈ (Qi\Qj)∪ (Qj\Qi)
the number of agents on this link does not change, i.e., π′(e) = π∗(e). Since ae ≥ 0 for
all e ∈ E, this yields M(π′) ≤ M∗. Hence, π′ ∈ Π∗. But we also have h(π′) < h(π∗),
contradicting the choice of π∗ given in Section 2.

3.2. Reduction to Singular and Nonsingular Instances
The next lemma shows that we only need consider the case where at most one player
is not switching.

LEMMA 3.3. Consider any selfish ring routing instance I = (R, `, (si, ti)i∈[k]) with
linear latencies. Let π∗ be an optimal routing and let πN be a Nash routing. Suppose
there is an agent q ∈ [k] that uses the same path in πN as in π∗. Then there exists a
selfish routing instance I ′ = (R, `′, (si, ti)i∈[k]\{q}) with linear latency functions `′e(x)
such that
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— the non-switching agent q is removed from I to get I ′,
— the routing πN restricted to the remaining agents, denoted as πN ′, is a Nash equilib-

rium for I ′,
— the total ring latencies satisfy `′N (R) := `′(R, πN ′

) = `N (R), and
— we have M ′(opt′) ≤ M(π∗) for the maximum latencies of individual agents. Here,

opt′ denotes an optimal routing for I ′ and M ′(·) denotes the maximum latency of a
routing in I ′.

PROOF. By definition, player q uses path Qq in both πN = {Ni : i ∈ [k]} and π∗ =
{Qi : i ∈ [k]}. Remove player q from I. For every link e ∈ Qq set `′e(x) := `e(x) +
ae = aex + be + ae. The latency functions of all other links are unchanged. Denote the
resulting instance (R, `′, (si, ti)i∈[k]\{q}) by I ′.

Every routing π for I induces a routing π′ for I ′ in the natural way, by omitting the
routing for player q. From the modified latency defined above, we see that the latency
of every edge in an induced routing is the same as the original latency in I. It follows
immediately that

— a routing which is a Nash equilibrium in I induces a Nash equilibrium routing in
I ′,

— the latency of the entire ring of an induced routing is also the same as the ring
latency of the original routing in I, and

— the maximum latency of the induced routing π∗′ of the optimal routing π∗ is not
larger than the maximum latency of the optimal routing itself, i.e.,M ′(π∗′) ≤M(π∗).

By definition, the optimal routing opt′ for instance I ′ cannot be worse than the fea-
sible routing π∗′, and we conclude M ′(opt′) ≤M ′(π∗′) ≤M(π∗).

We call the Nash routing πN singular if M(πN ) > maxi∈[h] `
N (Ni), i.e., if the max-

imum latency in πN is obtained only by an agent which uses the same routing in
πN as it uses in π∗. We call πN nonsingular otherwise. That is, πN is nonsingular if
M = M(πN ) = maxi∈[h] `

N (Ni). Since we are interested in upper bounding the ratio
M/M∗, applying Lemma 3.3 repeatedly enables us to make the following assumption.

ASSUMPTION 1. h ≤ k ≤ h+ 1 and h = k − 1 if and only if πN is singular.

Under Assumption 1, for any singular case (πN , I), Lemma 3.3 produces a nonsin-
gular case (πN ′

, I ′) with `′N (R, I ′)/M ′(opt′, I ′) ≥ `N (R, I)/M(π∗, I). Therefore we can
upper bound the price of anarchy, which is the worst-case ratio M/M∗, for the SRR
problem as follows:

— upper bound the ratio R/M∗ = `N (R, I)/M(π∗, I) only for nonsingular instances I
where no player uses the same path in πN and π∗, and

— upper bound the ratio M/R =M(πN , I)/`N (R, I) for general instances I.

This is what we will do in the remainder of the paper.

4. NON-COVERING EQUILIBRIA
In this section, we use a structural analysis on the non-covering equilibrium πN to
show that the PoA is less than two for h ≥ 3.

THEOREM 4.1. The ratio M/M∗ is at most 4
3 + 5

3h for instances with ∪i∈[h]Ni 6= R.

The proof of Theorem 4.1 consists of the following two steps. First we show that
the ratio R/M∗ is at most 2 + 2

h . This is Lemma 4.2. Next we show (Lemma 4.3) that
for any uncovered instance, if R/M∗ ≤ α for some constant α, then M/M∗ is at most
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Fig. 2. Proof for non-covering equilibria. For this figure, we have mapped the ring to the real interval shown
at the bottom whose both ends represent the same node v of the ring R.

(2α + 1
h )/3. This proves Theorem 4.1, which itself proves Theorem 3.1 for the non-

covered case with h ≥ 3. The remaining case of non-covering equilibria with h = 2 is
handled in Section 6, where we show M/M∗ ≤ 2 directly by utilizing the structural
properties of rings.

LEMMA 4.2. Let I be an SRR instance with ∪i∈[h]Ni 6= R. Then R/M∗ ≤ 2 + 2
h .

PROOF. By Lemma 3.3, it suffices to consider the nonsingular case. That is, we
assume without loss of generality that k = h, i.e., we assume that Nj = R − Qj for
all j.

Consider an arbitrary link e that is not used in any Nash path. Order the players
by nondecreasing distance (in links) of their clockwise first endpoint from e. We claim
that all h paths in N1,N2, . . . ,Nh share a common link. This holds because if there
were three agents i1 < i2 < i3 (using the ordering above) that do not all share a same
link, then i1 and i3 would not share a link at all, since ∪i∈[h]Ni 6= R. However, this
contradicts Lemma 3.2.

Let p be an agent with an endpoint closest to e in the clockwise direction, and q be
an agent with an endpoint closest to e in the counterclockwise direction. Then by the
above ∪i∈[h]Ni ⊆ Np ∪ Nq  R. Let P be the longest path in Np ∪ Nq with end links g1
and g2 (possibly {g1} = {g2} = P) such that πN (gi) > h/2 for i = 1, 2 and

πN (g) ≤ h/2 for any link g ∈ Np ∪Nq \ P. (1)

See Figure 2. Since we have g1 = g2 or πN (g1)+π
N (g2) > h, there exists an agent j ∈ [h]

such that {g1, g2} ⊆ Nj and thus P ⊆ Nj . Let Y ⊆ Qj consist of links e with πN (e) ≥ 1

and Z = Qj\Y. It can be seen from (1) that Qj ≤ h
2 ||Y||a + ||Y||b + ||Z||b and therefore

R = Qj +Nj ≤ 2Qj + ||Y||a + ||Z||a (by definition of a Nash equilibrium)
≤ (h+ 1)||Y||a + 2||Y||b + ||Z||a + 2||Z||b. (2)

Since

Q∗
j ≥ h

2
||Y||a + ||Y||b + h||Z||a + ||Z||b, (3)

the ratio of the upper bound (2) for R to the lower bound (3) for Q∗
j is maximized for

||Z||a = ||Z||b = ||Y||b = 0 and is (h+ 1)/(h/2) = 2 + 2/h.

To conclude the proof of Theorem 4.1, we finally show the following.

LEMMA 4.3. The ratio M/M∗ is at most (2α+ 1
h )/3 for instances with R/M∗ ≤ α.
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PROOF. It suffices to show that for any agent i ∈ [k] the inequalityNi ≤ 1
3 (2α+

1
h )M

∗

holds. Consider an arbitrary agent i ∈ [k]. Let Ci := R\Ni, the complement of player i’s
path Ni. We partition the link set of Ci into the set of links Y := {e ∈ Ci | πN (e) ≥ 1}
which, in routing πN , have at least one agent on it and the set of links Z := Ci\Y with
no players on it in routing πN . (The set Z might be empty.)

Since h is the number of players whose paths in πN deviate from the one in π∗, the
links e in Z satisfy π∗(e) ≥ h, that is, there are at least h players using these links in
the routing π∗. Hence M∗ ≥ h||Z||a. In the routing πN , if player i would switch from
path Ni to Ci, it would have a latency of at most Ci + ||Y||a + ||Z||a. Since πN is a Nash
equilibrium, we have Ni ≤ Ci + ||Y||a + ||Z||a ≤ 2Ci +

1
hM

∗ and

3Ni ≤ 2(Ci +Ni) +
1

h
M∗ = 2R+

1

h
M∗ (4)

By assumption we also have R ≤ αM∗. Thus (4) gives 3Ni ≤ (2α + 1
h )M

∗, as re-
quired.

5. COVERING EQUILIBRIA
For covering equilibria, we show that the price of anarchy is at most 2. This is again a
two-step approach. First, the covering property implies an upper bound of 2/3 on M/R
as follows.

LEMMA 5.1. If ∪i∈[h]Ni = R, then M/R ≤ 2/3.

PROOF. Take N ∈ πN with N = M . Then N ≤ `N (R\N ) + ||R\N ||a, and therefore
R = N + `N (R\N ) ≥ 2N − ||R\N ||a ≥ 2N − `N (R\N ) = 3N − R, where the second
inequality holds because πN is covering. We deduce that M = N ≤ 2

3R.

Second, we prove R/M∗ ≤ 3 by distinguishing between the case h ≤ 2 and h > 2.

THEOREM 5.2. If ∪i∈[h]Ni = R, then R/M∗ ≤ 3.

The former case h ≤ 2 is proved in Section 6, which along with Lemma 5.14 in this
section establishes Theorem 5.2.

By Lemma 3.3, we only need to bound ratio R/M∗ for nonsingular case where h = k.
In this section we consider the k = h ≥ 3 switching players. For each switching player
i ∈ [h], we can formulate an inequality Ni ≤ Qi + ||Qi||a saying that its Nash path may
not have a longer latency than its alternative path, if one unit load is added on every
link of the latter. We obtain a constraint by adding up all of these inequalities.

We can assume that every link has a latency function of x or 1. This can be achieved
by replacing a link e with latency function aex+ be by ae links with latency function x
followed by be links with latency function 1. Now there are only two types of links left,
the ones with latency function x and the ones with latency 1. We introduce variables
which count the number of links of both types which are used by a certain number of
players, and write the constraint that we constructed above in terms of these variables.
We then give an upper bound for R/M∗ in terms of these variables as well.

We end up with a nonlinear optimization problem: maximize the ratio under con-
sideration subject to the Nash constraint. For this problem, we first show that, for the
links with latency function 1, roughly speaking, only the total number of players on all
these links affects the upper bound. By normalization, for any fixed number of players
h that do not use the same path in the Nash routing as in the optimal routing, this still
leaves us with h+ 2 variables, since we have one variable for each possible number of
players on the links with latency function x, and two other variables (see (8)–(11)).

We now use a centering argument to show that only at most two of the h player
variables are nonzero in an optimal solution of this optimization problem. This finally
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gives us an optimization problem with five variables, where h is also considered a
variable (see (15)–(19)). This problem unfortunately is still not linear. It can be solved
by Maple, but we also provide a formal solution. To do this, we fix h and another
variable, and solve the remaining problem; we then determine the optimal overall
values of the fixed h and that variable.

Summing the Nash inequalities. For a given path P ⊆ R, let Pa be the subset of
links with latency function x and let Pb be the subset of links with latency function 1.

Consider a link e ∈ Ra (resp. Rb). By definition and our assumption that k = h, this
link occurs in πN (e) Nash paths. That is, this link occurs πN (e) times on the left-hand
side of the h Nash inequalities given above—each time with coefficient πN (e) (resp. 1).
On the other hand, it occurs h− πN (e) times on the right-hand side of the inequalities,
each time with coefficient πN (e) + 1 (resp. 1).

Formally, we have for i = 1, . . . , h∑
e∈Na

i

πN (e) +
∑
e∈N b

i

1 = Ni ≤ Qi + ||Qi||a =
∑
e∈Qa

i

(πN (e) + 1) +
∑
e∈Qb

i

1

and, by summation,∑
e∈Ra

(πN (e))2 +
∑
e∈Rb

πN (e) ≤
∑
e∈Ra

(h− πN (e))(πN (e) + 1) +
∑
e∈Rb

(h− πN (e)) ,

or
∑
e∈Ra

(
2(πN (e))2 − h

)
+

∑
e∈Rb

2πN (e) ≤
∑
e∈Ra

(h− 1)πN (e) +
∑
e∈Rb

h.

Writing Ai (resp. Bi) as the number of links with i players on it in πN and a latency
function of x (resp. 1), we can group links with the same numbers of players and write
the above as

h∑
i=1

((2i2 − h)Ai + 2iBi) ≤
h∑

i=1

((h− 1)iAi + hBi) (5)

⇒
h∑

i=1

((
2i

h
− 1

i

)
Ci +

2i

h2
Bi

)
≤

h∑
i=1

(
h− 1

h
Ci +

1

h
Bi

)
(6)

where we have written Ci =
i
hAi and divided by h2.

Bounding the optimal latency. For the optimal routing we also have, by definition
and the fact that we are in the nonsingular case, h inequalities of the formM∗ ≥ `∗(Qi),
i ∈ [h]. Summing all the inequalities and dividing by h implies a lower bound on M∗,
namely

M∗ ≥ 1

h

h∑
i=1

`∗(Qi) =
1

h

h∑
i=1

(
(h− i)2Ai + (h− i)Bi

)
.

Note that Ai and Bi still have the same meanings as before, and refer to πN , not π∗.
Thus we have

R

M∗ ≤
∑h

i=1 (iAi +Bi)∑h
i=1

(
(h−i)2

h Ai +
h−i
h Bi

) =

∑h
i=1

(
Ci +

1
hBi

)∑h
i=1

(
(h−i)2

ih Ci +
h−i
h2 Bi

) (7)

and we want to find an upper bound for this expression under the restriction (6).

LEMMA 5.3. If
∑h

i=1 Ci = 0, then R/M∗ ≤ 2.
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PROOF. Since Ci ≥ 0 by definition, we have Ci = 0 for all i ∈ [h]. Condition
(6) implies that

∑h
i=1

i
hBi ≤ 1

2

∑h
i=1Bi. Therefore, by (7), the ratio R/M∗ is at most

(
∑h

i=1Bi)/(
∑h

i=1Bi −
∑h

i=1
i
hBi) ≤ (

∑h
i=1Bi)/(

1
2

∑h
i=1Bi) = 2.

Rewriting the problem. Henceforth we assume
∑h

i=1 Ci > 0. Using (h−i)2

ih = h
i +

i
h − 2, from (7) we arrive at the following inequality after dividing numerator and
denominator by

∑h
j=1 Cj > 0.

R

M∗ ≤
1 +

∑h
i=1

Bi

h
∑h

j=1 Cj∑h
i=1

((
h
i + i

h

)
Ci∑h

j=1 Cj
+ h−i

h2
Bi∑h

j=1 Cj

)
− 2

≤ 1 + β∑h
i=1

(
h
i + i

h

)
Di − 2 + β − z

where β :=
∑h

i=1 Bi

h
∑h

j=1 Cj
≥ 0, z :=

∑h
i=1

iBi

h2
∑h

j=1 Cj
∈ [βh , β], and Di := Ci∑h

j=1 Cj
for every

i ∈ [h]. Notice that
∑h

i=1Di = 1. We divide both sides of (6) by
∑h

j=1 Cj and obtain the
constraint

∑h
i=1

(
2i
h − 1

i

)
Di + 2z ≤ h−1

h + β. Our problem now looks as follows.

R

M∗ ≤ max
1 + β∑h

i=1

(
h
i + i

h

)
Di − 2 + β − z

(8)

s.t.
h∑

i=1

(
2i

h
− 1

i

)
Di + 2z ≤ h− 1

h
+ β (9)

h∑
i=1

Di = 1, Di ≥ 0 ∀i ∈ [h] (10)

β/h ≤ z ≤ β (11)

To bound the ratio R/M∗ from above we will solve the general problem (8)-(11), where
we ignore our definitions of β and z above and thus allow β and z to take any nonneg-
ative real values (subject to (11)).

Since h
i + i

h ≥ 2 for all i ≥ 1 and h ≥ 1, we see that for any β ≥ 0 and h ≥ 1, the
denominator in (8) is positive for every feasible solution ({Di}hi=1, z) of (9)–(11). We can
therefore also consider the following equivalent minimization problem:

min

{
h∑

i=1

(
h

i
+
i

h

)
Di − z

∣∣∣∣∣ (9)–(11)
}
. (12)

In what follows, we solve (12) for any fixed h and β, and then determine which val-
ues of h and β give the highest overall value for (8). For fixed h and β, any solution
({Di}hi=1, z) of (9) – (11) is either an optimal solution to both problem (8)–(11) and
problem (12) or to neither of them. The next lemma helps to simplify our problem (12),
and hence problem (8)–(11).

LEMMA 5.4. There is an optimal solution ({Di}hi=1, z) of (12), which is also an opti-
mal solution of (8) – (11), such that Di > 0 for at most two values of i. If there are two
such values, they are consecutive.
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PROOF. Consider an optimal solution ({Di}hi=1, z) of (12). Suppose for a contradic-
tion that there exist two indices i1 ≤ i2−2 such thatDi1 > 0 andDi2 > 0. We can modify
the solution {Di}hi=1 as follows. Let mj (j = 1, 2) be real values with 0 < mj ≤ Dij . Sub-
tract m1 from Di1 and add it to Di1+1. Subtract m2 from Di2 and add it to Di2−1. Then
we still have

∑h
i=1Di = 1 and Di ≥ 0 (i = 1, . . . , h).

We need to determine m1 and m2 so that constraint (9) is still satisfied. To this end,
we investigate by how much the sum on the left-hand side of (9) increases, i.e.,(

−2i1
h

+
1

i1
+

2(i1 + 1)

h
− 1

i1 + 1

)
m1 +

(
2(i2 − 1)

h
− 1

i2 − 1
− 2i2

h
+

1

i2

)
m2

=

(
1

i1
+

2

h
− 1

i1 + 1

)
m1 −

(
2

h
+

1

i2 − 1
− 1

i2

)
m2,

which should be at most 0 in order to maintain a feasible solution. This is equivalent
to requiring that m1

m2
be bounded from above by(

1

(i2 − 1)i2
+

2

h

)/(
1

(i1 + 1)i1
+

2

h

)
=: αi1i2 ≤ 1, (13)

where the last inequality holds since i2 ≥ i1 + 2. On the other hand, we aim at de-
creasing the objective function in (12) with this procedure. Therefore, we require the
increase of the objective value to be negative. From this we get

0 >

(
− h

i1
− i1
h

+
h

i1 + 1
+
i1 + 1

h

)
m1 +

(
h

i2 − 1
+
i2 − 1

h
− h

i2
− i2
h

)
m2

=

(
−h

i1(i1 + 1)
+

1

h

)
m1 +

(
h

(i2 − 1)i2
− 1

h

)
m2

⇒
(

h

(i2 − 1)i2
− 1

h

)
m2 <

(
h

i1(i1 + 1)
− 1

h

)
m1.

Note that the coefficients of m1 and m2 are positive since i1 +2 ≤ i2 ≤ h. Therefore, re-
quiring that the increase of the objective function be negative is equivalent to requiring
that m1

m2
be greater than(

h

(i2 − 1)i2
− 1

h

)/(
h

i1(i1 + 1)
− 1

h

)
=: βi1i2 (14)

From the definitions in (13) and (14), doing crosswise multiplication, it is easy to check
that βi1i2 < αi1i2 for i1 + 2 ≤ i2 ≤ h. This shows that there exist positive values m1

and m2 such that αi1i2 ≥ m1

m2
> βi1i2 , and mj ≤ Dij for j = 1, 2. Thus, as a result of our

modification of the sequence {Di}hi=1, the objective function value in (12) decreases by
a positive amount, and the constraints (9)–(11) are still satisfied. This contradicts the
optimality of ({Di}hi=1, z).

For an optimal solution ({Di}hi=1, z) to (8)–(11) as given in Lemma 5.4, let x ∈ [h−1] be
the minimum index such that Di = 0 for all i ∈ [h]\{x, x+1}. That is, x is the minimum
index such that Dx > 0, or x = h − 1. Writing y for Dx+1, we have Dx = 1 − y, and
problem (8) – (11) transforms to the following relaxation which drops the upper bound
β on z in (11).
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R

M∗ ≤ max
1 + β

h
x + x

h −
(

h
x(x+1) −

1
h

)
y − 2 + β − z

(15)

s.t.
2x

h
− 1

x
+

(
2

h
+

1

x(x+ 1)

)
y + 2z ≤ h− 1

h
+ β (16)

1 ≤ x ≤ h− 1, x ∈ N (17)
0 ≤ y ≤ 1 (18)
β/h ≤ z (19)

For convenience, we restate the problem (15) – (19) as follows
R

M∗ ≤ max

{
1 + β

f(x, y, z)

∣∣∣∣ g(x, y, z) ≤ 0, x ∈ N, y ∈ [0, 1], z ≥ β

h

}
, (20)

where we have relaxed the constraint on x and

f(x, y, z) =
h

x
+
x

h
−

(
h

x(x+ 1)
− 1

h

)
y − z − 2 + β,

g(x, y, z) =
2x

h
− 1

x
+

(
2

h
+

1

x(x+ 1)

)
y + 2z − h− 1

h
− β.

We turn to consider the corresponding minimization of f(x, y, z) under the same
constraints. It is clear that the optimal value of the minimization is attained at
g(x, y, z) = 0 (if g(x, y, z) < 0, we can increase z and decrease the objective function).
So we only need to consider the minimization problem with this equality constraint,
as well as its relaxation, as follows:

Ω1 := min {f(x, y, z) | g(x, y, z) = 0, x ∈ N, y ∈ [0, 1], z ≥ β/h} (21)
Ω2 := min {f(x, y, z) | g(x, y, z) = 0, x ≥ 1, y ∈ [0, 1], z ≥ β/h} (22)

OBSERVATION 1. For i = 1 or 2, if Ωi ≥ 1+β
3 , then R

M∗ ≤ 3.

Main ideas. In view of Observation 1, we will prove Ω1 ≥ 1+β
3 for h ∈ {3, 4, 6} in

Section 5.1, and Ω2 ≥ 1+β
3 for h ≥ 7 in Section 5.2. The proof for Ω1 utilizes a case

analysis, which is simplified by the fact that every optimal solution of (21) when h ∈
{3, 4, 6} has its y or z touch the boundary. The key idea for lower bounding Ω2 is using
the fact that the optimal solution of (22) must be a KKT point (a solution satisfying the
Karush-Kuhn-Tucker (KKT) conditions). We will bound the values of objective function
f at all KKT points of (22) from below by 1+β

3 .
To lower bound Ω1 and Ω2, we need to consider the derivatives of the objective and

constraint functions. Using x ≥ 1 and y ∈ [0, 1], we obtain

∂f

∂x
=
1

h
− h(1− y)

x2
− hy

(x+ 1)2
,

∂f

∂y
=
1

h
− h

x(x+ 1)
,

∂f

∂z
=− 1,

∂g

∂x
=
2

h
+

1− y

x2
+

y

(x+ 1)2
,

∂g

∂y
=
2

h
+

1

x(x+ 1)
,

∂g

∂z
=2.

For brevity we define χ := (
√
2h2 − h+ 1− 1)/2 and ν :=

√
2h2 − h /2. It is straightfor-

ward to verify the following equivalences.

LEMMA 5.5.

(i) ∂f/∂x
∂g/∂x = ∂f/∂y

∂g/∂y ⇔ y = x+1
2x+1 ⇔ ∂f

∂x = ∂f
∂y ⇔ ∂g

∂x = ∂g
∂y .
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(ii) ∂f/∂y
∂g/∂y ≥ ∂f/∂z

∂g/∂z ⇔ x ≥ χ, and ∂f/∂y
∂g/∂y = ∂f/∂z

∂g/∂z ⇔ x = χ.

(iii) If y ∈ {0, 1}, then ∂f/∂x
∂g/∂x = ∂f/∂z

∂g/∂z ⇔ x+ y = ν.

(iv) If y = x+1
2x+1 , then ∂f/∂x

∂g/∂x = ∂f/∂z
∂g/∂z ⇔ x = χ.

LEMMA 5.6. Let (x∗, y∗, z∗) be an optimal solution to (21) or (22).

(i) If x∗ < χ, then y∗ = 1 or z∗ = β/h.
(ii) If x∗ > χ, then y∗ = 0.

(iii) x∗ ≤ h− 1.

PROOF. (i)–(ii) If x∗ < χ (resp. x∗ > χ), then it follows from Lemma 5.5(ii) that
∂f/∂y
∂g/∂y < ∂f/∂z

∂g/∂z (resp. ∂f/∂y
∂g/∂y > ∂f/∂z

∂g/∂z ). Since increasing y∗ and decreasing z∗ (resp. in-
creasing z∗ and decreasing y∗) cannot give a better solution for the problem, it must be
the case that y∗ = 1 or z∗ = β/h (resp. y∗ = 0).

(iii) We have ∂f
∂x = 0 only if x = h − 1, and ∂f

∂x < 0 only if 1 ≤ x < h− 1. Therefore, if
x∗ > h− 1, decreasing x∗ would give smaller objective value.

5.1. Covering Equilibria with h ∈ {3, 4, 6}
In this case we lower bound Ω1 by (1 + β)/3, which along with Observation 1 implies
the upper bound of 3 on R/M∗ for h ∈ {3, 4, 6}.

LEMMA 5.7. For h ∈ {3, 4, 6}, Ω1 ≥ 1+β
3 .

PROOF. Let (x∗, y∗, z∗) denote an optimal solution to problem (21). Notice that x∗ ∈
[h − 1] is an integer, which cannot be equal to the noninteger χ for any h ∈ {3, 4, 6}.
By Lemma 5.6(i)–(ii), we have z∗ = β/h or y∗ = 1 if x∗ < χ and y∗ = 0 otherwise.
We calculate and estimate Ω1 = f(x∗, y∗, z∗) in Tables I and II below by checking
all necessary x∗, using Lemma 5.6(iii) (see the fourth column of Table I and the third
column of Table II). Table I presents the cases for x∗ < χ and z∗ = β/h, where y∗ ∈ [0, 1]
is determined by g(x∗, y∗, z∗) = 0, and Table II presents the cases for y∗ ∈ {0, 1}. In all
cases we obtain the claimed lower bound.

5.2. Covering Equilibria with h ≥ 7

In this section, we assume h ≥ 7. Our goal is to prove the optimal objective value Ω2

of problem (22) is at most (1 + β)/3 for all h ≥ 7. Throughout Section 5.2, we assume
(x∗, y∗, z∗) to be a fixed optimal solution to (22) such that y∗ is minimum. In particular,
since f(x, 1, z) = f(x + 1, 0, z) and g(x, 1, z) = f(x + 1, 0, z) for all x > 0, z ∈ R, we can
assume without loss of generality that y∗ < 1. In the following, we distinguish among
three cases:

1) x∗ = 1 (Claim 5.8),
2) x∗ > 1 and y∗ = 0 (Claim 5.12), and
3) x∗ > 1 and 0 < y∗ < 1 (Claim 5.13).

Our basic tool is the KKT conditions which (x∗, y∗, z∗) must satisfy. For notational
convenience, we also express the constraints x ≥ 1, y ∈ [0, 1], z ≥ β/h as gi(x, y, z) ≤ 0,
i = 1, 2, 3, 4, respectively, where g1(x, y, z) = −x + 1, g2(x, y, z) = y − 1, g3(x, y, z) = −y
and g4(x, y, z) = −z − β/h. By the KKT conditions on the minimization problem (22),
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Table I. Ω1 ≥ 1+β
3

when x∗ < χ and z∗ = β
h

for h = 3, 4, 6.

h z∗ χ x∗ g(x∗, y∗, z∗) = 0 y∗ Ω1 = f(x∗, y∗, z∗)

3 β
3

1.5 1 7
6
y∗ + 2z∗ − 1− β = 0 6

7
+ 2β

7
1+β
3

1 y∗ + 2z∗ − 5
4
− β = 0 6∈ [0, 1] infeasible

4 β
4

2.19 2 2
3
y∗ + 2z∗ − 1

4
− β = 0 3

8
+ 3

4
β 75−18β

32
> 1+β

3

1 5
6
y∗ + 2z∗ − 3

2
− β = 0 6∈ [0, 1] infeasible

6 β
6

3.59 2 1
2
y∗ + 2z∗ − 2

3
− β = 0 6∈ [0, 1] infeasible

3 5
12

y∗ + 2z∗ − 1
6
− β = 0 2

5
+ 8β

5
71−21β

30
> 1+β

3
∗

Note: ∗β ≤ 3/8.

Table II. Ω1 ≥ 1+β
3

when x∗ < χ and y∗ = 1 (resp. x∗ > χ and y∗ = 0) for
h = 3, 4, 6.

h χ x∗ y∗ z∗ Ω1 = f(x∗, y∗, z∗)

3 1.5 1, 2 2− x∗ β
2
− 1

12
9−2β

4
≥ 1+β

3
†

1 1 β
2
+ 1

8
19−4β

8
≥ 1+β

3
4 2.19 2, 3 3− x∗ β

2
− 5

24
55−12β

24
> 1+β

3
‡

1 1 β
2
+ 1

3
6−β
2

> 1+β
3

2 1 β
2
+ 1

12
29−6β

12
> 1+β

3
6 3.59 3, 4 4− x∗ β

2
− 1

8
55−12β

24
> 1+β

3
§

5 0 β
2
− 19

60
47−10β

20
> 1+β

3

Note: †β ≥ 1/2. ‡β ≥ 5/6. §β ≥ 3/8.

there exist constant λ and nonnegative constants µi (1 ≤ i ≤ 4) such that

∇f(x∗, y∗, z∗) + λ∇g(x∗, y∗, z∗) +
4∑

i=1

µi∇gi(x∗, y∗, z∗) = 0 (23)

µigi(x
∗, y∗, z∗) = 0 for i ∈ [4]. (24)

Case 1. x∗ = 1. This case is handled by the following claim.

CLAIM 5.8. min {f(x, y, z) | g(x, y, z) = 0, x = 1, y ∈ [0, 1]} > (1 + β)/3.

PROOF. If x = 1, we have z = 1+ β
2 − 3

2h − ( 1h + 1
4 )y from the constraint g(x, y, z) = 0.

It follows that f(x, y, z) = h+ 5
2h − (h2 − 1

4 − 2
h )y − 3 + β

2 , which together with h ≥ 7,
y ≤ 1 and β ≥ 0 implies f(x, y, z) ≥ f(1, 1, z) = h

2 + 9
2h − 11

4 + β
2 >

7
2 − 11

4 + β
2 >

1+β
3 .

Before turning to the next two cases, we prove a few technical lemmas.

CLAIM 5.9. If h ≥ 7 and 1 + β − 1+2β
h >

√
2h2−h
h − 2√

2h2−h
, then β >

√
2− 1.

PROOF. The function 1 + β − 1+2β
h increases in β for h > 2, and

√
2 − 2

√
2−1
h ≤

√
2h2−h
h − 2√

2h2−h
for h ≥ 7.

In the next two lemmas, we write β−1 := β − 1, β1 := β + 1 and β2 := 2β + 1 for
brevity.

LEMMA 5.10. For any constant β ∈ [0,
√
2 − 1), if variables ~ and x satisfy ~ ≥ 7

and x = 1
4 (β1~− β2 +

√
(β1~− β2)2 + 8~), then Ψ(~) := ~

x + x
~ − β

~ ≥ Ψ(7).
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PROOF. Notice that ~ = 2x2+β2x
β1x+1 . Thus Ψ(~) can be considered as the function of x,

which we write as ψ(x).

ψ(x) =
2x+ β2
β1x+ 1

+
β1x− β1β + 1

2x+ β2
− β

2x2 + β2x
= Ψ(~).

It is easy to check that x is monotonically increasing in ~; in particular ~ ≥ 7 along
with β ≥ 0 implies x ≥ 3.897.

Moreover, to prove the lemma, we only need to show that ψ(x) is monotonically
increasing in x. Observe that the last term in the derivative of the above expression

dψ

dx
=

1− 3β − 2β2

(β1x+ 1)2
+

4β2 + 5β − 1

(2x+ β2)2
+

β(4x+ β2)

(2x2 + β2x)2

is positive. It suffices to verify

1− 3β − 2β2

(β1x+ 1)2
+

4β2 + 5β − 1

(2x+ β2)2
≥ 0. (25)

In case of 0 ≤ β ≤ 1
4 (
√
17−3) < 0.2808, we obtain 1−3β−2β2 ≥ max{0, 1−5β−4β2},

and (25) is true as 0 < (β1x+1)2

(2x+β2)2
≤ 1 for 0 ≤ β ≤

√
2− 1.

In case of β ∈ ( 14 (
√
17−3),

√
2−1) ⊂ [0.28,

√
2−1), we have 2β2+3β−1 > 0. It can be

seen from x ≥ 3.897 that (1.7β − 0.3)x > 2β − 0.7, implying 2x+β2

β1x+1 ≤ 1.7 . On the other
hand, (25) follows from

4β2 + 5β − 1

2β2 + 3β − 1
> 2 +

1− (
√
2− 1)

2(
√
2− 1)2 + 3(

√
2− 1)− 1

= 3 > 1.72 ≥ (2x+ β2)
2

(β1x+ 1)2
.

The lemma is proved.

LEMMA 5.11. For any constant β ∈ [0, 0.13), if variables ~ and x satisfy ~ =
(2x+1)2+β2(2x+1)+1

β1(2x+1)+2 ≥ 7, then function Ψ(x) ≡ ~
x + x

~ −
(

~
x(x+1) −

1
~

)
x+1
2x+1 − β

~ > 2.36.

PROOF. Let u = 2x + 1. Then ~ = u2+β2u+1
β1u+2 ≥ 7, and u =

β1~−β2+
√

(β1~−β2)2+8~−4

2 is

lower bounded by ~−1+
√

(~−1)2+8~−4

2 ≥ 6+
√
88

2 > 7.69, as ~ ≥ 7 and β ≥ 0.
It is routine to check that Ψ(x) = 2~

u + u
2~ + 1

2~u − β
~ , and it is a function ψ of u with

derivative dψ/du as follows:

ψ(u) :=
β1u

3 + (2− 2ββ1)u
2 + (1− 3β)u+ 2

2u(u2 + β2u+ 1)
+

2(u2 + β2u+ 1)

u(2 + β1u)
= Ψ(x).

dψ

du
=
(4β1β + β−1)u

4 + 8βu3 + (4β−1β1 − β1)u
2 − 4β2u− 2

2u2(u2 + β2u+ 1)2

+
2(1− 3β − 2β2)u2 − 4β1u− 4

u2(2 + β1u)2

By u ≥ 7.69 and β ∈ [0, 0.13), it is easy to see that the numerator of the second term in
the above expression of dψ/du is positive. Since

√
2(u2 + β2u+1) > u(2+ β1u) holds for
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any β ∈ [0, 0.13), we have

dψ

du
>
(4β1β + β−1)u

4 + 8βu3 + (4β−1β1 − β1)u
2 − 4β2u− 2

2u2(u2 + β2u+ 1)2

+
2(1− 3β − 2β2)u4 − 4β1u

3 − 4u2

2u2(u2 + β2u+ 1)2

=
(1− β)u4 − 4(1− β)u3 − (9 + β − 4β2)u2 − 4(2β + 1)u− 2

2u2(u2 + β2u+ 1)2

≥0.87u4 − 4u3 − 9.0624u2 − 5.04u− 2

2u2(u2 + β2u+ 1)2

The numerator is positive as u > 7.69. Therefore dψ/du > 0.
Using u > 7.69 and β < 0.13, we obtain Ψ(x) = ψ(u) ≥ ψ(7.69) ≥ 2~

7.69 + 7.69
2~ + 1

15.38~ −
0.13
~ = 200~

769 + 581367
153800~ , which increases in ~ for all ~ ≥ 7. Thus Ψ(x) ≥ 200×7

769 + 581367
153800×7 >

2.36.

Case 2. x∗ > 1 and y∗ = 0. We begin by considering the following relaxed problem,
which does not have a bound on z.

Ω3 := min {f(x, y, z) | g(x, y, z) = 0, x ≥ 1, y = 0} . (26)
Clearly Ω3 ≤ Ω2. The KKT conditions applied to (26) assert that Ω3 is attained at some
feasible solution (x, z) of (26) for which there exist constants θ and η such that

∇f(x, 0, z) + θ∇g(x, 0, z) + η∇(−x+ 1) = 0

η(−x+ 1) = 0

It follows that Ω3 is attained either when x = 1 or when x > 1 ⇒ η = 0 ⇒ ∂f/∂x
∂g/∂x =

−θ = ∂f/∂z
∂g/∂z holds at (x, 0, z). In the former case, we are done by Claim 5.8. In the latter

case, Claim 5.5(iii) gives x = ν, and therefore g(x, 0, z) = g(ν, 0, z) = 0 implies

z =

(
h− 1− 2ν

h
+

1

ν
+ β

)/
2 =: z2.

Notice that Ω3 = f(ν, 0, z2) = 4
√
2h2−h+1

2h + β−5
2 increases in h for h ≥ 7, and hence

Ω3 ≥ 4
√
91+1
14 + β−5

2 , which is greater than 1+β
3 if β ≥

√
2−1. This together with Ω3 ≤ Ω2

verifies the following

Ω2 > (1 + β)/3 if β ≥
√
2− 1. (27)

We next turn back to (22), and investigate its optimal solution (x∗, 0, z∗).

CLAIM 5.12. If x∗ > 1 and y∗ = 0, then Ω2 ≥ (1 + β)/3.

PROOF. If z∗ > β/h, since x∗ > 1, the KKT conditions (23)–(24) imply that µ1 =

µ4 = 0 and ∂f/∂x
∂g/∂x = −λ = ∂f/∂z

∂g/∂z holds at (x∗, 0, z∗). Using y∗ = 0 and Lemma 5.5(iii),
we obtain x∗ = ν. In turn g(x∗, 0, z∗) = 0 gives z∗ = z2. So z2 > β/h, which reads
1 + β − 1+2β

h >
√
2h2−h
h − 2√

2h2−h
. It follows from Lemma 5.9 that β >

√
2 − 1, and

further from (27) that Ω2 > (1 + β)/3.
If z∗ = β/h, by (27), we only need to consider the case where β ∈ [0,

√
2 − 1). The

constraint g(x∗, 0, z∗) = 2x∗

h − 1
x∗ + 2z∗ − h−1

h − β gives

x∗ =
1

4

(
(β + 1)h− (2β + 1) +

√
((β + 1)h− (2β + 1))2 + 8h

)
:= x∗(h).
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It follows from Lemma 5.10 that f(x∗, 0, z∗) = h
x∗ +

x∗

h − β
h −2+β ≥ 7

x∗(7)+
x∗(7)

7 + 6β
7 −2.

This value is easily checked to be 15
28

√
(6 + 5β)2 + 56− 41

28β − 67
14 , which is smaller than

(1 + β)/3 for β ≥ 0.

Case 3. x∗ > 1 and 0 < y∗ < 1. In this case, the KKT conditions (23)–(24) imply
µi = 0 for 1 ≤ i ≤ 3 and ∂f/∂y

∂g/∂y = −λ = ∂f/∂x
∂g/∂x holds at (x∗, y∗, z∗). In turn, Lemma 5.5(i)

asserts y∗ = x∗+1
2x∗+1 , implying

Ω2 ≥ Ω4 := min

{
f(x, y, z)

∣∣∣∣ g(x, y, z) = 0, x ≥ 1, y =
x+ 1

2x+ 1

}
. (28)

From the KKT conditions on the minimization (28), we deduce that Ω4 is attained at
some feasible solution (x, y, z) of (28) for which there exist constants θ1, θ2, η1, η2 such
that

∇f(x, y, z) + θ1∇g(x, y, z) + θ2∇(y − x+ 1

2x+ 1
) + η∇(−x+ 1) = 0 (29)

η(−x+ 1) = 0 (30)

It follows that Ω4 is attained either when x = 1 or when x > 1, in which case η = 0 by
(30). In the former case, we are again done by Claim 5.8. In the latter case, from (29)
we find

∂f

∂x
+ θ1

∂g

∂x
= − θ2

(2x+ 1)2
(31)

∂f

∂y
+ θ1

∂g

∂y
= −θ2 (32)

∂f

∂z
+ θ1

∂g

∂z
= 0 (33)

Since y = x+1
2x+1 , Lemma 5.5(i) asserts ∂f

∂x = ∂f
∂y and ∂g

∂x = ∂g
∂y , which along with (31)

and (32) enforce θ2 = 0. In turn from (31) and (33) we derive ∂f/∂x
∂g/∂x = −θ1 = ∂f/∂z

∂g/∂z . By
y = x+1

2x+1 , Lemma 5.5(iv) enforces x = χ. Hence from g(x, y, z) = 0 we obtain

z =
1

2

(
1 + β − 1 + 2χ

h
+

1

χ
−

(
2

h
+

1

χ(χ+ 1)

)
· χ+ 1

2χ+ 1

)
=: z3

It follows that Ω4 = f(χ, χ+1
2χ+1 , z3) =

4
√
2h2−h+1+1

2h + β−5
2 , which increases in h for h ≥ 7.

So Ω4 is lower bounded by 4
√
92+1
14 + β−5

2 , which is greater than 1+β
3 if β > 116−12

√
92

7 >
0.13. Since Ω2 ≥ Ω4 in either case, we have shown that

Ω2 > (1 + β)/3 if β ≥ 0.13. (34)

Next we again focus on the optimal solution (x∗, y∗, z∗) of (22).

CLAIM 5.13. If x∗ > 1 and 0 < y∗ < 1, then Ω2 ≥ (1 + β)/3.

PROOF. If z∗ > β/h, by x∗ > 1 and the KKT conditions (23)–(24), we obtain µ1 =

µ4 = 0 and ∂f/∂x
∂g/∂x = −λ = ∂f/∂z

∂g/∂z at (x∗, y∗, z∗), which is equivalent to x∗ = χ by y∗ =
x∗+1
2x∗+1 and Lemma 5.5(iv). In turn we have z∗ = z3 by using g(χ, χ+1

2χ+1 , z
∗) = 0. Now

z3 > β/h reads 1 + β − 1+2β
h >

√
2h2−h+1

h − 2√
2h2−h+1

+ 1
h
√
2h2−h+1

. The right-hand
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side of this inequality is larger than
√
2h2−h
h − 2√

2h2−h
. It follows from Claim 5.9 that

β >
√
2− 1 > 0.13, and further from (34) that Ω2 > (1 + β)/3.

If z∗ = β/h, by (34), it suffices to consider β ∈ [0, 0.13). From g(x∗, y∗, z∗) =

g(x∗, x∗+1
2x∗+1 ,

β
h ) = 0 we get

h =
(2x∗ + 1)2 + (2β + 1)(2x∗ + 1) + 1

(β + 1)(2x∗ + 1) + 2
.

Under this equation for h ≥ 7 and β ∈ [0, 0.13), Lemma 5.11 asserts

Ω2 = f(x∗, y∗, z∗) =
h

x∗
+
x∗

h
−
(

h

x∗(x∗ + 1)
− 1

h

)
x∗ + 1

2x∗ + 1
− β

h
− 2 + β > 0.36 + β,

which is obviously greater than 1+β
3 .

To sum up, we have shown the following result.

LEMMA 5.14. If ∪i∈[h]Ni = R and h > 2, then R/M∗ ≤ 3.

6. THE CASES H = 1 AND H = 2

LEMMA 6.1. Let I be an SRR instance with h = 1. Then M/M∗ ≤ 2.

PROOF. Only the case k = 2 is relevant. By assumption, we have N1 = R\Q1 and
we have N2 = Q2. That is, we have π∗ = {Q1,Q2} and we have πN = {N1,Q2}. In
particular, we have Q1 + ||Q1||a = Q∗

1. Hence, Q1 + ||Q1||a ≤ M∗. Since πN is a Nash
equilibrium, it holds that N1 ≤ Q1 + ||Q1||a ≤M∗. We thus get

M ≤ R = N1 +Q1 ≤ 2M∗, (35)

as desired.

LEMMA 6.2. Let I be an SRR instance with h = 2 and ∪i=1,2Ni 6= R. Then
M/M∗ ≤ 2.

PROOF. We first consider the case that I is nonsingular. Then k = h = 2 by defini-
tion. Assume without loss of generality that N1 ≤ N2. Since πN is a Nash equilibrium,
it holds that N2 ≤ Q2 + ||Q2||a, which, by the fact that k = h = 2, is at most 2Q∗

2.
Therefore, M = N2 ≤ 2Q∗

2 ≤ 2M∗ .
Let us now consider the case that I is singular. That is, we have k = 3 and M = N3.

First note that we can rewrite

Q1 = R\N1 = (N2 ∪Q2)\N1 = (N2\N1) ∪ (Q2\N1) = (N2\(N1 ∩N2)) ∪ (Q1 ∩Q2)

and, similarly, we have Q2 = (N1\(N1 ∩ N2)) ∪ (Q1 ∩ Q2). Using this and the fact that
πN is a Nash routing, we obtain the following two inequalities.

N1 ≤ Q1 + ||Q1||a = N2 − `N (N1 ∩N2) + `N (Q1 ∩Q2) + ||Q1||a
N2 ≤ Q2 + ||Q2||a = N1 − `N (N1 ∩N2) + `N (Q1 ∩Q2) + ||Q2||a

From this we get

2`N (N1 ∩N2) ≤ 2`N (Q1 ∩Q2) + ||Q1||a + ||Q2||a. (36)
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Furthermore, when comparing Q∗
i and Qi for i = 1, 2, we can ignore player 3, because

it contributes the same to both values. Hence

Q∗
1 = `∗(Q1 ∩N2) + `∗(Q1 ∩Q2)

= `N (Q1 ∩N2) + `N (Q1 ∩Q2) + 2||Q1 ∩Q2||a
= Q1 + 2||Q1 ∩Q2||a,

and, similarly, Q∗
2 = Q2 + 2||Q1 ∩Q2||a holds. From this we conclude

M∗ ≥ Q∗
1 = Q1 + 2||Q1 ∩Q2||a

= `N (Q1 ∩Q2) + `N (Q1\Q2) + 2||Q1 ∩Q2||a (37)
M∗ ≥ Q∗

2 = Q2 + 2||Q1 ∩Q2||a
= `N (Q1 ∩Q2) + `N (Q2\Q1) + 2||Q1 ∩Q2||a (38)

and M∗ ≥ N∗
3 ≥ N3 − 2||N3 ∩ N1 ∩ N2||a. Notice that `N (Q1\Q2) ≥ ||Q1\Q2||a,

`N (Q2\Q1) ≥ ||Q2\Q1||a and 2||N3 ∩ N1 ∩ N2||a ≤ `N (N1 ∩ N2). We may thus conclude
M = N3 is upper bounded by

M∗ + 2||N3 ∩N1 ∩N2||a
≤M∗ + `N (N1 ∩N2)

≤M∗ + `N (Q1 ∩Q2) +
1

2
||Q1||a +

1

2
||Q2||a by (36)

≤ 2M∗ − 1

2
`N (Q1\Q2)− 2||Q1 ∩Q2||a −

1

2
`N (Q2\Q1) +

||Q1||a + ||Q2||a
2

by (37), (38)

≤ 2M∗ − 1

2
||Q1\Q2||a − 2||Q1 ∩Q2||a −

1

2
||Q2\Q1||a +

||Q1||a + ||Q2||a
2

≤ 2M∗.

The lemma is proved.

LEMMA 6.3. If ∪i∈[h]Ni = R and h ≤ 2, then R/M∗ ≤ 3.

PROOF. When h = 1, Lemma 6.1 implies the conclusion. By Lemma 3.3, it remains
to consider k = h = 2 and N1 ∪ N2 = R. Suppose without loss of generality that
`N (Q1) ≤ `N (Q2). Note that Q2 ⊆ N1 and thus N1 = Q2 ∪ (N1 ∩ N2). This yields
`N (Q2) + `N (N1 ∩ N2) = N1 ≤ Q1 + ||Q1||a, where the latter inequality stems from
the fact that player 1 does not want to deviate in πN . Together with the assumption
Q1 ≤ Q2 we thus have `N (N1 ∩N2) ≤ Q1 −Q2 + ||Q1||a ≤ ||Q1||a ≤M∗. It follows from
Ni = R\Qi, i = 1, 2 that

R = Q2 +Q1 + `N (N1 ∩N2) ≤ Q2 +Q1 +M∗.

Since Qi = Q∗
i for i = 1, 2, we obtain R ≤ Q∗

1 +Q∗
2 +M∗ ≤ 3M∗ as desired.

7. COVERING EQUILIBRIA WITH H = 5

For the special case of h = 5, we upper bound R/M∗ directly by using structural prop-
erties of the Nash equilibrium.

LEMMA 7.1. If ∪i∈[h]Ni = R and h = 5, then R
M∗ ≤ 3.

PROOF. Again, by Lemma 3.3, we only need to consider the case where πN is non-
singular. If πN (e) ≥ 2 for all e ∈ E, then A1 = B1 = 0 in (5) and (7). Collecting terms
in (5) gives A3 + 11A4 + 25A5 + B3 + 3B4 + 5B5 ≤ 5A2 + B2, which is equivalent to
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v

{F

}L

e1

Ni

(i) i ∈ F ∩ L 6= ∅

v

{F

}L

e1

N2

(ii) 2 ∈ F, 3 ∈ L

N3

Fig. 3. Splitting R at node v, where the Nash path N1 containing e1 is not depicted.

5(
∑5

i=2 iAi+Bi) ≤ 25A2+12A3−13A4−50A5+8B2+2B3−4B4−10B5. It follows from
(7) that

R

M∗ ≤
5(
∑5

i=2 iAi +Bi)∑5
i=2((5− i)2Ai + (5− i)Bi)

≤ 25A2 + 12A3 + 8B2 + 2B3

9A2 + 4A3 +A4 + 4B1 + 3B2 + 2B3 +B4

≤ 3.

Therefore, we may assume without loss of generality that there exists a link e1 ∈ N1

with πN (e1) = 1. Note that this implies e1 /∈ ∪5
i=2Ni and, thus, ∪5

i=2Ni 6= R. Starting
from link e1, let v be the clockwise first node where the Nash path Ni of another player
i ∈ {2, 3, 4, 5} starts. For the analysis, let us temporarily split the ring at node v, and
put the nodes on a line from left to right, starting and ending with v. Then for each
player in {2, 3, 4, 5}, its Nash path is one line segment by ∪5

i=2Ni 6= R and definition of
v. See Figure 3 for an illustration.

Let F ⊆ {2, 3, 4, 5} consist of two players with the leftmost left endpoints, and L ⊆
{2, 3, 4, 5} consist of two agents with the rightmost right endpoints. (Going from left to
right, F are two of the first players that start, and L are two of the last players that
finish their Nash paths.)

If there exists a player i that is in both F and L—formally if i ∈ F ∩L 6= ∅ (see Figure
3(i) for an illustration), then the definitions of F and L guarantee that both to the left
and to the right of the path Ni of i in πN , any link can only be used (in πN ) by at most
one player j ∈ {2, 3, 4, 5} and possibly by the first player. It follows that πN (e) ≤ 2 and
hence 3 ≤ π∗(e) for all e ∈ Qi. In particular we have πN (e) + 1 ≤ π∗(e) for all e ∈ Qi.
Since πN is a Nash equilibrium, we conclude that Ni ≤ Qi + ||Qi||a ≤ Q∗

i ≤M∗, giving
R = Ni +Qi ≤ 2M∗ as desired.

Therefore, let us consider the case F ∩ L = ∅. Without loss of generality, let player
2 be a player in F with the rightmost right endpoint, and let player 3 be a player
in L with the leftmost left endpoint (an illustration is given by Figure 3(ii)). Then
in πN , any link to the right of N2 can only be used by players in L ∪ {1}, i.e., it can
be used by at most three players, and any link to the left of N2 can only be used by
players in (F\{2}) ∪ {1}, i.e., it can be used by at most two players. Thus πN (e) ≤ 3
for every e ∈ Q2. Analogously we have πN (e) ≤ 3 for every e ∈ Q3. Moreover, we see
that {e ∈ Q2|πN (e) = 3} ⊆ N3 ∩ N1 and {e ∈ Q3|πN (e) = 3} ⊆ N2 ∩ N1. On the other
hand, from the selections of player 2 from F , and player 3 from L, it is easy to see that
{e ∈ Q1|πN (e) ≥ 3} ⊆ N2 ∩ N3. This implies the following useful inequality, valid for
all assignments {r, s, t} = {1, 2, 3}:

`N (Qr\(Ns ∩Nt)) + ||Qr\(Ns ∩Nt)||a ≤ `∗(Qr\(Ns ∩Nt)) . (39)
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Let S = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Adding the Nash inequalities for the paths Ni,
i = 1, 2, 3, and their alternatives gives

3∑
i=1

Ni ≤
3∑

i=1

(Qi + ||Qi||a)

=
∑

(r,s,t)∈S

[
`N (Qr ∩Ns ∩Nt) + `N (Qr\(Ns ∩Nt))

]
+

∑
(r,s,t)∈S

[||Qr ∩Ns ∩Nt||a + ||Qr\(Ns ∩Nt)||a]

It follows from (39) and ||Q1 ∩N2 ∩N3||a ≤ `∗(Q1 ∩N2 ∩N3) that
3∑

i=1

Ni

≤
∑

(r,s,t)∈S

(
`N (Qr ∩Ns ∩Nt) + `∗(Qr ∩Ns ∩Nt) + `∗(Qr\(Ns ∩Nt))

)
=

∑
(r,s,t)∈S

`N (Qr ∩Ns ∩Nt) +
3∑

i=1

Q∗
i

=
∑

(r,s,t)∈S

(
`N (Ns ∩Nt)− `N (Nr ∩Ns ∩Nt)

)
+

3∑
i=1

Q∗
i

=
∑

1≤i<j≤3

`N (Ni ∩Nj)− 3`N (N1 ∩N2 ∩N3) +

3∑
i=1

Q∗
i ,

thus implying
3∑

i=1

Ni −
∑

1≤i<j≤3

`N (Ni ∩Nj) + `N (N1 ∩N2 ∩N3) ≤
3∑

i=1

Q∗
i

Notice that the left-hand side of the above inequality equals R and the right-hand side
is at most 3M∗. The result follows.

8. ADDITIONAL REMARKS
8.1. Lower Bounds for Polynomial Latencies
Replace the latency functions in Figure 1 by xd for the top and bottom links, and (1 −
2−d)xd−1 = xd−1 − 1

2 (
x
2 )

d for the right and left links. Then the optimal cost is still 1
and the cost of the Nash equilibrium is 2 · (2d−1 − 1

2 ) + 1 = 2d. This is indeed a Nash
equilibrium, because for agent i = 1, 2, deviating would give a cost of 2d as well.

8.2. Complement Games
We can extend our proof almost entirely to the more general class of games where each
player can choose between a set of resources and its complement. For the main line
of the proof, we have assumed that the ring was covered (Section 5). In the context
of complement games, this means that every item (resource) was selected by at least
one player. However, the only place where we have used this is in the proof of Lemma
5.1. Without the covering assumption, the bound M ≤ 2R/3 increases to M ≤ 2R/3 +
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Table III. (1 + β)/Ω1 ≤ 3.125 for h = 5.

x∗ vs. χ = 2.89... x∗ y∗ ∈ [0, 1] z∗ ∈ [β
5
,+∞) Ω1 = f(x∗, y∗, z∗) (1 + β)/Ω1

3β
2

+ 14
9

β
5

infeasible infeasible [

1
1 β

2
+ 1

4
β
2
+ 13

20
< 3

x∗ < χ 18β
17

+ 15
17

β
5

11β
85

+ 29
85

≤ 3.125\

2
1 β

2
− 1

30
β
2
+ 3

10
≤ 3.125 ]

3 0 β
2
− 1

30
β
2
+ 3

10
≤ 3.125 ]

x∗ > χ
4 0 β

2
− 11

40
β
2
+ 13

40
< 3 ‖

Note: [y∗ > 1. \β ≤ 1/9. ]β ≥ 1/9. ‖β ≥ 11/12.

M∗/(3h). This follows from inequality (4). Combining this with R ≤ 3M∗ we get M ≤
(2 + 1/(3h))M∗.

This proves a price of anarchy of 2+1/(3h) for complement games with h 6= 5. In fact,
for h ∈ {1, 2}, Lemmas 6.1 – 6.3 hold, giving PoA ≤ 2 in the case. For h = 5, we have
R ≤ 3.125M∗ by similar analysis to that in Section 5.1 for h ∈ {3, 4, 6}. The details are
given in Table III. From the above general bound M ≤ 2R/3 +M∗/(3h) it thus follows
that for h = 5 we have M ≤ (6.25/3 + 1/15)M∗ = 2.15M∗.

Summarizing all the above, we have shown that the PoA for complement games is
at most 2.15. We conjecture that the exact value of the PoA is 2.

9. CONCLUDING REMARKS
We have shown that the PoA of the network congestion game is two, when the network
is a ring and the link latencies are linear. It is left open whether the PoA is exactly 2d

for polynomial latency functions of degree d. Another challenging open question is to
analyze what happens in more complicated network topologies.
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