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Abstract. Recently, there has been a number of papers relating mech-
anism design and privacy (e.g., see [1-6]). All of these papers consider
a worst-case setting where there is no probabilistic information about
the players’ types. In this paper, we investigate mechanism design and
privacy in the Bayesian setting, where the players’ types are drawn from
some common distribution. We adapt the notion of differential privacy to
the Bayesian mechanism design setting, obtaining Bayesian differential
privacy. We also define a robust notion of approximate truthfulness for
Bayesian mechanisms, which we call persistent approzimate truthfulness.
We give several classes of mechanisms (e.g., social welfare mechanisms
and histogram mechanisms) that achieve both Bayesian differential pri-
vacy and persistent approximate truthfulness. These classes of mech-
anisms can achieve optimal (economic) efficiency, and do not use any
payments. We also demonstrate that by considering the above mecha-
nisms in a modified mechanism design model, the above mechanisms can
achieve actual truthfulness.

1 Introduction

One of the main goals in mechanism design is to design mechanisms that achieve
a socially desirable outcome even if the players behave selfishly. Because of the
revelation principle, mechanism design has focused on direct (revelation) mech-
anisms where each player simply reports his/her private type (or valuation).
This leads to the issue of privacy, where the players may be concerned that the
mechanism’s output may leak information about their private types (even if the
mechanism is trusted).

Mechanism Design and Privacy. Traditional mechanism design did not in-
clude the aspect of privacy. However, in the context of releasing information
from databases, the issue of privacy has already been studied quite extensively.
In this context, the current standard notion of privacy is differential privacy |7,
8]. A data release algorithm satisfies differential privacy if the algorithm’s out-
put distribution does not change much when one person’s data is changed in the
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database. This implies that the algorithm does not leak much information about
any person in the database.

Recently, there has been a number of papers that combine mechanism de-
sign with differential privacy. In [1], McSherry and Talwar develop a general
mechanism called the exponential mechanism that is differentially private; they
also show that any differentially private mechanism is approzimately truthful.
In [4], Nissim, Smorodinsky, and Tennenholtz modify the standard mechanism
design model by adding a “reaction stage”; in this new model, the authors com-
bine differentially private mechanisms with a “punishing mechanism” to obtain
mechanisms that are actually truthful. However, the mechanisms in [4] might
not protect the privacy of the players, due to the reaction stage.

The main goal of the above two papers was to use differential privacy as a
tool for achieving some form of truthfulness, as opposed to achieving privacy
for the players. However, there has been other papers that focus on designing
mechanisms that protect the privacy of the players. In [6], Huang and Kannan
show that a pricing scheme can be added to the exponential mechanism to make
it actually truthful, resulting in a general mechanism that is both differentially
private and truthful. In [2], Xiao provides a transformation that takes truthful
mechanisms and transforms them into truthful and differentially private mech-
anisms. On the other hand, Xiao also shows that a mechanism that is truthful
and differentially private might not be truthful in a model where the players are
“privacy-aware” | i.e., privacy is explicitly captured in the players’ utility func-
tions. In [3], Chen et al. construct mechanisms that are truthful even in a model
where the players are privacy-aware. In [5], Nissim, Orlandi, and Smorodinsky
construct mechanisms that are truthful in a different privacy-aware model.

Bayesian Mechanism Design. One desirable property of a mechanism is
(economic) efficiency; in fact, it would be best if the mechanism always chooses
a social alternative that is optimal with respect to some measure of efficiency,
such as social welfare. However, such optimal efficiency is not achieved by any of
the above results. In fact, it is not possible for a differentially private mechanism
to achieve optimal efficiency (for a non-trivial problem), since the mechanism
has to be randomized in order to satisfy differential privacy. However, all of
the above results are in a worst-case setting where there is no probabilistic
information about the players’ types. If we consider a non-worst-case setting,
then it may be possible for a mechanism to achieve differential privacy without
using any randomization.

One such setting is the Bayesian setting, where the players’ types are drawn
from some common distribution. Such a setting follows the Bayesian approach
that has been the standard in economic theory for many decades. Recently,
mechanism design in the Bayesian setting has also been gaining popularity in
the computer science community. Thus, it is interesting to consider the issue of
privacy in the Bayesian setting as well. In particular, it may be possible for a
Bayesian mechanism to achieve optimal efficiency while satisfying some form of
differential privacy. Achieving optimal efficiency may be critical for certain prob-
lems, such as presidential elections and kidney transplant allocations, where it



may be unethical and/or unfair to make a non-optimal choice. Although differ-
entially private mechanisms in the worst-case setting may asymptotically achieve
nearly optimal efficiency in expectation (or with reasonably high probability),
there is no guarantee that the chosen outcome for a particular execution of the
mechanism is actually close to optimal.

Bayesian Differential Privacy and Persistent Approximate Truthful-
ness. In this paper, we consider mechanism design in the Bayesian setting, and
our main goal is to construct useful mechanisms that achieve optimal efficiency,
some form of differential privacy, and some notion of truthfulness. Since differen-
tial privacy is a worst-case notion in the sense that no distributional assumptions
are made on the input of the mechanism, we first adapt the notion of differen-
tial privacy to the Bayesian mechanism design setting. We call this new notion
Bayesian differential privacy; this is the privacy notion that we use in this paper.

As mentioned above, Xiao [2] showed that a mechanism that is truthful and
differentially private might not be truthful in a model where privacy is explicitly
captured in the players’ utility functions. In this paper, we do not use such a
model, since there are many settings where the players would already be satisfied
with differential privacy and would not report strategically in an attempt to
further protect their privacy. Our results will be meaningful in these settings;
furthermore, even in a setting where we want to explicitly capture privacy in
the players’ utility functions, our techniques and results can still be useful in
constructing truthful mechanisms (similar to how the mechanisms in [3] and [5]
are still based on differentially private mechanisms).

We also want our mechanisms to satisfy some form of truthfulness. The stan-
dard notion of truthfulness in Bayesian mechanism design is that the truthful
strategy profile is a Bayes-Nash equilibrium. Similar to [1], we first relax truth-
fulness so that the truthful strategy profile only needs to be an e-Bayes-Nash
equilibrium, where an € margin is allowed in the Nash conditions. However, we
would like to obtain notions of truthfulness that are stronger than that provided
by the e-Bayes-Nash equilibrium. Thus, we strengthen the e-Bayes-Nash equi-
librium such that even if up to k players deviate from the equilibrium, everyone
else’s best-response is still to adhere to their part of the equilibrium. We call this
new equilibrium concept the k-tolerant e- Bayes-Nash equilibrium. We would also
like our equilibrium concept to be resilient against coalitions. Thus, we further
strengthen our notion of k-tolerant e-Bayes-Nash equilibrium to (k, r)-persistent
e-Bayes-Nash equilibrium, which is resilient against coalitions of size r even in
the presence of k deviating players. The notion of truthfulness we use requires
that the truthful strategy profile is a (k, r)-persistent e-Bayes-Nash equilibrium,
which we will refer to as persistent approzimate truthfulness.

1.1 Owur Results

In this paper, we present three classes of mechanisms that achieve both Bayesian
differential privacy and persistent approximate truthfulness:



Histogram Mechanisms. Roughly speaking, a histogram mechanism is a
mechanism that first computes a histogram from the reported types, and then
chooses a social alternative based only on the histogram. In Section 4.1, we show
that if every bin of the histogram has positive expected count, then the histogram
mechanism is both Bayesian differentially private and persistent approximately
truthful.

Mechanisms for Two Social Alternatives. Roughly speaking, this class
includes any mechanism that makes a choice between two social alternatives
{A, B} based on the difference between the sums of two functions u(-, A) and
u(+, B) on the types. In Section 4.2, we show that as long as the random variable
u(t, A) — u(t, B) (where t is distributed according to the type distribution) has
non-zero variance, then such a mechanism is both Bayesian differentially private
and persistent approximately truthful.

Social Welfare Mechanisms. Roughly speaking, this class includes any mech-
anism that makes a choice based on the social welfare provided by each social
alternative. An important subset of these mechanisms is the set of mechanisms
that maximize social welfare. In Section 4.3, we show that if the players’ valua-
tions for each social alternative are normally distributed, then such a mechanism
is both Bayesian differentially private and persistent approximately truthful. In
our full paper, we generalize this result to the case where the players’ valuations
for each social alternative are arbitrarily distributed with non-zero variance.

The mechanisms in the above three classes are all deterministic and can achieve
optimal efficiency. Furthermore, the mechanisms do not use any payments. All
proofs, as well as additional examples, can be found in our full paper.

Obtaining Actual Truthfulness. Recall that in [4], the authors added a
“reaction stage” to the standard mechanism design model in order to achieve
actual truthfulness from approximate truthfulness (which is obtained via dif-
ferential privacy). We can also use this model and their techniques to obtain
actual truthfulness in our results. In our full paper, we also describe an al-
ternative model where actual truthfulness can be obtained from approximate
truthfulness. In this new model, the mechanism is given the ability to verify the
truthfulness of a small number of players. This model is simple to use and is
realistic in settings where the truthfulness of a player can be verified objectively
(e.g., income, expenses, age, address).

2 Preliminaries and Definitions

For any k € N, we will use [k] to denote the set {1,. .., k}. We consider a standard
mechanism design environment consisting of the following components:

— A number n of players; we will often use [n] to denote the set of n players.
— A type space T'; each player has a private type from the type space T



— A distribution T over the type space; the players’ private types are indepen-
dently drawn from this distribution.

— A set S of social alternatives; for convenience, we assume that S is finite.

— For each player i, a utility function u; : T xS — R; fort € T and s € S,
u;(t, s) represents the utility that player ¢ receives if player 7 has type ¢ and
the social alternative s is chosen.

We will focus on direct revelation mechanisms where each player reports
his/her type. Therefore, a mechanism is a function M : T™ — S, and a (pure)
strategy for player i is a function o; : T — T that maps true types to announced
types. For convenience, whenever we refer to a mechanism M : T" — S, we
assume that it is associated with an environment as described above.

2.1 Equilibrium Concepts

In this section, we will define several equilibrium concepts based on the standard
Bayes-Nash equilibrium (see, e.g., [9]). These equilibrium concepts will be used
to define various notions of truthfulness. Our definitions build on the e-Bayes-
Nash equilibrium, which is a relaxation of the Bayes-Nash equilibrium in the
sense that an e margin is allowed in the Nash conditions. This relaxation reflects
the assumption that players will not deviate from the equilibrium if gains from
deviation are sufficiently small. In this paper, we also refer to e-Bayes-Nash
equilibria as approximate Bayes-Nash equilibria. For more information about
various notions of approximate equilibria, see [10-12].

Our equilibrium concepts strengthen the e-Bayes-Nash equilibrium. We chose
two strengthenings to address the following weaknesses of Nash equilibria. Firstly,
a player’s part of a Nash equilibrium is only guaranteed to be a best-response if
all the other players are playing their parts of the equilibrium. In other words, a
Nash equilibrium cannot tolerate players deviating from their equilibrium strat-
egy — if there is one irrational person in the system, the equilibrium breaks
down. Deviations are especially problematic in e-equilibria, where there is less
confidence that everyone would play their part of the equilibrium. Secondly, a
Nash equilibrium is not resilient to deviations by more than one person; coali-
tions of players can have profitable deviations from the equilibrium.

To address the first problem, we strengthen the Nash conditions such that
even if up to k players deviate from the equilibrium, everyone else’s best-response
is still to adhere to their part of the equilibrium. In other words, the equilibrium
tolerates arbitrary deviations of k individuals.

Definition 1 (k-tolerant e-Bayes-Nash equilibrium). A strategy profile o =
(01,...,0n) is a k-tolerant e-Bayes-Nash equilibrium if for every I C [n] with
|I| < k, every possible announced types t; € TV for I, every playeri ¢ I, and
every pair of types t;,t; for player i, we have

Et.l [ui(tlﬁ M(Ui(ti)7 tllv UJ(tJ)))] 2 ]EtJ [ui(ti7 M(t;7 tlh O'J(tJ)))} -6

where J = [n]\ (IU{i}) and t; ~ T7I.



We note that k-tolerance is distinct from the notion of k-immunity as de-
fined in [13,14], which guarantees that when up to k people deviate from the
equilibrium, the utilities of the non-deviating players do not decrease.

The second problem mentioned above is addressed by r-resilience (see, e.g.,
[10,14]). A Bayes-Nash equilibrium is r-resilient if for any group of size at most
r, there does not exist a deviation of the group such that any member of the
coalition has increased utility.

Definition 2 (r-resilient e-Bayes-Nash equilibrium). A strategy profile o =
(01,...,0n) s an r-resilient e-Bayes-Nash equilibrium if for every coalition
C C [n] with |C| < r, every true types tc € TIC! for C, every player i € C, and
every possible announced types ty € TICl for C, we have

Ei o[ui(ts, M(oc(te),o-c(t-c)))] = E_o[ui(ti, M(te,o—c(t-c)))] — ¢
where t_¢ ~ T"IC1

It is not hard to see that resilience and tolerance can be independently vio-
lated, and hence neither implies the other. Just as the authors in [13, 14] combine
immunity and resilience, we consider the combination of tolerance and resilience.
Roughly speaking, a (k,r)-persistent Bayes-Nash equilibrium is a Bayes-Nash
equilibrium that is r-resilient (protects against coalitions of size r), even in the
presence of up to k individuals that are deviating arbitrarily from the equilib-
rium.

Definition 3 ((k,r)-persistent e-Bayes-Nash equilibrium). A strategy pro-
file o = (01,...,0p) is a (k,r)-persistent e-Bayes-Nash equilibrium if for every
I C [n] with |I| < k, every possible announced types ty € TV for I, every coali-
tion C C [n] \ I with |C| < r, every true types to € TIC! for C, every player
i € C, and every possible announced types ty € TIC! for C, we have

Et,[ui(ti, M(oc(tc) tr,o5(ts)))] > B, [uits, M(te, th, o 5(t))))] — ¢,

where J = [n]\ (IUC) and t; ~ T

2.2 Notions of Truthfulness

In this section, we define various notions of truthfulness based on the equilib-
rium concepts from the previous section. Recall that a mechanism is Bayes-Nash
truthful if the truthful strategy profile is a Bayes-Nash equilibrium. Similarly, a
mechanism is e-Bayes-Nash truthful if the truthful strategy profile is an e-Bayes-
Nash equilibrium. By using the equilibrium concepts from the previous section,
we can obtain stronger notions of truthfulness.

Definition 4 ([k-tolerant]/[r-resilient]/[(k,r)-persistent] e-Bayes-Nash truth-
ful). A mechanism is k-tolerant e-Bayes-Nash truthful if the truthful strategy
profile is a k-tolerant e-Bayes-Nash equilibrium. Similarly, a mechanism is r-
resilient (resp., (k,r)-persistent) e-Bayes-Nash truthful if the truthful strategy
profile is an r-resilient (resp., (k,r)-persistent) e-Bayes-Nash equilibrium.



It is easy to see that if a mechanism is (k,r)-persistent e-Bayes-Nash truth-
ful, then it is also k-tolerant e-Bayes-Nash truthful and r-resilient e-Bayes-Nash
truthful. In many settings, it is reasonable to believe that players in an e-Bayes-
Nash truthful mechanism will be truthful, since (1) truth-telling is simple while
computing a profitable deviation can be costly (see, e.g., [15]), and (2) lying can
induce a psychological (morality) cost. Indeed, there are many results in mecha-
nism design that assume that approximate truthfulness is enough to ensure that
players will be truthful (see, e.g., [1, 16-18]).

3 Privacy for Bayesian Mechanism Design

In this section, we describe and define Bayesian differential privacy, which is a
natural adaptation of differential privacy [7,8] to the Bayesian mechanism design
setting. Roughly speaking, differential privacy requires that when one person’s
input to the mechanism is changed, the output distribution of the mechanism
changes very little (here, the mechanism is randomized).

We now describe Bayesian differential privacy. We first note that even though
the players’ true types are drawn from some distribution 7, if all the players are
non-truthful and announce a type independently of their true type, then the
input of the mechanism is no longer distributional and we are essentially in the
same scenario as in (worst-case) differential privacy. Thus, it is necessary to
make some assumptions on the strategies of the players, so that the input of the
mechanism contains at least some randomness.

In our notion of Bayesian differential privacy, we assume that at least some
players (e.g., a constant fraction of the players) are truthful so that their an-
nounced types have the same distribution as their true types. This assumption
is not unreasonable, since we later show that if a mechanism is Bayesian differ-
entially private, then the mechanism is automatically persistent approximately
truthful, so we expect that most players would be truthful anyway. In particu-
lar, if we have an equilibrium where most players are truthful, then privacy is
achieved at this equilibrium.

Roughly speaking, (k, €, §)-Bayesian differentially privacy requires that when
a player ¢ changes his/her announced type, the output distribution of the mech-
anism changes by at most an (¢, ) amount, assuming that at most k players are
non-truthful (possibly lying in an arbitrary way). This implies that the mecha-
nism leaks very little information about each player’s announced type, so each
player’s privacy is protected. The mechanism is assumed to be deterministic, so
the randomness of the output is from the randomness of the types of the truthful
players. (One can also consider randomized mechanisms, but we chose to focus
on deterministic mechanisms in this paper.)

Definition 5 ((k,¢,)-Bayesian differential privacy). A mechanism M :
T" — S is (k, e, d)-Bayesian differentially private if for every player i € [n],
every subset I C [n]\ {i} of players with |I| < k, every pair of types t;,t; € T
for player i, and every ty, € T, the following holds: Let J = [n] \ (I U {i}) (the



remaining players) and t; ~ TV then, for every Y C S, we have

Pr[M(t;,t),t;) € Y] <e - Pr[M(t;,t},t;) € Y]+,
where the probabilities are over tj ~ T

The parameter k controls how many non-truthful players the mechanism
can tolerate while satisfying privacy; & can be a function of n (the number of
players), such as k = 5. One can even view the non-truthful players as being
controlled/known by an adversary that is trying to learn information about
a player ¢’s type; as long as the adversary controls/knows at most k people,
player i’s privacy is still protected. The parameters ¢ and § bound the amount
of information about each person’s (announced) type that can be “leaked” by
the mechanism. Since the above definition of Bayesian differential privacy is a
natural adaptation of differential privacy to Bayesian mechanism design, and
since differential privacy is a well-motivated and well-accepted notion of privacy,
we will not further elaborate on the details of the above definition.

Our definition of (k, ¢, §)-Bayesian differential privacy has some similarities
to the notion of (¢, d)-noiseless privacy (for databases) introduced and studied
in [19]. However, there are some subtle but significant differences between the
two definitions, so the results in this paper do not follow from the theorems
and proofs in [19]. Nevertheless, the ideas and techniques in [19], and for (e, §)-
noiseless privacy in general, may be useful for designing Bayesian differentially
private mechanisms.

It is known that differentially private mechanisms are approximately (dominant-
strategy) truthful (see [1]). Similarly, Bayesian differentially private mechanisms
are persistent approximate Bayes-Nash truthful.

Theorem 1 (Bayesian differential privacy = persistent approximate
truthfulness). Suppose the utility functions are bounded by o > 0, i.e., the
utility function for each playeri isu; : TxS — [—a, al. Let M be any mechanism
that is (k, €, d)-Bayesian differentially private. Then, M satisfies the following
properties:

1. M is k-tolerant (e + 26)(2«)-Bayes-Nash truthful.

2. For everyl <r < k41, M is r-resilient (re+2rd)(2«)-Bayes-Nash truthful.

3. Foreveryl <r <k+1, M is (k—r+1,r)-persistent (re + 2rd)(2a)-Bayes-
Nash truthful.

4 Efficient Bayesian Mechanisms with Privacy and
Persistent Approximate Truthfulness

In this section, we present three classes of mechanisms that achieve both Bayesian
differential privacy and persistent approximate truthfulness.



4.1 Histogram Mechanisms

We first present a broad class of mechanisms, called histogram mechanisms, that
achieve Bayesian differential privacy and persistent approximate truthfulness.
Given a partition P = {By,..., B,,} of the type space T with m blocks (ordered
in some way), a histogram with respect to P is simply a vector in (Z>o)™ that
specifies a count for each block of the partition. Given a partition P, let Hp
denote the set of all histograms with respect to P; given a vector ¢ of types, let
Hp(t) be the histogram formed from ¢ by simply counting how many components
(types) of t belong to each block of the partition P.

We now define what we mean by a histogram mechanism. Intuitively, a his-
togram mechanism is a mechanism that, on input a vector of types, computes
the histogram from the types with respect to some partition P, and then applies
any function f: Hp — S to the histogram to choose a social alternative in S.

Definition 6 (Histogram mechanism). Let P be any partition of the type
space T. A mechanism M : T™ — S is a histogram mechanism with respect to
P if there exists a function f: Hp — S such that M(t) = f(Hp(t)) Vt e T™.

The following theorem states that any histogram mechanism with bounded
utility functions and positive expected count for each bin is both Bayesian dif-
ferentially private and persistent approximately truthful.

Theorem 2 (Histogram mechanisms are private and persistent ap-
proximately truthful). Let M : T" — S be any histogram mechanism with
respect to some partition P of T. Let ppin = mingep Prir[t € B, and suppose

that pmin > 0. Then, for every 0 < k < n — 2 and m <e<l1l, M

satisfies the following properties with § = e~ 2((n=k)-Pmin-€*) ;

1. Privacy: M is (k,e€,d)-Bayesian differentially private.

2. Persistent approximate truthfulness: Suppose the utility functions are bounded
by a > 0, i.e., the utility function for each player i is u; : T X S — [—a, a].
Then, for every 1 <r <k+1, M is (k—r 4+ 1,r)-persistent (re + 2rd)(2a)-
Bayes-Nash truthful.

One possible partition of the type space is the one where there is a distinct
block for each type. Thus, Theorem 2 covers the case where the choice of the
mechanism depends only on the number of players that reported each type,
and not their identities. In fact, given any partition, one can redefine the type
space so that the new types are the blocks of the partition. This means we
could always redefine the type space and simply use the partition where there
is a distinct block for each type in the new type space. However, we believe it
is more natural to preserve the original, natural type space, and to allow the
histogram mechanism to use an appropriate partition of the type space.

In Theorem 2, since the histogram mechanism is not modified in any way
to satisfy privacy and persistent approximate truthfulness, all properties of the
mechanism (e.g., efficiency, truthfulness, individual rationality, etc.) are pre-
served. We now give a simple example to illustrate Theorem 2.
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Ezample 1 (Voting with multiple candidates). Suppose we are trying to
select a winner from a finite set of candidates (e.g., political candidates) using
the plurality rule (i.e., each voter casts one vote and the candidate with the
most votes wins). The set of social alternatives is the set of candidates, and the
natural type space is the set of all preference orders over the candidates. However,
we can partition the type space such that each block b represents a candidate
¢y, and all the types with ¢, as their top choice belong to block b. Intuitively,
announcing a type that belongs to block b can be understood as casting a vote
for candidate c¢,. Using this partition, we can define a histogram mechanism
that implements the plurality rule. It is well known that the plurality rule is
not strategy-proof when there are more than two candidates (see, e.g., [11]).
However, by Theorem 2, this histogram mechanism is Bayesian differentially
private and persistent approximate Bayes-Nash truthful.

4.2 Mechanisms for Two Social Alternatives

Although histogram mechanisms are useful in many settings, in order to apply
Theorem 2 to get good parameters, the number of bins cannot be extremely
large. We now present a class of mechanisms that do not require the partitioning
of types into bins, but are still Bayesian differentially private and persistent
approximately truthful. Roughly speaking, the following theorem states that any
mechanism that makes a choice between two social alternatives {A, B} based on
the difference between the sums of two functions (-, A) and u(-, B) on the types
is Bayesian differentially private and persistent approximately truthful.

Theorem 3 (Private and persistent approximately truthful mechanisms
for two social alternatives). Let S = {A, B} be any set of two social alter-
natives, let T C R be the type space, let T be any distribution over T, and let
u:T xS = [-0,8] be any function (e.g., a utility function for all the play-
ers). Suppose the random variable u(t, A) — u(t, B), where t ~ T, has non-zero
variance and a probability density function.

Let M : T™ — S be any mechanism such that

M(t) =f <Z u(tivA) - ZU(Q,B))
i=1 i=1
for some function f: R — S. Then, for every 0 <k<n—-2and0<e<1, M

satisfies the following properties with € = e+ O( %) and 0 = O(e\/:sz)'.

1. Privacy: M is (k,€,8)-Bayesian differentially private.

2. Persistent approximate truthfulness: Suppose the utility functions are bounded
by a > 0, i.e., the utility function for each player i isu; : T x S — [—a, a).
Then, for every 1 <r <k+4+1, M is (k—r+1,r)-persistent (re’ +2rd)(2a)-
Bayes-Nash truthful.
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The mechanism in Theorem 3 chooses a social alternative by applying some
function f on the difference between Y 7", u(t;, A) and >, u(t;, B). We note
that the mechanism may already have certain properties, such as efficiency,
truthfulness, individual rationality, etc.; by Theorem 3, this mechanism also sat-
isfies privacy and persistent approximate truthfulness, in addition to the original
properties that it already satisfies. One obvious application of Theorem 3 is to
let u be a common utility function for the players, where the utility of player
i with type t; is u(t;, A) if A is chosen, and is u(t;, B) if B is chosen. If we
define f : R — S such that f(z) = A if and only if > 0, then the mechanism
maximizes social welfare.

4.3 Social Welfare Mechanisms

In this section, we present a class of mechanisms that make choices based on the
social welfare provided by each social alternative. An important subset of these
mechanisms is the set of mechanisms that maximize social welfare.

In this section, a type t € T is a valuation function that assigns a valuation
to each social alternative s € S. In many settings, it is reasonable to assume that
the players’ valuations for each social alternative follow a normal distribution,
since the normal distribution has been frequently used to model many natural
and social phenomena. For convenience of presentation, we will use the standard
normal distribution A(0,1) in our theorems below. However, our theorems can
be easily generalized to work with arbitrary normal distributions. In any case, it
is easy to see that given any normal distribution over the valuations, the valua-
tions can be translated and scaled to obtain the standard normal distribution.

For any reasonable mechanism, it is natural to have a bound on the set of
possible valuations — it would be unreasonable to allow a player to report an
arbitrarily high or low valuation (e.g. 219°) and single-handedly influence the
choice of the mechanism. Therefore, we will restrict the possible valuations to
the interval [—a, a] for some value a > 0. As a result, our type space T will be
the set of all valuation functions ¢ : S — [—«, a]. Furthermore, we will assume
that the players’ valuations for each social alternative follow the standard normal
distribution. However, because of the bound on the set of valuations, we will use
the truncated standard normal distribution obtained by conditioning A(0,1) to
lie on the interval [—a, a]. We denote this distribution by N'(0,1)[—q,q)-

For simplicity, we will first present the following theorem, which is a special
case of our more general result (Theorem 5). The following theorem states that if
each player’s valuation for each social alternative is distributed as the truncated
standard normal distribution A(0, 1)[=a,a), then any mechanism that makes a
choice based on the set of total valuations for each social alternative is Bayesian
differentially private and persistent approximate Bayes-Nash truthful.

Theorem 4 (Social welfare mechanisms). Let S = {s1,...,s,} be a set of
m social alternatives. Let the type space T be the set of all valuation functions
t:S — [—a,a] on S, where a = O(¥/n). Let T be the distribution over T
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obtained by letting t(s) ~ N(0,1)[(_q,a) for each s € S independently. For each
player i, let the utility function for player i be u;(t;,s) = t;(s).

Let sw;(t) = D1, ti(s;) be the (reported) social welfare for the social alter-
native s;. Let M : T™ — S be any mechanism such that

M(t) = f(SWl(t), ce 7SWm(t))

for some function f : R™ — S. Then, for every constant ¢ < 1, every k <
c-n, and every 0 < ¢ < 1, M satisfies the following properties with § =

2

O(e‘Q( po '\/ﬁ)—i—ln(mx/ﬁ))

1. Privacy: M is (k,¢€,0)-Bayesian differentially private.
2. Persistent approximate truthfulness: For every 1 <r <k+1, M is (k—r+
1,7)-persistent (re + 2rd)(2«)-Bayes-Nash truthful.

In Theorem 4, sw,(t) represents the social welfare that will be achieved if the
players’ types (i.e., valuation functions) are ¢t and the social alternative s; is cho-
sen by the mechanism. Thus, Theorem 4 says that any mechanism whose choice
depends only on the set {sw;(t)} c[m) of social welfare values satisfies Bayesian
differential privacy and persistent approximate Bayes-Nash truthfulness, in ad-
dition to any properties that it may already satisfy (e.g., efficiency, truthfulness,
individual rationality, etc.). In particular, a mechanism that chooses a social
alternative to maximize social welfare satisfies this requirement and achieves
optimal efficiency with respect to social welfare.

In Theorem 4, the value a at which the standard normal distribution is trun-
cated is chosen so that the truncated distribution is very close to the untruncated
one. This means that even if we had used the untruncated distribution instead,
with high probability no valuation would fall outside the interval [—c, «].

In the next theorem, we consider a setting where there is a set of available
“options”, and we allow the mechanism to choose any subset of these options.
Thus, the set of social alternatives is the power set of the set of options. To
keep the set of valuations tractable, instead of having a valuation for each social
alternative, the players have a valuation for each option. Moreover, we allow for
the flexibility where for each player, only certain options are relevant/applicable
to that player. We capture this flexibility by having a binary weight for each
player-option pair. Note that Theorem 4 is the special case where the set of
social alternatives consists of the sets of single options (i.e., the singletons), and
where all options are considered relevant to all players.

The binary weight w; ; associated with player ¢ and option o; indicates
whether option o; is relevant/applicable to player i. w; ; = 1 means that option
o; is relevant/applicable to player ¢, so player ¢’s announced valuation is taken
into account in the social welfare for option o;. On the other hand, w;; = 0
means that player i’s valuation is ignored in the social welfare for option o;.
These weights are known to or set by the mechanism designer. For example,
perhaps only people with low income should have a voice in decisions regard-
ing subsidized housing, and only people with disabilities should have a say in
decisions regarding building accessibility laws. We now state our next theorem,
which generalizes Theorem 4 to this new setting.
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Theorem 5 (Social welfare mechanisms with multiple options). Let the
set S of social alternatives be 29, where O = {o1,...,0m} is a set of m possible
“options™. Let the type space T be the set of all valuation functions t : O —
[—a,a] on O, where « = O(/n). Let T be the distribution over T obtained by
letting t(0) ~ N(0,1)[_q,q) for each option o € O independently. Suppose the
weights {w; j}Yicn] jerm) Satisfy Y iy wij > c1 - n for every option oj, where
c1 > 0 is some constant.

Let sw;(t) = >0 w; ; - ti(0j) be the (reported) social welfare for option o;.
Let M : T™ — S be any mechanism such that

M(t) = f(swi(t), ... swm(t))

for some function f : R™ — S. Then, for every constant co < c1, every k <

co - mn, and every 0 < € < 1, M satisfies the following properties with § =

O(efﬂ(%-\/ﬁ)ﬂn(m\/ﬁ)):

1. Privacy: M is (k,¢€,0)-Bayesian differentially private.

2. Persistent approximate truthfulness: Suppose the utility functions are bounded
by 8 > 0, i.e., the utility function for each player i is u; : T x S — [—0, 5]
Then, for every 1 <r < k+1, M is (k—r+1,r)-persistent (re + 2rd)(25)-
Bayes-Nash truthful.

In Theorem 5, the requirement on the binary weights simply means that each
option is relevant/applicable to at least some constant fraction of the players.
Note that the persistent approximate truthfulness result of Theorem 5 requires
the players’ utility functions to be bounded by 5 > 0. This assumption is needed
since the players’ utility functions can actually be arbitrary functions. However,
the most natural way to use Theorem 5 is to let player 4’s utility function be the
following: if the chosen social alternative is a singleton {o;}, then the utility for
player i is w; ; - t;(0;); if the chosen social alternative is a set s consisting of two
or more options, then the utility for player 7 is the sum of the utilities for each
singleton subset of s. Alternatively, a player i’s utility for a social alternative s
does not have to be additive in the options that s contains — the utility function
for player i can capture complementarities and substitutabilities of the options
as well. We now give a simple example that illustrates Theorem 5.

Ezample 2 (Multiple public projects). The municipal government would like
to spend its budget surplus of 4 million on the community. There are four options
that the government is considering, each costing 2 million to build: a senior home,
a casino, a subsidized housing complex, and a library. The government would
like to find out, on a scale from —a to a, how much each individual values each
option. For each individual ¢, the government chooses the weights for each of the
options as follows: the weight for the senior home is 1 if and only if individual
i is over the age of 65; the weight for the casino is 1 if and only if individual i
is over the age of 19; the weight for the subsidized housing complex is 1 if and
only if individual 7 is classified as low-income; and the weight for the library is
always 1.
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After collecting the valuations from the individuals, the government can com-
pute the social welfare provided by each option, or compute an average utility
for each option by dividing its social welfare by the number of people who have
weight 1 for that option. Finally, the government can choose two of the options
to maximize social welfare or average utility. By Theorem 5, this mechanism is
Bayesian differentially private and persistent approximately truthful.

In our full paper, we generalize Theorem 5 to the case where the players’
valuations for each social alternative are arbitrarily distributed with non-zero
variance.
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