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Abstract. A network creation game simulates a decentralized and non-cooperative
building of a communication network. Informally, there are n players sitting on the
network nodes, which attempt to establish a reciprocal communication by activat-
ing, incurring a certain cost, any of their incident links. The goal of each player is to
have all the other nodes as close as possible in the resulting network, while buying as
few links as possible. According to this intuition, any model of the game must then
appropriately address a balance between these two conflicting objectives. Motivated
by the fact that a player might have a strong requirement about its centrality in the
network, in this paper we introduce a new setting in which if a player maintains its
(either maximum or average) distance to the other nodes within a given associated
bound, then its cost is simply equal to the number of activated edges, otherwise its
cost is unbounded. We study the problem of understanding the structure of associ-
ated pure Nash equilibria of the resulting games, that we call MaxBD and SumBD,
respectively. For both games, we show that computing the best response of a player
is an NP-hard problem. Next, we show that when distance bounds associated with
players are non-uniform, then equilibria can be arbitrarily bad. On the other hand,
for MaxBD, we show that when nodes have a uniform bound R on the maximum
distance, then the Price of Anarchy (PoA) is lower and upper bounded by 2 and

O
(

n
1

⌊log3 R⌋+1

)

for R ≥ 3 (i.e., the PoA is constant as soon as the bound on the

maximum distance is Ω(nǫ), for some ǫ > 0), while for the interesting case R = 2,
we are able to prove that the PoA is Ω(

√
n) and O(

√
n logn). For the uniform

SumBD we obtain similar (asymptotically) results, and moreover we show that the

PoA becomes constant as soon as the bound on the average distance is n
ω

(

1√
log n

)

.
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1 Introduction

Communication networks are rapidly evolving towards a model in which the constituting
components (e.g., routers and links) are activated and maintained by different owners,
which one can imagine as players sitting on the network nodes. When these players act in
a selfish way with the final intent of creating a connected network, the challenge is exactly
to understand whether the pursuit of individual profit is compatible with the attainment
of an equilibrium status for the system (i.e., a status in which players are not willing to
move from), and how the social utility for the system as a whole is affected by the selfish
behavior of the players. This task, which involves both computational and economical
issues of the system, is exactly the aim of a research line which started with the seminal
paper of Fabrikant et al. [9], where the by now classic network creation game (NCG) was
initially formalized and investigated.

Definition of the NCG. In its original formulation, the NCG is defined as follows: We are
given a set of n players, say V , where the strategy space of player v ∈ V is the power set
2V \{v}. Given a combination of strategies S = (Sv)v∈V , let G(S) denote the underlying
undirected graph whose node set is V , and whose edge set is E(S) = {∪v∈V (v × Sv)}.
Then, the cost incurred by player v under S is

costv(S) = α · |Sv|+
∑

u∈V

dG(S)(u, v) (1)

where dG(S)(u, v) is the distance between nodes u and v in G(S). Thus, the cost function
implements the inherently antagonistic goals of a player, which on the one hand attempts
to buy as little edges as possible, and on the other hand aims to be as close as possible to
the other nodes in the outcoming network. These two criteria are suitably balanced in (1)
by making use of the parameter α ≥ 0. Consequently, the Nash Equilibria5 (NE) space of
the game is heavily influenced by α, and the corresponding characterization must be given
as a function of it. The state-of-the-art for the Price of Anarchy (PoA) of the game, that
we will call henceforth SumNCG, is summarized in [13], where the most recent progresses
on the problem have been reported.

Further NCG models. A criticism made to the classic NCG model is that the parameter α
is in a sense exogenous to the system. Moreover, usage and building cost are summed up
together in the player’s cost, and this mixing is reflected in the social cost of the resulting
network. As a consequence, we have that in this game the PoA alone does not say so much
about the structural properties of the network, such as density, diameter, or routing cost.
This gave rise to a sequence of new NCG models. A first natural variant of SumNCG was
introduced in [7], where the authors redefined the player cost function as follows

costv(S) = α · |Sv|+max{dG(S)(u, v) : u ∈ V }. (2)

This variant, named MaxNCG, received further attention in [13], where the authors im-
proved the PoA of the game on the whole range of values of α. However, MaxNCG still
incorporates in its definition the parameter α. In an effort of defining new parameter-free
models, in [12] the authors proposed an interesting variant in which a player v, when form-
ing the network, has a limited budget bv to establish links to other players. This way, the
player cost function restricts to the usage cost, namely either the maximum or the total

5 In this paper, we only focus on pure strategies Nash equilibria.
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distance to other nodes. In particular, in [12] the authors focused on the latter measure.
For this bounded-budget version of the game, that we call SumBB, they showed that deter-
mining the existence of NE is NP-hard. On a positive side, they proved that for uniform
budgets, say k, SumBB always admits a NE, and that its Price of Stability (PoS) is 1,

while its PoA is Ω
(√

n/k
logk n

)

and O

(

√

n
logk n

)

. Notice that in SumBB, links are seen as

directed. Thus, a natural extension of the model was given in [8], were the undirected case
was considered. For this, it was proven that both MaxBB and SumBB always admit a
NE. Moreover, the authors showed that the PoA for MaxBB and SumBB is Ω(

√
logn)

and 2O(
√
logn), respectively, while in the special case in which the budget is equal to 1 for

all the players, the PoA is O(1) for both versions of the game.
In all the above models it must be noticed that, as stated in [9], for a player it is NP-

hard to find a best response once that the other players’ strategies are fixed. To circumvent
this problem, in [4] the authors proposed a further variant, called basic NCG (BNCG), in
which given some existing network, the only improving transformations allowed are edge
swaps, i.e., a player can only modify a single incident edge, by either replacing it with a new
incident edge, or by removing it. This naturally induces a weaker concept of equilibrium
for which a best response of a player can be computed in polynomial time. In this setting,
the authors were able to give, among other results, an upper bound of 2O(

√
logn) for the

PoA of SumBNCG, and a lower bound of Ω(
√
n) for the PoA of MaxBNCG. However,

as pointed out in [13], the fact that now an edge has not a specific owner, prevents the
possibility to establish any implications on the PoA of the classic NCG, since a NE in a
BNCG is not necessarily a NE of a NCG.

Finally, another NCG model which is barely related to the NCG model we study in
this paper has been addressed in [6].

Our results. In this paper, we propose a new NCG variant that complements the model
proposed in [8]. More precisely, we assume that the cost function of each player only
consists of the number of bought edges (without any budget on them), but with the
additional constraint that a player v needs to connect to the network by staying within a
given (either maximum or average) distance, say (either Rv or Dv), to the set of players.
Our model is motivated by the fact that in a realistic scenario, a player might have a strong
objective about its centrality in the created network, and this can only be guaranteed by
means of our approach.

For this bounded-distance version of the NCG, we address the problem of understanding
the structure of the NE associated with the two variants of the game, that we denote
by MaxBD and SumBD. To this respect, we first show that both games can have an
unbounded PoA as soon as players hold at least two different distance bounds. Moreover,
in both games, computing a best response for a player is NP-hard. These bad news are
counterbalanced by the positive result we get for uniform distance bounds. In this case,
first of all, the PoS for MaxBD is equal to 1, while for SumBD is at most equal to 2. Then,
as far as the PoA is concerned, let R and D denote the uniform bound on the maximum
and the average distance, respectively. We show that

(i) for MaxBD, the PoA is lower and upper bounded by 2 and O
(

n
1

⌊log3 R⌋+1

)

for R ≥ 3,

while for R = 2 is Ω(
√
n) and O(

√
n logn); thus, the PoA is constant as soon as

R = Ω(nǫ), for some ǫ > 0;
(ii) for SumBD, the PoA is lower bounded by 2− ǫ, for any ǫ > 0, as soon as D ≥ 2−3/n,

while it is upper bounded as reported in Table 1.
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D ∈ [2, 3) ≥ 3 and O(1) ω(1) ∩ O
(

3
√

log n
)

ω
(

3
√

log n
)

∩ n
O

(

1√
log n

)

n
ω

(

1√
log n

)

PoA O
(√

n log n
)

O
(

n
1

⌊log3 D/4⌋+2

)

2
O

(√
logn

)

O
(

n
1

⌊log3 D/4⌋+2

)

O(1)

Table 1. Obtained PoA upper bounds for SumBD.

The paper is organized as follows. After giving some basic definitions in Section 2, we
provide some preliminary results in Section 3. Then, we study upper and lower bounds for
MaxBD and SumBD in Sections 4 and 5, respectively. Finally, in Section 6 we conclude
the paper by discussing some intriguing relationships of our games with the famous graph-
theoretic degree-diameter problem.

2 Problem Definition

Graph terminology. Let G = (V,E) be an undirected (simple) graph with n vertices. For
a graph G, we will also denote by V (G) and E(G) its set of vertices and its set of edges,
respectively. For every vertex v ∈ V , let NG(v) := {u | u ∈ V \ {v}, (u, v) ∈ E}. The
minimum degree of G is equal to minv∈V |NG(v)|.

We denote by dG(u, v) the distance in G from u to v. The eccentricity of a vertex v in
G, denoted by εG(v), is equal to maxu∈V dG(u, v). The diameter and the radius of G are
equal to the maximum and the minimum eccentricity of its nodes, respectively. A node is
said to be a center of G if εG(v) is equal to the radius of G. We define the broadcast cost
of v in G as BG(v) =

∑

u∈V dG(u, v), while the average distance from v to a node in G is
denoted by DG(v) = BG(v)/n.

A dominating set of G is a subset of nodes U ⊆ V such that every node of V \ U is
adjacent to some node of U . We denote by γ(G) the cardinality of a minimum cardinality
dominating set of G. Moreover, for any real k ≥ 1, the kth power of G is defined as the
graph Gk = (V,E(Gk)) where E(Gk) contains an edge (u, v) if and only if dG(u, v) ≤ k.

Let U ⊆ V be a set of vertices, we denote by G[U ] the subgraph of G induced by U .
Let F ⊆ {(u, v) | u, v ∈ V, u 6= v}. We denote by G + F (resp., G − F ) the graph on V
with edge set E ∪F (resp., E \F ). When F = {e} we will denote G+ {e} (resp., G−{e})
by G+ e (resp., G− e). For two graphs G1 and G2, we denote by G1 ∪G2 the graph with
V (G1 ∪G2) = V (G1) ∪ V (G2), and E(G1 ∪G2) = E(G1) ∪ E(G2).

Problem statements. The bounded maximum distance NCG (MaxBD) is defined as follows:
Let V be a set of n nodes, each representing a selfish player, and for any v ∈ V , let Rv > 0
be an integer representing a bound on the eccentricity of v. The strategy of a player v
consists of a subset Sv ⊆ V \ {v}. Denoting by S the strategy profile of all players, let
G(S) be the undirected graph with node set V , and with edge set E(S) = {∪v∈V (v×Sv)}.
When u ∈ Sv, we will say that v is buying the edge (u, v), or that the edge (u, v) is bought
by v. Then, the cost of a player v in S is costv(S) = |Sv| if εG(S)(v) ≤ Rv, +∞ otherwise.

The bounded average distance NCG (SumBD) is defined analogously, with a bound
Dv on the average distance, and cost function costv(S) = |Sv| if DG(S)(v) ≤ Dv, +∞
otherwise. In the rest of the paper, depending on the context, we will interchangeably
make use of the bound on the broadcast cost Bv = Dv · n when referring to SumBD.

In both variants, we say that a node v is within the bound in S if costv(S) < +∞. We
measure the overall quality of a graph G(S) by its social cost SC (S) =

∑

v∈V costv(S). A
graph G(S) minimizing SC (S) is called social optimum.
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We use the Nash Equilibrium (NE) as solution concept. More precisely, a NE is a
strategy profile S in which no player can decrease its cost by changing its strategy assuming
that the strategies of the other players are fixed. When S is a NE, we will say that G(S) is
stable, and that a graph G is stable if there exists a strategy profile S such that G = G(S).
Notice that in both games, when S is a NE, all nodes are within the bound and, since
every edge is bought by a single player, SC (S) coincides with the number of edges of G(S).

We conclude this section by recalling the definition of the two measures we will use to
characterize the NE space of our games, namely the Price of Anarchy (PoA) [9] and the
Price of Stability (PoS) [3], which are defined as the ratio between the highest (respectively,
the lowest) social cost of a NE and the cost of a social optimum.

3 Preliminary results

First of all, observe that for MaxBD it is easy to see that a stable graph always exists.
Indeed, if there is at least one node having distance bound 1, then the graph where all
1-bound nodes buy edges towards all the other nodes is stable. Otherwise, any spanning
star is stable. Notice that any spanning star is stable for SumBD as well, but only when
all vertices have a bound of at least 2n− 3, while the problem of understanding whether a
NE always exists for the remaining values is open. From these observations, we can derive
the following negative result:

Theorem 1. The PoA of MaxBD and SumBD (with distance bounds Bv ≥ 2n− 3) is
Ω(n), even for only two distance-bound values.

Proof. We will define a graph G with Ω(n2) edges, and we will prove that G is stable for
both versions of the game. Then, we will show that in both cases the cost of the social
optimum is n− 1.

The graph G is defined as follows. We have a clique of k nodes. For each node v of
the clique, we add four nodes v11 , v

1
2 , v

2
1 , v

2
2 and four edges (v12 , v

1
1), (v

1
1 , v), (v

2
2 , v

2
1), (v

2
1 , v).

Clearly, G has n = 5k nodes and Ω(n2) edges. Now, consider a strategy profile S with
G = G(S) and such that (i) every edge is bought by a single player, and (ii) the edges
(vj2, v

j
1), (v

j
1, v) are bought by vj2 and vj1, respectively, j = 1, 2. Now, we show that S is a

NE, once we have defined suitable bounds for the players.
Let us consider MaxBD first. We set the bound of every node of the clique to 3, while

all the other nodes have bound 5. Trivially, all nodes are within the bound. Moreover, a
node vji is buying only one edge and, since the removal of such edge disconnects the graph,

vji cannot decreases its cost. Let v be a node of the clique, and assume that v is buying h
edges in S. Let S′ be a strategy profile where v switches its strategy Sv with S′

v and such
that |S′

v| < h. Since h ≤ n− 1, it must exist a vertex u of the clique such that u ∈ Sv and
u, u1

1, u
1
2, u

2
1, u

2
2 /∈ S′

v, from which we have that v cannot be within the bound in S′ since
dG(S′)(v, u

2
2) > 3.

Concerning SumBD, we set the bound of each node v of the clique to
∑

u∈V dG(v, u) =
11k− 5 > 2n− 3, while we assign to all the other nodes bound n2. Similar arguments used
for MaxBD can be used to show that S is a NE for SumBD as well.

To conclude the proof, observe that any star (with cost n− 1) is a social optimum for
the two instances of MaxBD and SumBD given above. ⊓⊔

Given the above bad news, from now on we focus our attention on the uniform case of
the games, i.e., that in which all the bounds on the distances are the same, say R and D
(i.e., B = D ·n) for the maximum and the average version, respectively. Similarly to other
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NCGs, also here we have the problem of computing a best response for a player, as stated
in the following theorem.

Theorem 2. Computing the best response of a player in MaxBD and SumBD is NP-
hard.

Proof. Let us consider MaxBD first. The reduction is from the NP-hard minimum dom-
inating set problem which, given a graph G′ = (V ′, E′), asks for finding a dominating
set of G′ of minimum cardinality, say γ(G′). Let N = |V ′|. We build a graph G with
n = N +2N(R− 2)+1 vertices as follows: We have an isolated vertex u, a copy of G′, and
two paths of length R − 2 appended to every vertex v ∈ V ′. Now, let S be the strategy
profile such that G = G(S). Clearly, costu(S) = +∞, and it is easy to see that u has a
strategy yielding a cost of k if and only if γ(G′) ≤ k.

Now, for SumBD, we sketch a reduction from the k-median problem. Let G′ = (V ′, E′)
be an instance of the k-median problem which, given a value β, asks for finding a subset
U ⊆ V of size k such that

∑

v∈V minu∈U dG(u, v) ≤ β. This problem is NP-hard even
when G′ is an unweighted graph [10]. Let G be the graph defined as G′ with an additional
isolated node u, and let S be a strategy profile such that G = G(S), and let B = β +N ,
where N = |V ′|. It is easy to see that u has a strategy yielding a cost of k if and only if
G′ has a k-median of cost at most β. ⊓⊔

On the other hand, a positive result which clearly implies that SUMBD always admits
a pure NE is the following.

Theorem 3. The PoS of MaxBD is 1, while for SumBD is at most 2.

Proof. Concerning MaxBD, when R = 1 the complete graph is a social optimum as well
as the only stable graph. For R > 1, let T be a spanning star with center c ∈ V and edges
(c, v), v ∈ V \ {c}. Clearly, T is a social optimum, and the strategy profile S in which
Sv = {c} for every v ∈ V \ {c}, and Sc = ∅, is a NE.

Concerning SumBD, observe that such a T is an optimum as well as stable when
B ≥ 2n− 3. Now assume that B = n− 1+ k with 0 ≤ k ≤ n− 2. We will define a graph G
with a number of edges that is at most twice the number of edges of the optimum, and we
show that it is stable. Let h, t ≥ 0 be s.t. n = (k+1)h+ t. We partition V into h groups of
k+1 nodes, say V1, . . . , Vh and, when t 6= 0, an additional group V0 of t vertices. The edge
set of G is defined as {(u, v) | u ∈ Vi, v ∈ Vj , i 6= j}. Let S be a strategy profile such that
G = G(S) with the constraint that every node in V0 buys no edge in S. Clearly, every node
in G is within the bound. Moreover, observe that in order to be within the bound, each
node v must have degree at least n − 1 − k. Now, since every node not in V0 has degree
exactly n− 1− k, and since nodes in V0 buy no edges, then G(S) is stable. To bound the

social cost of G, notice that the cost of the optimum, say Opt, is at least n(n−1−k)
2 . Let us

consider the case in which k < n/2. Then, Opt ≥ n2/4, while SC (S) ≤ n2/2 ≤ 2 ·Opt.
On the other hand, when k ≥ n/2, we have only two groups, one with t = n− k− 1 nodes
and the other with n− t. Then, we have SC (S) = t(n− t) ≤ t n ≤ 2 ·Opt. ⊓⊔

We conclude this section by providing a lemma which will simplify the exposition of
the remaining results.

Lemma 1. Let G(S) be a stable graph and let H be a subgraph of G(S). If for each node v
there exists a set Ev of edges (all incident to v) such that v is within the bound in H+Ev,
then SC (S) ≤ |E(H)|+∑

v∈V |Ev|.

5



Proof. Let kv be the number of edges of H that v is buying in S. If v buys Ev additionally
to its kv edges, then v will be within the bound. Hence, since S is a NE, we have that
costv(S) ≤ kv + |Ev|, from which it follows that:

SC (S) =
∑

v∈V

costv(S) ≤
∑

v∈V

kv +
∑

v∈V

|Ev| = |E(H)|+
∑

v∈V

|Ev|.

⊓⊔

4 PoA for MaxBD

4.1 Upper bounds

Lemma 2. Let G(S) be a NE, and let γ be the cardinality of a minimum dominating set
of G(S)R−1, then SC (S) ≤ (γ + 1)(n− 1).

Proof. Let U be a minimum dominating set of G(S)R−1, with γ = |U |. It is easy to see
that there is a spanning forest F of G(S) consisting of γ trees T1, . . . , Tγ , such that every
Tj contains exactly one vertex in U , and when we root Tj at such vertex the height of Tj

is at most R − 1.
For a node v ∈ V , let Ev = {(v, u) | u ∈ U \ {v}}. Clearly, v is within the bound in

F + Ev, hence by using Lemma 1, we have

SC (S) ≤ |E(F )|+
∑

u∈U

|Eu|+
∑

v∈V \U
|Ev| = n− γ + (γ − 1)γ + γ(n− γ) ≤ (γ + 1)(n− 1).

⊓⊔

Let G(S) be a NE and let v be a node of G(S). Since v is within the bound, the
neigborhood of v in G is a dominating set of GR−1. Therefore, thanks to Lemma 2 we
have proved the following corollary.

Corollary 1. Let G(S) be a NE, and let δ be the minimum degree of G(S), then SC (S) ≤
(δ + 1)(n− 1). ⊓⊔

We are now ready to prove our upper bound to the PoA for the game.

Theorem 4. The PoA of MaxBD is O(n
1

⌊log3 R⌋+1 ) for R ≥ 3, and O(
√
n logn) for

R = 2.

Proof. Let G be a stable graph, and let γ be the size of a minimum dominating set of
GR−1. We define the ball of radius k centered at a node u as βk(u) = {v | dG(u, v) ≤ k}.
Moreover, let βk = minu∈V |βk(u)|. The idea is to show that in G the size of any ball
increases quite fast as the radius of the ball increases.

Claim. For any k ≥ 1, we have β3k+1 ≥ min{n, γβk}.

Proof. Consider the ball β3k+1(u) centered at any given node u, and assume that |β3k+1(u)| ≤
n. Let T be the maximal set of nodes at distance exactly 2k+1 from u and subject to the
distance between any pair of nodes in T being at least 2k+1. We claim that for every node
v /∈ β3k+1(u), there is a vertex t ∈ T with dG(t, v) < dG(u, v). Indeed, consider the node t

′

in the shortest path between v and u at distance exactly 2k+1 from u. If t′ ∈ T the claim

6



trivially holds, otherwise consider the node t ∈ T that is closest to t′. From the maximality
of T we have that dG(t, v) ≤ dG(t, t

′) + dG(t
′, v) ≤ 2k + dG(u, v)− (2k + 1) < dG(u, v).

As a consequence, we have that T ∪ {u} is a dominating set of GR−1, and hence
|T | + 1 ≥ γ. Moreover, all the balls centered at nodes in T ∪ {u} with radius k are all
pairwise disjoint. Then:

|β3k+1(u)| ≥ |βk(u)|+
∑

t∈T

|βk(t)| ≥ γβk.

⊓⊔

Now, observe that since the neighborhood of any node is a dominating set of GR−1,
we have that β1 ≥ γ. Then, after using the above claim x times, we obtain

β 3x+1−1
2

≥ min{n, γx+1}.

Let us consider the case R ≥ 3 first. Let U be a maximal independent set of GR−1.
Since U is also a dominating set of GR−1, it holds that |U | ≥ γ. We consider the |U | balls
centered at nodes in U with radius given by the value of the parameter x = ⌊log3 R− 1⌋.
Every ball has radius at most (R − 1)/2 and since U is an independent set of GR−1, all
balls are pairwise disjoint and hence we have n ≥ |U |γ⌊log3 R−1⌋+1 ≥ γ⌊log3 R⌋+1. As a

consequence, we obtain γ ≤ n
1

⌊log3 R⌋+1 , and the claim now follows from Lemma 2.
Now assume R = 2. We use the bound given in [5] to the size γ(G) of a minimum

dominating set of a graphG with n nodes and minimum degree δ, namely γ(G) ≤ n
δ+1Hδ+1,

where Hi =
∑i

j=1 1/j is the i-th harmonic number. Hence, since a social optimum has

cost n− 1, from Lemma 2 and Corollary 1, we have SC (S)
n−1 ≤ min{δ+1, n

δ+1Hδ+1 +1}, for
any stable graph G(S) with minimum degree δ. The claim follows. ⊓⊔

4.2 Lower bounds

We first prove a simple constant lower bound for any value of R = o(n), and then we show
an almost tight lower bound of Ω(

√
n) for R = 2. We postpone to the concluding section

a discussion on the difficulty of finding better lower bounds for large values of R.

Theorem 5. For any ǫ > 0 and for 1 < R = o(n), the PoA for MaxBD is at least 2− ǫ.

Proof. Assume we are given a set of n = 2R+ h vertices {u1, . . . , u2R}∪ {v1, . . . , vh}. The
strategy profile S is defined as follows. Vertex uj buys a single edge towards uj+1, for each
j = 1, . . . , 2R− 1, and every vi buys two edges towards u1 and u2R. It is easy to see that
G(S) has diameter R and is stable. The claim follows from the fact that SC(S) goes to
2(n− 1) as h goes to infinity and the fact that, as observed in Section 3, a spanning star
(having social cost equal to n− 1) is a social optimum. ⊓⊔

We close this section by providing a much stronger lower bound for the special case
in which R = 2. Before stating the theorem, we give some additional notation. Let v be
a player, S be a strategy profile, and ℓ a positive integer. We define N ℓ

S(v) = {u | u ∈
V, dG(S)(u, v) ≤ ℓ} and N̄ ℓ

S(v) = V \ N ℓ
S(v). We will omit the superscript ℓ when ℓ = 1.

Moreover, we denote by γ(S, v, ℓ) the size of a minimum cardinality set X ⊆ V of vertices
that dominates N̄ ℓ

S(v) in G(S)ℓ−1, i.e., for every vertex u ∈ N̄ ℓ
S(v) there exists a vertex

x ∈ X such that dG(S)(x, u) ≤ ℓ− 1, i.e., (x, u) ∈ E(G(S)ℓ−1). Finally, denote by S¬v the
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strategy profile where each player but v plays the same strategy as in S, while v buys no
edge, i.e., the strategy of v is ∅. The following proposition, whose proof is straightforward,
provides exact bounds to the cost incurred by each player in every connected graph, and
will be used in the proof of the theorem.

Proposition 1. Let G(S) be a connected graph. The cost incurred by each player v in S
in MaxBD with bound R is |Sv| ≥ γ(S¬v, v, R). Moreover, a player v is in equilibrium in
S iff |Sv| = γ(S¬v, v, R).

Let S′ be a strategy profile for a set of players V . A strategy profile S for V extends S′

if S′
v ⊆ Sv for every v ∈ V . Let S and S′ be two strategy profiles for a set of players V such

that S extends S′, For every v ∈ V let N(S′, S, v) = NS(v) \NS′(v) and let Sv,S′

be the
strategy profile such that Sv,S′

v = S′
v ∪N(S′, S, v) and Sv,S′

u = S′
u ∪ {v′ | v′ ∈ Su, v

′ 6= v}
for each u ∈ V, u 6= v. Observe that G(Sv,S′

) = G(S).
The following proposition will be also used in the proof of the theorem.

Proposition 2. Let V be a set of players and let S, S′ be two strategy profiles for V such
that S extends S′. If every player v is in equilibium in Sv,S′

, then G(S) is a stable graph.

Proof. For the sake of contradiction, assume that every player v ∈ V is in equilibium in
Sv,S′

but G(S) is not stable. Then there exists a player u and a strategy profile S′′ such that
(i) S′′

v = Sv for every v ∈ V, v 6= u, (ii) the eccentricity of u in G(S′′) is less than or equal
to R, and (iii) |S′′

u | < |Su|. Let X = {x | x ∈ S′′
u , x 6∈ Su} and let Y = {y | y ∈ Su, y 6∈ S′′

u}.
By (iii) we have |X | < |Y |. Let S̄ be the strategy profile such that S̄u = (Su,S′

u \Y )∪X and
S̄v = Su,S′

v for every v ∈ V, v 6= u. Clearly, G(S′′) = G(S̄) and thus, by (ii) the eccentricity
of u in G(S̄) is less than or equal to 2. Furthermore, |X | < |Y | implies |S̄u| ≤ |Su,S′

u | and
therefore u is not in equilibrium in Su,S′

. ⊓⊔

We are now ready to prove the following.

Theorem 6. The PoA of MaxBD for R = 2 is Ω(
√
n).

Proof. Let p ≥ 3 be a prime number. We provide a graph G′ of diameter 2 containing
O(p2) vertices and Ω(p3) edges and show that there exists a strategy profile S such that
G(S) = G′ and G(S) is stable. G′ contains two vertex-disjoint rooted trees T and T ′

as subgraphs. T is a complete p-ary tree of height 2. We denote by r the root of T ,
by C = {c0, . . . , cp−1} the set of children of r, and by Vi = {vi,0, . . . , vi,p−1} the set of
children of ci. T

′ is a star with p2 leaves rooted at the center r′. The leaves of T ′ are
partitioned in p groups each having exactly p vertices. For every i = 0, . . . , p − 1, we
denote by Ui = {ui,0, . . . , ui,p−1} the set of vertices of group i. G′ = (V,E) has vertex set
V = V (T ) ∪ V (T ′) and edge set (see also Figure 1)

E = E(T ) ∪ E(T ′) ∪ {(r, r′)}
∪
{

(c, c′) | c, c′ ∈ C, c 6= c′
}

∪
p−1
⋃

i=0

{

(u, u′) | u, u′ ∈ Ui, u 6= u′}

∪
{

(ui,j , vi′,j′) | i, i′, j, j′ ∈ [p− 1], j + i′i ≡ j′ (mod p)
}

.

We claim that the diameter of G′ is 2. The eccentricity of r is 2 as T has height 2, T ′

has height 1, and G′ contains the edge (r, r′). Observe that the subgraphs of G′ induced
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to v0,j

to vp−1,(j+(p−1)i) mod p

to v1,(j+i) mod p

.

.

.

up−1,0u0,p−1 up−1,p−1ui,ju0,0

r r
′

ci

v0,p−1v0,0 vi,0 vi,p−1 vp−1,p−1vp−1,0

c0 cp−1

Fig. 1. The graph G(S). Edges are bought from the nodes they exit from. Notice that nodes in
grey boxes are clique-connected (with arbitrary orientations), and for the sake of readability we
have only inserted edges leading to node ui,j .

by C and Ui, for all i ∈ [p− 1], are all cliques of p vertices. Furthermore, by construction,
there is an edge linking each vertex u ∈ Ū with some v ∈ Vi, for every i ∈ [p− 1], and thus
Vi dominates Ū . Therefore, the eccentricity of each vertex in C is 2. As a consequence, to
prove that G′ has diameter 2, it is enough to prove that

(i) Ui dominates V̄ , for every i ∈ [p− 1] (so as each vertex in Ū would have eccentricity
2),

(ii) for every pair v ∈ Vi and v′ ∈ Vi′ , i, i
′ ∈ [p − 1], i 6= i′, there is a vertex u ∈ Ū such

that (v, u), (v′, u) ∈ E (so as each vertex in V̄ would have eccentricity 2).

To prove (i), simply observe that for every i′, j′ ∈ [p−1], there always exists a j ∈ [p−1]
such that j + i′i ≡ j′ (mod p), and thus, (ui,j , vi′,j′) ∈ E. To prove (ii), observe that for
every vi,j , vi′,j′ ∈ V̄ , with i 6= i′, there always exists i′′, j′′ ∈ [p− 1] such that j′′ + ii′′ ≡ j
(mod p) and j′′ + i′i′′ ≡ j′ (mod p) as p is a prime number (simply choose i′′ such that
i′′(i− i′) ≡ (j − j′) (mod p)). Therefore, (vi,j , ui′′,j′′ ), (vi′,j′ , ui′′,j′′ ) ∈ E.

To complete the proof, it remains to show that there exists a strategy profile S such that
G(S) = G′ and G(S) is stable. Let V̄ and Ū be the set of leaves of T and T ′, respectively.
Let S′ be a strategy profile where:

– each vertex in V̄ ∪ {r} buys all edges incident to it (thus, each vertex in V̄ ∪ {r} buys
exactly p+ 1 edges),

– each vertex in Ū buys the edge towards r′,
– each of the remaining vertices buys no edge, i.e., S′

v = ∅ for every v ∈ C ∪ {r′}.
Let S be any strategy profile that extends S′ such that G(S) = G′. Observe that

– r′ buys no edge in Sr,S′

,
– each vertex v in C ∪ Ū buys exactly p edges in Sv,S′

,
– each vertex v in V̄ ∪ {r} buys exactly p+ 1 edges in Sv,S′

.

First of all observe that

|N̄2

Sv,S′
¬v

(v) ∩ V̄ | =



















0 if v = r′;

p2 if v = r;

p2 − 1 if v ∈ V̄ ;

p(p− 1) otherwise.
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Let V̂ ⊆ V̄ be such that |V̂ | ∈ {p2, p2 − 1, p(p− 1)}, and let X be a set of vertices that
dominates V̂ in G(S).

Claim. |X | ≥ ⌈ |V̂ |
p ⌉ where equality holds only if X ⊆ C or X ⊆ Ū .

Proof. LetX be a set of vertices that dominates V̂ in G(S) and observe thatX ⊆ V̂ ∪C∪Ū .

As any vertex of G(S) can dominate at most p vertices of V̂ , we have that |X | ≥ ⌈ |V̂ |
p ⌉.

Now we prove that if |X | = ⌈ |V̂ |
p ⌉ then either X ⊆ C or X ⊆ Ū . Indeed, any set X ′

dominating V̂ in G(S) and containing any vertex of V̂ has size |X ′| ≥ 1+ ⌈ |V̂ |−1
p ⌉ > ⌈ |V̂ |

p ⌉,
where the first inequality holds because any vertex in V̂ dominates only itself while the
second inequality holds by the choice of |V̂ | and because p ≥ 3. Furthermore, any set X ′

containing 0 < k < ⌈ |V̂ |
p ⌉ vertices of C and ⌈ |V̂ |

p ⌉ − k vertices of Ū can dominate at most

pk + p(⌈ |V̂ |
p ⌉ − k) − k(⌈ |V̂ |

p ⌉ − k) = p⌈ |V̂ |
p ⌉ − k⌈ |V̂ |

p ⌉ + k2 ≤ p⌈ |V̂ |
p ⌉ − ⌈ |V̂ |

p ⌉ + 1 ≤ |V̂ | − 1

vertices of V̂ (and so X ′ cannot dominate V̂ ), where the last inequality holds by the choice
of |V̂ | and because p ≥ 3. ⊓⊔

As a consequence of the above claim, if |X | = ⌈ |V̂ |
p ⌉, i.e., either X ⊆ C or X ⊆ Ū , then

either X does not dominate r in G(S) or X does not dominate r′ in G(S). This implies
that,

γ(Sv,S′

¬v , v, 2) =











0 if v = r′;

p if v ∈ C ∪ Ū ;

p+ 1 otherwise.

Since |Sv,S′

v | = γ(Sv,S′

¬v , v, 2) for each player v ∈ V , from Proposition 1 we have that v is
in equilibrium w.r.t. Sv,S′

. Therefore, by Proposition 2, G(S) is stable.
⊓⊔

5 SumBD

5.1 Upper bounds

For SumBD, we start by giving an upper bound to the PoA similar to the one obtained
for MaxBD. For the remaining of this section we use D to denote the average bound of
every node, namely D = B/n.

Theorem 7. The PoA of SumBD is O(n
1

⌊log3 D/4⌋+2 ) for D ≥ 3, and O
(√

n logn
)

, when
2 ≤ D < 3.

Proof. Let G = G(S) be a stable graph, and let ρ = SC(S)/(n− 1). Remind that the ball
of radius k centered at a node u is defined as βk(u) = {v | dG(u, v) ≤ k}. Moreover, let
βk = minu∈V |βk(u)|. We have the following

Claim. For any k ≥ 1, we have β3k+2 ≥ min{n/2 + 1, ⌊ρ⌋βk}.

Proof. Consider the ball β3k+2(u) centered at any given node u, and assume that |β3k+2(u)| ≤
n/2. Let T be the maximal set of nodes at distance exactly 2k+2 from u and subject to the
distance between any pair of nodes in T being at least 2k+1. We claim that for every node
v /∈ β3k+2(u), there is a vertex t ∈ T with dG(t, v) ≤ dG(u, v)−2. Indeed, consider the node
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t′ in the shortest path between v and u at distance exactly 2k+2 from u. If t′ ∈ T the claim
trivially holds, otherwise consider the node t ∈ T that is closest to t′. From the maximality
of T we have that dG(t, v) ≤ dG(t, t

′)+ dG(t
′, v) ≤ 2k+ dG(u, v)− (2k+2) ≤ dG(u, v)− 2.

Let H be the forest consisting of the following disjoint trees. For every node t ∈ T∪{u},
let Ut be the nodes that are closer to t than any other t′ ∈ T ∪ {u}, and let Ft be the
subtree of the shortest path tree of G rooted at t spanning Ut. As a consequence, since
u is within the bound in G, it is easy too see that every vertex x is within the bound in
H ∪ {(x, t) | t ∈ (T ∪ {u}) \ {x}}. Hence, From Lemma 1, we have that ρ < |T |+ 1 and
hence |T |+ 1 ≥ ⌊ρ⌋. Now, all the balls centered at nodes in T ∪ {u} with radius k are all
pairwise disjoint. Then:

|β3k+2(u)| ≥ |βk(u)|+
∑

t∈T

|βk(t)| ≥ ⌊ρ⌋βk.

⊓⊔

Now, observe that β1 ≥ ⌊ρ⌋. Then, after using the above claim x times, we obtain

β2 3x−1 ≥ min{n/2 + 1, ⌊ρ⌋x+1}.

Let us consider the case R ≥ 3 first. Let U be a maximal independent set of GD−1.
Since U is also a dominating set of GD−1, it holds that |U | ≥ ⌊ρ⌋. We consider the |U | balls
centered at nodes in U with maximal radius at most (D− 2)/2. Since U is an independent
set of GD−1, all balls are pairwise disjoint and hence we have n ≥ |U |⌊ρ⌋⌊log3 D/4⌋+1 ≥
⌊ρ⌋⌊log3 D/4⌋+2. As a consequence, we obtain ⌊ρ⌋ ≤ n

1
⌊log3 D/4⌋ , and the claim follows.

Now assume 2 ≤ D < 3. To use the same argument used forMaxBD, it suffices to prove

that for any stable graph G(S) with minimum degree δ, it holds that SC(S)
n−1 ≤ min{δ +

1, O(γ(GD−1))}. The upper bound SC(S)
n−1 = O(γ(GD−1)) can be proved by using the same

arguments used in the proof of Lemma 2 where we exchange the role of R with D. Now, we

prove that SC(S)
n−1 ≤ δ+1. Let v be a node with degree δ, and let NG(S)(v) = {u1, . . . , uδ}.

Consider a shortest path tree T of G(S) rooted at v. Clearly, v is within the bound in T , and
if we define Ex = {(x, uj) | 1 ≤ j ≤ δ} for any x 6= v, we have BT+Ex(x) ≤ BG(S)(v) ≤ B.
Hence, from Lemma 1, if follows that SC (S) ≤ |E(T )|+ (n− 1)δ ≤ (δ + 1)(n− 1). ⊓⊔

From the above result, it follows that the PoA becomes constant when D = Ω(nǫ), for

some ǫ > 0. We now show how to lower such a threshold to D = 2ω(
√
logn) = n

ω

(

1√
log n

)

(and we also improve the upper bound when D = ω(1) ∩ o(3
√
log n)).

Lemma 3. Let G(S) be stable and let v be a node such that BG(S)(v) ≤ B − n, then
SC (S) ≤ 2(n− 1).

Proof. Let T be the shortest path of G rooted at v. The claim immediately follows from
Lemma 1 by observing that v is within the bound in T and every other node u is within
the bound in T + (u, v). ⊓⊔

Notice that the above Lemma shows that when a stable graph G has diameter at most
D−1 then the social cost of G is at most twice the optimum. Now, the idea is to provide an
upper bound to the diameter of any stable graph G as function of δ, where δ is minimum
degree of G. Then we combine this bound with Lemma 3 in order to get a better upper
bound to PoA for interesting ranges of D.

The proof of the following theorem follows the schema of that of Theorem 9 in [4].
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Theorem 8. Let G be stable with minimum degree δ. Then the diameter of G is 2O(
√
logn)

if δ = 2O(
√
logn), and O(1) otherwise.

Proof. We start by proving two lemmas:

Lemma 4. Let G be stable with minimum degree δ. Then either G has diameter at most
2 logn or, for every node u, there is a node x with dG(u, x) ≤ logn such that (i) x is
buying δ/c edges (for some constant c > 1), and (ii) the removal of these edges increases
the sum of distances from x by at most 2n(1 + log n).

Proof. Assume that the diameter of G is greater than 2 logn and consider a node u. Let
Uj be the set of nodes at distance exactly j from u and let nj = |Uj|. Moreover, denote
by T the shortest path tree of G rooted at node u. Let i be the minimum index such that
ni+1 < 2ni (i must exist since the height of T is greater than logn). Consider the set of
edges F of G having both endpoints in Ui−1∪Ui∪Ui+1 and that do not belong to T . Then,
|F | ≥ δni/2−3ni. Moreover, we have that ni−1+ni+ni+1 ≤ 1/2ni+ni+2ni = 7/2ni. As a

consequence, there is a vertex x ∈ Ui−1∪Ui∪Ui+1 which is buying at least ni/2−3ni

7/2ni
≥ δ/c

edges of F , for some constant c > 1. Moreover, when x removes these edges, the distance
to any other node y increases by at most 2(1+ logn) because dT (x, y) ≤ 2(1+ logn). The
claim follows. ⊓⊔
Lemma 5. In any stable graph G, there is a constant c′ > 1 the addition of δ/c′ edges all
incident to a node u decreases the sum of distances from u by at most 5n logn.

Proof. If G has diameter at most 2 logn, then the claim trivially holds. Otherwise, let x be
the node of the previous Lemma and let c′ be such that δ/c′ ≤ δ/c− 1. Moreover, assume
by contradiction that the sum of distances from u decreases by more than 5n logn when
we add to G the following set of edges F = {(u, v1), . . . , (u, vh)}, with h = δ/c′. Then, let
F ′ = {(x, vj) | j = 1, . . . , h}. We argue that x can improves his cost by saving at least an
edge as follows: x deletes its δ/c edges and adds F ′. Indeed, the sum of distances from x
increases by at most 2n(1 + logn) ≤ 4n logn and decreases by at least 5n logn− n logn,
since for every node y such that the shortest path in G+F from u to y passes through x,
we have that dG(u, y)− dG+F (u, y) ≤ logn. Hence, x is still within the bound in G + F ′

and is saving at least one edge: a contradiction. ⊓⊔
Recall that the ball of radius k centered at a node u is defined as βk(u) = {v | dG(u, v) ≤

k}. Moreover, let βk = minu∈V |βk(u)|. We claim that

β4k ≥ min{n/2 + 1,
kδ

20c logn
βk}, (3)

for some constant c > 1. To prove that, consider the ball β4k(u) centered at any given
node u, and assume that |β4k(u)| ≤ n/2. Let T be the maximal set of nodes at distance
exactly 2k+1 from u and subject to the distance between any pair of nodes in T being at
least 2k+1. It is easy to see that, from the maximality of T , for every node v /∈ β3k there
is a node t ∈ T such that dG(v, t) ≤ dG(u, v) − k. We assumed that at least n/2 nodes
have distance more than 3k. This implies that there must be a set T ′ ⊆ T of size δ/c such
that at least nδ/2|T | such vertices v whose distance is at most d(u, v)− k from some node
in T ′. If we add δ/c edges from u to nodes in T ′, the sum of distances from u decreases by
at least (k− 1)n/2|T | ≥ kn/4|T |. By Lemma 5 this improvement is at most 5n logn. As a
consequence we have that |T | ≥ δk/(20c logn). Moreover, all the balls centered at nodes
in T are disjoint, and this proves (3). Now, the claim follows by solving the recurrence
(3). ⊓⊔
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By using the above theorem along with Lemma 3, and observing that if G(S) is stable

and has minimum degree δ, then SC(S)
n−1 ≤ δ + 1, as shown in the proof of Theorem 7, we

have:

Theorem 9. The PoA of SumBD is 2O(
√
logn) if D = ω(1), and O(1) if D = 2ω(

√
logn).

⊓⊔

Then, by combining the results of Theorems 7 and 9, we get the bounds reported in
Table 1.

5.2 Lower bounds

We can finally prove the following theorem.

Theorem 10. For any ǫ > 0 and for 2n− 3 ≤ B = o(n2), the PoA of SumBD is at least
2− ǫ.

Proof. To prove the theorem, we use the following scheme. First, for every integer k ≥ 2,
we provide a family Gk of graphs that are stable when B ∈

[

λ(k, n), λ′(k, n)
)

, where n is
the size of the graph and λ(k, n) and λ′(k, n) are functions that depend on k and n. We
also prove that the social cost of infinitely many graphs in Gk is at least 2 − ǫ far from
the social cost of an optimum, for every k = o(n). Then, we show that λ(2, n) ≤ 2n − 3,
λ(k + 1, n) ≤ λ′(k, n), and λ(Ω(n), n) = Ω(n2).

Family Gk contains a graph Gk,h for every positive integer h. More precisely, Gk,h has
nk,h = (h+1)k vertices and mk,h = 2kh edges. Therefore, the lower bound of 2− ǫ for the
PoA when k = o(n) follows by choosing h ≥ 2

ǫ − 1. For the rest of the proof, we assume
that h is an arbitrary, but fixed, positive integer. Moreover, with a little abuse of notation,
we will drop the subscript h from Gk,h and nk,h and we will also drop the parameter
nk = nk,h as argument of the two functions λ and λ′.

The graph Gk is a highly symmetric graph consisting of k players {u0, . . . , uk−1} which
buy no edge, and, for every i = 0, . . . , k − 1, there are h copies of a player (we denote by
vi any of such players) each buying exactly two edges: one towards ui and one towards
ui+1 mod k. Observe that Gk has diameter k.

The broadcast cost of each player vi is exactly λ(k) while the broadcast cost of each
player uj is equal to λ̄(k). It is easy to see that λ(2) = 2n2 − 4, λ̄(2) = n2.

Moreover, one can observe that for every k ≥ 2

λ(k + 1) = λ(k) + nk +

{

h if k + 1 is even;

1 if k + 1 is odd,

as well as

λ̄(k + 1) = λ̄(k) + nk +

{

1 if k + 1 is even;

h if k + 1 is odd.

As each player vi owns exactly two edges, the only strategy vi has to connect to
Gk − vi with exactly one edge, is that of connecting either to some v′i or to some uj .
Therefore, a lower bound on the broadcast cost of player vi if he uses only one edge
to connect to Gk − vi is λ′(k) = min{λ(k), λ̄(k)} + nk − 1 − k, as Gk has diameter k.

Therefore, we have that Gk is stable for every B ∈
[

max{λ(k), λ̄(k)}, λ′(k)
)

. In what
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follows, we show that max{λ(k), λ̄(k)} = λ(k), thus proving that B ∈
[

λ(k), λ′(k)
)

, as
well as λ′(k) = λ̄(k) + nk − 1− k.

Indeed, for every k ≥ 2, and using nk+1 = nk + h+ 1, we have that

λ(k + 2) = λ(k) + 2nk+1 and λ̄(k + 2) = λ̄(k) + 2nk+1.

Furthermore, using the relations nk+1 = nk + h + 1, nk = (h + 1)k, and the formulas
above, λ(3) = 2n3 − 3, λ̄(3) = 5

3n3 − 1. Therefore, λ̄(2) ≤ λ(2) and λ̄(3) ≤ λ(3). As a
consequence, for every k ≥ 2, λ̄(k + 2) = λ̄(k) + 2nk+1 ≤ λ(k) + 2nk+1 = λ(k + 2).
Therefore max{λ(k), λ̄(k)} = λ(k).

To complete the proof, it remains to show that λ(2) ≤ 2n2 − 3, λ(k + 1) ≤ λ′(k), and
λ(Ω(n)) = Ω(n2). We already proved that λ(2) = 2n2−4 ≤ 2n2−3. Moreover, for nk = 2k,
i.e., k = nk/2, we have that Gk is a cycle of 2k vertices, and thus the broadcast cost of
any vertex is Ω(k2) = Ω(n2). Finally, using induction, and observing that λ(3) ≤ λ′(2),
we can prove that λ(k + 1) ≤ λ′(k). Indeed, if k + 1 is even, then

λ(k + 1) = λ(k) + nk + h ≤ λ′(k − 1) + nk + h

= λ̄(k − 1) + nk−1 + nk − 1− k + h

= λ̄(k) + nk − 1− k = λ′(k),

while, if k + 1 is odd, then

λ(k + 1) = λ(k) + nk + 1 ≤ λ′(k − 1) + nk + 1

= λ̄(k − 1) + nk−1 + nk − 1− k + 1

= λ̄(k) + nk − 1− k = λ′(k).

⊓⊔

6 Concluding remarks

In this paper, we have introduced a new NCG model in which the emphasis is put on the
fact that a player might have a strong requirement about its centrality in the resulting
network, as it may well happen in decentralized computing (where, for instance, the bound
on the maximum distance could be used for synchronizing a distributed algorithm). We de-
veloped a systematic study on the PoA of the two (uniform) games MaxBD and SumBD,
which, however, needs to be continued, since a significant gap between the corresponding
lower and upper bounds is still open. In particular, it is worth to notice that finding a
better upper bound to the PoA would provide a better estimation about how much dense
a network in equilibrium can be.

Actually, in an effort of reducing such a gap, we focused on MaxBD, and we observed
the following fact: Recall that a graph is said to be self-centered if every node is a center
of the graph (thus, the eccentricity of every node is equal to the radius of the graph, which
then coincides with the diameter of the graph). An interesting consequence of Lemma 2
is that only stable graphs that are self-centered can be dense, as one can infer from the
following

Proposition 3. Let G(S) be a NE for MaxBD such that G(S) is not self-centered. Then,
SC (S) ≤ 2(n− 1).
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Proof. Let v be a node with minimum eccentricity. It must be that εG(S)(v) ≤ R − 1.
Then, U = {v} is a dominating set of GR−1, and Lemma 2 implies the claim. ⊓⊔

Thus, to improve the lower bound for MaxBD, one has to look to self-centered graphs.
Moreover, if one wants to establish a lower bound of ρ, then a stable graph of minimum
degree ρ−1 (from Corollary 1) is needed. Starting from these observations, we investigated
the possibility to use small and suitably dense self-centered graphs as gadgets to build lower
bound instances for increasing values of R. To illustrate the process, see Figure 2, where
using a self-centered cubic graph of diameter 3 and size 20, we have been able to obtain a
lower bound of 3 (it is not very hard to see that the obtained graph is in equilibrium).

vn
v1

Fig. 2. A graph with n + 20 nodes and 3n + 30 edges, showing a lower bound for the PoA of
MaxBD for R = 3 approaching to 3, as soon as n grows. Edges within the gadget (on the left
side) are bought by either of the incident nodes, while other edges are bought from the nodes
they exit from.

Interestingly enough, the gadget is a famous extremal (i.e., maximal w.r.t. node addi-
tion) graph arising from the study of the degree-diameter problem, namely the problem of
finding a largest size graph having a fixed maximum degree and diameter (for a compre-
hensive overview of the problem, we refer the reader to [1]). More precisely, the gadget is a
graph of largest possible size having maximum degree ∆ = 3 and diameter R = 3. In fact,
this seems not to be coincidental, since also Moore graphs (which are extremal graphs for
R = 2 and ∆ = 2, 3, 7, 57), and the extremal graph for R = 4 and ∆ = 3 (see [1]), can
be shown to be in equilibrium, and then they can be used as gadgets (clearly, the lower
bounds implied by Moore graphs for R = 2 are subsumed by our result in Theorem 6).
Notice that from this, it follows that we actually have a lower bound of 3 for the PoA of
MaxBD also for R = 4. So, apparently there could be some strong connection between
the equilibria for MaxBD and the extremal graphs w.r.t. to the degree-diameter problem,
and we plan in the near future to explore such intriguing issue.
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