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The core of an educational software based on learning space theory, such
as the ALEKS system, is a combinatoric structure representing the cognitive
organization of a particular curriculum, like beginning algebra or 4th grade
arithmetic*. This structure consists in a family K of subsets of a basic set Q.
The elements of @) are the types of problems to be mastered by a student
learning the curriculum. An example of a problem type in beginning algebra is:

[P] Express the roots of the equation ax? + Bz +~ =0 in terms of a, 3
and 7.

When this type of problem is proposed to a student, either in an assessment
or in the course of learning, ALEKS chooses an instance of [P], which may be
for example

[I] What are the roots of the equation 4xz* +6x —7=107

Typically, there are thousands of instances for a particular problem type.
These instances are features of the implementation and do not play any role
in the theory summarized in this chapter. The set @ is called the ‘domain’
of the structure, and the elements of @, the problem types, are referred to as
‘items®’ or ‘questions.’

The family X is the ‘learning space.” Its elements are called ‘(knowledge)
states.” Every knowledge state is a set K of items that a student in that
state has mastered. To wit, a student in state K cannot solve any instance
of an item in @ \ K (the instances are constructed so that lucky guesses are
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“Learning Spaces”, a monograph by Falmagne and Doignon (2011).

5 Note that ‘item’ is used here in a sense different from that used in standardized
testing, where ‘item’ means what we call an ‘instance.’
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impossible or very rare), and moreover the student can solve any instance of
any item in K, barring careless errors. In principle, the family X contains all
such feasible knowledge states in the population of students considered. We
assume that both @ and @ are in X: the student may have mastered all the
items in @, or none of them; accordingly, QQ = UK.

By design, there are no educational gaps in the set @) or in the learning
space K. This means, for example, that a student capable of solving all the
items in the domain @ of beginning algebra can be regarded as having mas-
tered this curriculum as it is specified in the US schools. It also means that
there is no gap in the learning sequence: whatever the student’s knowledge
state in beginning algebra at any moment, he or she can in principle learn
the rest of the curriculum by gradually mastering the remaining items one by
one.

Two kinds of arguments support the last statement. For one, the axioms
[L1] and [L2] constraining the family X of knowledge states, which are speci-
fied in the next section, are consistent with the idea that, from a theoretical
standpoint, gradual learning is feasible in all cases. The second argument is
empirical: extensive data on student learning, based on millions of assess-
ments, indicate that when a student is deemed by ALEKS ready to learn an
item, then the estimated probability of successful mastery of that item is ex-
tremely high. Note that the “ready to learn” in the above sentence is given a
mathematical meaning as the ‘outer fringe’ of a student’s state (see Definition
8.3.1).

The number of items in a typical domain of school mathematics satisfying
the educational standards of a U.S. state is around 650. The number of knowl-
edge states in the learning space for such a domain is quite large, maybe on
the order of 108. Despite this large number of states, it is nevertheless possible
to assess the knowledge state of a student, accurately, in the span of 25-35
questions.

The next few sections give a concise set-theoretical presentation of the
concepts and results. No proofs of results are given hereS.

8.1 Axioms for Learning Spaces

8.1.1 Definition. A partial knowledge structure is a pair (@, X) in which @
is a nonempty set, and X is a family of subsets of @) containing at least Q.
The set Q is called the domain of the knowledge structure. The subsets in the
family K are labeled (knowledge) states. The elements of Q) are called items
or questions. A partial knowledge structure is a knowledge structure if X also

5 For a comprehensive presentation of the theory, see Falmagne and Doignon
(2011). An evolutive and searchable database of references on this topic
is maintained by Cord Hockemeyer at the University of Graz, Austria:
http://wundt.kfunigraz.ac.at/hockemeyer/bibliography.html.
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contains the empty set. The knowledge structure (@, X) is finite if @ is a finite
set. Note that since @@ = UX we can without ambiguity refer to the family X
itself as a knowledge structure.
The knowledge structure (@, X) is discriminative if for all items ¢,p € Q
we have
VK eX)(geK <= peK) = q=p.

Axioms. A knowledge structure (@, X) is called a learning space if it satisfies
the two following conditions.

[L1] LEARNING SMOOTHNESS. If K C L are two states, there is a finite
chain of states
Kiy=KCK,C---CK,=1L (8.1)
with K; = K;—1 + {¢;} and ¢; € Q for 1 < i < n. We have thus
L\ K| = n.
[L2] LEARNING CONSISTENCY. If K C L are two states, with ¢ ¢ K and
K +{q} € X, then LU {q} € X.

Axiom [L1] implements the assumption that gradual, item by item, learning
is always possible. Note that, by Axiom [L1], any learning space is finite.
Axiom [L2] formalizes the idea that if some item ¢ is learnable by a student
in some state K which is included in some state L, then either ¢ is in L or it
is learnable by a student in state L.

An example of a learning space H on the domain {a,b, c,d} is given by the
equation

H= {@, {a}a {C}v {aa b}a {av C}’{Cv d}’ {av b, C}a {aa b, d}»
{a,c,d},{a,b,c,d}}, (8.2)

which is represented in Figure 8.1 by the Hasse diagram of its inclusion rela-
tion.

{a,b,c,d}

[{a,b,d}| [{a,b.c}] [{a,cd}|

’ {a,b} ‘ ‘ { }‘ ’ {c,d} ‘ Figure 8.1. Hasse diagram of the inclusion relation of the learning
% % ¢ % space H defined by Eq. (8.2) on the domain {a,b, ¢, d}. Ignore the red
shading for the moment (see Definition 8.3.1).
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Note that the family JH is closed under union. This is one of several im-
portant properties implied by Axioms [L1] and [L2]. We introduce them in
the next definition.

8.1.2 Definition. Let (Q,X) be a knowledge structure. When X is closed
under union, that is, when UA € X whenever A C X, we say that (Q,X) is
a knowledge space, or equivalently, that X is a knowledge space (on Q). Note
that when a family is closed under union, we sometimes say for short that
it is U-closed. The dual of a knowledge structure X on @ is the knowledge
structure X containing all the complements of the states of K, that is,

K={Kc2?|Q\K cX}.

Thus, K and X have the same domain.

We denote by K AL = (K\L)U(L\ K) the symmetric difference between
two sets K and L, and by d(K, L) = |(K\L)U(L\ K)| the symmetric difference
distance between those sets.

A family of sets X is well-graded if, for any two distinct sets K, L in X,
there exists a finite sequence Ko = K, Ky, ..., K,, = L of sets in X such
that d(K;—1,K;) =1for 1 <i<mnand n=d(K,L). We call the sequence of
sets (K;) a tight path from K to L. It is clear that a well-graded knowledge
structure is discriminative. It is also necessarily finite since we can take K = &
and L = Q.

A family X of subsets of a finite set Q = UX is an antimatroid” if it is
closed under union and moreover satisfies the following axiom.

[MA] If K is a nonempty subset of the family X, then there is some
q € K such that K \ {¢} € K.

We may also say then that the pair (Q,X) is an antimatroid. An antima-
troid (Q,X) is finite if @ is finite. In such a case, (Q,X) is a discriminative
knowledge structure.

The next theorem specifies the relationship between these various concepts.

8.1.3 Theorem. For any knowledge structure (@, X), the following three con-
ditions are equivalent.

(i) (Q,X) is a learning space.
(ii) (Q,X) is an antimatroid.
(iil) (Q,X) is a well-graded knowledge space.

The equivalence of (i) and (iii) was established by Cosyn and Uzun (2009).
The proof that (ii) is equivalent to (i) is straightforward and is contained
in Falmagne and Doignon (2011). Tt is clear that, under each of the three
conditions, the knowledge structure (@, X) is discriminative.

7 Cf. Welsh (1995).
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The large number of states in empirical learning spaces may create prac-
tical problems of manipulation and storage in a computer’s memory. The
fact that any learning space is closed under union established by Theorem
8.1.3 plays an important role in enabling an economical representation of any
learning space in the form of its ‘base.’

8.2 The Base and the Atoms

8.2.1 Definition. The span of a family of sets G is the family §’ containing
any set which is the union of some subfamily of G. In such a case, we say that
G spans §'. By definition, §’ is then a U-closed family. A base of a U-closed
family X is a minimal subfamily B of X spanning X (where ‘minimal’ is meant
with respect to set inclusion: if J spans X for some g C B, then J = B). By a
standard convention, the empty set is the union of the empty subfamily of B.
Thus, the empty set never belongs to a base. It is also clear that an element
K of some base B of X cannot be the union of other elements of B.

8.2.2 Theorem. Let B be a base for a knowledge space (Q,X). Then B C F
for any subfamily J of states spanning X. Consequently, a knowledge space
admits at most one base. Any finite knowledge space has a base.

Some knowledge spaces have no base, as for instance, the collection of all the
open subsets of the real line.

The base of the learning space H of Eq. (8.2) and Figure 8.1 is the sub-
collection

{{a'}7 {C}7 {a" b}’ {C’ d}’ {a" b’ d}}‘

In the cases of learning spaces encountered in education, the cardinality of
the base of a learning space £ is typically much smaller than the cardinality
of £. The example of the family 24 for any finite set A, in which the base is
the collection {{z} |z € A} of all the singleton subsets of A, is suggestive in
that regard.

Several efficient algorithms are available for the construction of the base of
a knowledge space and for generating a knowledge space from its base (see in
particular Dowling, 1993b; Falmagne and Doignon, 2011, Section 3.5, pages
49-50).

The states of the base have an important property.

8.2.3 Definition. Let F be a nonempty family of sets. For any ¢ € UF, an
atom at q is a minimal set in F containing ¢, where ‘minimal’ refers to the
inclusion relation. A set X in F is an atom if it is an atom at ¢ for some
q € UT.

8.2.4 Theorem. Suppose that a knowledge space has a base. Then this base
is formed by the collection of all the atoms.
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This property will play an essential role in the construction of an assessment
algorithm for very large learning spaces. It will allow us to manufacture a
state from any set of items by forming the union of some atoms of these items
(see Step 9 in 8.8.1).

8.3 The Fringe Theorem

In the case of standardized tests the result of an assessment is a number
regarded as measuring some aptitude. By contrast, the outcome of an assess-
ment by a system such as ALEKS is a knowledge state, which may contain
hundreds of items®. Displaying such an outcome by a possibly very long list
of these items is awkward and not particularly useful. Fortunately, a consid-
erably more concise representation of a knowledge state is available, which
is meaningful to a student or a teacher. It relies on the twin concepts of the
‘inner fringe’ and the ‘outer fringe’ of a knowledge state.

8.3.1 Definition. The inner fringe of a state K in a knowledge structure
(Q,X) is the subset of items

K'={qe K|K\{q} € X}.
The outer fringe of a state K is the subset
K° = {g€ Q\ K| K U{q} € X}.

For example, the inner fringe and the outer fringe of the state {a,c} in the
learning space H, which is shaded red in Figure 8.1, are {a,c}’ = {a,c} and
{a,c}® = {b,d}. The fringe of K is the union of the inner fringe and the outer
fringe. We write
K7 =K UK".
Let N(K,n) be the set of all states whose distance from K is at most n, thus:
N(K,n) ={L € X|d(K,L) <n}. (8.3)

We have then K7 = (UN(K,1)) \ (NN(K,1)). We refer to N(K,n) as the
n-neighborhood of the state K. The importance of these concepts lies in the
following result.

8.3.2 Theorem. In a learning space, any state is defined by its two fringes;
that is, there is only one state having these fringes.

In fact, a stronger result holds: a finite knowledge structure is well-graded
if and only if any state is defined by its two fringes (Falmagne and Doignon,
2011, Theorem 4.1.7).

8 C.f. Chapter 1.



8.4 Projections of a Knowledge Structure 137

The fringes of the states play a major role in the ALEKS system. The fringes
can be displayed at the end of an assessment to specify the knowledge state
exactly. This is marked progress over the numerical score provided by a stan-
dardized test. Indeed, the importance of such a representation lies in the
interpretation of the fringes. The inner fringe may be taken as containing the
items representing the ‘high points’ of the student’s competence in the topic.
The outer fringe is even more important because its items may be regarded
as those that the student is ready to learn. That feature plays an essential
role in the ‘learning module’ of the ALEKS system. When an assessment is run
as a prelude to learning and returns for a student a knowledge state K, the
computer screen displays a window listing all the items in the outer fringe
of K. The student may then choose one item in the list and begin to study
it. A large set of learning data from the ALEKS system shows that the proba-
bility that a student successfully masters an item selected in the outer fringe
of his or her state is very high. In beginning algebra, the estimated median
probability, based on a very large sample of students, is .92.

8.4 Projections of a Knowledge Structure

The concept of projection for learning spaces is closely related to the concept
bearing the same name for media introduced by Cavagnaro (2008) (cf. also
Theorem 2.11.6 in Eppstein et al., 2007; 7). This concept has been encountered
in Chapter 1 where an example has been given (see page 19). A more precise
discussion requires some construction.

Let (Q,X) be a partial knowledge structure—thus, & is not necessarily in
K—and let Q' be any proper subset of (). Define a relation ~ on X by

K~rL < KnQ=Lng
— KALCQ\Q'.

Thus, ~ is an equivalence relation on X. The equivalence between the two
right hand sides is easily checked.

We denote by [K] the equivalence class of ~ containing K, and by K. =
{[K]| K € X} the partition of X induced by ~.

Let (Q,X) be a knowledge structure and take any nonempty Q' C Q. We
say that the family

Kigr ={W CQ|W =KnQ' for some K € X}

is the projection of X on Q. We have thus Ko/ C 2Q". Note that the sets in
XK@ may not be states of X. For example the state {c, g,j} of the projection
pictured in Graph B of Figure 1.5 on page 19 is not a state of the original
learning space (see Graph B on that figure). For any & ## K € X and with
[K] as above, define
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Kix) = {M|M =@ or M = L\N[K] for some L ~ K}.

So, if @ € X, we have K¢ = [2]. The families K| are called the Q'-children
of X, or simply the children of X when the set Q" is obvious from the context.
We refer to X as the parent structure. Notice that we may have X(x) = Kz
even when K 4 L.

Here is the key result.

8.4.1 Theorem. Let X be a learning space (resp. a well-graded U-closed fam-
ily) on a domain @ with |Q| > 2. The following two properties hold for any
proper nonempty subset Q' of Q:

(i) the projection X g, of X on Q' is a learning space (resp. a well-graded
U-closed family);
(ii) in either case, the children of X are well-graded and U-closed families.

Note that the singleton {@} is vacuously a partial knowledge structure
which is, also vacuously, well-graded and U-closed.

For a proof, see Falmagne (2008) or Falmagne and Doignon (2011, Theo-
rem 2.4.8).

8.5 Building a Learning Space

At this time, the construction of a learning space is still a demanding en-
terprise extending over several months. It is based partly on the expertise
of competent teachers of the topic. Their input provides a first draft of the
learning space. Ideally, if the teachers were omniscient, we could ask them
questions such as:

[Q] Suppose that a student has failed to solve items pi, ..., p,. Do you
believe this student would also fail to solve item ¢? You may assume
that chance factors, such as lucky guesses and careless errors, do not
interfere in the student’s performance.

Such a query is summarized by the nonempty set {p1, ps, . .., p,} of items, plus
the single item ¢. Thus, all positive answers to the queries form a relation P
from 29\ {@} to Q. The expert is consistent with the (unknown) knowledge
space (Q,X) exactly when the following equivalence is satisfied for all A €
2¢\ {2} and ¢ € Q:

APq = WKeX:ANK=0 = ¢¢K). (8.4)

The relation P could thus be used to remove from the family of potential
states all the sets K falsifying the implication in the r.h.s. of (8.4). In practice,
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however, it is only when |A| = 1 that a human expert can provide reliable
responses to such queries. In this case, P is essentially a binary relation which,
if (8.4) is satisfied, defines a quasi order on @ (reflexive, transitive). The
resulting learning space is then closed under both union and intersection®. It
contains all the ‘true’ states, but also possibly many fictitious states which
must be eliminated by further analysis by other means. This initial space is
nevertheless acceptable and can be used with students since it contains all the
‘true’ states. A statistical analysis of student data allows then to refine the
initial learning space and remove the fictitious states (for details, see Chapter
15 and 16 in Falmagne and Doignon, 2011).

The two theorems below play a key role.

8.5.1 Theorem. Let (Q,X) be a knowledge structure, and suppose that P is
the relation from 29 to @ defined by Equation (8.4). Then, necessarily:

(i) P extends the reverse membership relation, that is:
if pe ACQ, then APp;
(ii) for any A, B € 29\ {@} and p € Q:
if APb and BPp for allb € B, then APp.

8.5.2 Definition. An entailment for the nonempty domain @ (which may be
infinite) is a relation P from 29\ {@} to Q that satisfies Conditions (i) and
(ii) in Theorem 8.5.1.

8.5.3 Theorem. There is a one-to-one correspondence between the family
of all knowledge spaces K on the same domain @), and the family of all en-
tailments P for (). This correspondence is defined by the two equivalences

APq — (WKeX:ANK=0=q¢K), (8.5)
KeX <« ({MApeP:ANK=o=p¢K). (8.6)

For the proof see Koppen and Doignon (1990) and Falmagne and Doignon
(2011, Theorem 7.1.5).

A computer algorithm called QUERY has been designed to perform the
actual construction of the space on the basis of an entailment (Koppen, 1993,
1994; Falmagne and Doignon, 2011, Chapters 15 and 16). However, as made
clear by Theorem 8.5.3, the resulting structure is a knowledge space but not
necessarily a learning space. The QUERY algorithm has been amended so as to
allow the elimination of a set only when such an elimination does not invalidate
Axiom [MA] of an antimatroid (cf. page 134 and Theorem 8.1.3). For details

9 This results from a classical result from Birkhoff (1937).
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about such a construction, see Falmagne and Doignon (2011, Chapter 15 and
16).

A different possibility is to use the QUERY algorithm as such, which
delivers a knowledge space, and then judiciously add some of the critically
missing states so as to obtain a learning space. Part of Chapter 13 is devoted
to this technique.

8.6 Probabilistic Extension

The concept of a learning space is a deterministic one. As such, it cannot
provide realistic predictions of students’ responses to the problems of a test.
There are two ways in which probabilities must enter in a realistic model. For
one, the knowledge states will certainly occur with different frequencies in the
population of reference. It is thus reasonable to postulate the existence of a
probability distribution on the collection of states. For another, a student’s
knowledge state does not necessarily specify the observed responses. A student
having mastered an item may be careless in responding, and make an error.
Also, a student may guess the correct response to an item which is not in
her state. This may happen, for example, when a multiple choice paradigm is
used.

Accordingly, it makes sense to introduce conditional probabilities of re-
sponses, given the states. A number of simple probabilistic models are de-
scribed in Chapter 13 of Falmagne and Doignon (2011). They illustrate how
probabilistic concepts can be introduced within knowledge space theory. One
of these models provides the context for the assessment algorithm outlined in
the next section.

8.7 The Assessment Algorithm

An informal description of an assessment algorithm has been given in Section
1.3 on page 13. The general scheme sketched there is consistent with several
formal interpretations. One of them is especially important and is currently
used in many schools and colleges'?. We give below its basic components and

axioms!!.

8.7.1 Concepts and notation. Given a learning space X on a domain @),
any assessment is a realization of a Markovian stochastic process. Our notation
is as follows. We use r.v. as an abbreviation for ‘random variable.’

10 As part of the ALEKS system.
' For details, see Falmagne and Doignon (2011, Chapter 13).
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the step number, or trial number, n =1,2,... ;

the subfamily of all the states containing g ;
the set of all positive probability distributions on X ;

a random probability distribution on X; we have
L,=1L, € Ay (so L, > 0) if L, is the probability
distribution on X at the beginning of trial n ;

a r.v. measuring the probability of state K on trial n;

a r.v. representing the question asked on trial n; we have
Q,, = q € Q if g is the question asked on trial n ;
a r.v. coding the response on trial n:

1 if the response is correct
Rn = .
0 otherwise.

the random history of the process from trial 1 to trial n ;

lifge A

the indicator functi f t A = )
e indicator function of a se talq) {OifqgéA

with 1 < (g, for ¢ € Q,7 = 0,1, a family of parameters
specifying the updating operator (see Axiom [U] below).

The process begins, on trial 1, by setting Ly = L, for some particular L €
Ay . So, the initial probability distribution is the same for any realization. Any
further trial n > 1 begins with a value L,, € A, of the random distribution
L,, updated as a function of the event on trial n — 1. We write for any & C X,

La(F) = ) Lu(K). (8.7)

KeT

Three general axioms specify the stochastic process (L, Qn, Ry).

The version of these axioms given below is an important special case.
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8.7.2 Axioms.

[U] Updating Rule. We have P(L; = L) = 1, and for any positive integer
n, with L, = Lna Qn =4q, R, = T, and

1 if tg(q) #,
(= 1 e )47 (8.8)
Cor i ir(q) =,
we have
n+1 - 7 . .
* ZK/e:K quern(K/)
This updating rule is called multiplicative with parameters (g ;.
[Q] Questioning Rule. For all ¢ € ) and all integers n > 0,
LS(LH)(Q)
| S(L)

where S(L,,) is the subset of @ containing all those items ¢ minimizing
2L () — 1.

Under this questioning rule, which is called half-split, we must have Q,, €
S(Lp) with a probability equal to one. The questions in the set S(L,,) are
then chosen with equal probability.

[R] Response Rule. For all positive integers n,
P(Rn = lK, (Q) | Qn =4q, Ln7Wn71) =1

where K is the latent state representing the set of all the items currently
mastered by the student, that is, the state that must be uncovered by the
Markovian procedure.

So, if the item selected by the process belongs to the latent state Ky, the
probability of a correct response is equal to 1. In the more realistic versions of
this axiom used in practice, one additional parameter is used which specifies
the probability of a careless error. It may also be necessary to introduce a
lucky guess parameter, for example if a multiple choice paradigm is used.

8.7.3 Some Key Results. These results follow from Axioms [U], [Q] and
[R]. (For proofs, see Chapter 13 in Falmagne and Doignon, 2011).

1. The updating operator specified by Equation (8.9) in Axiom [U] is essen-
tially a Bayesian operator. This can be shown by an appropriate transfor-
mation of the equation (see 13.4.5 on page 251 in Falmagne and Doignon,
2011).



8.8 About Practical Implementations 143

2. This updating operator is permutable. This term is used in the functional
equations literature (Aczél, 1966) to designate a function F satisfying the
equation

F(F(a:,y),z) :F(F(J?,Z),y)

This property is essential because it means that the order of the questions
has no import on the result of the assessment.
. The stochastic process (L,,) is Markovian.
4. The stochastic process (L,,) converges to the latent state Ky in the sense
that

w

(in which ‘a.s.” means ‘almost surely’).

Remark. Another Markovian assessment procedure was also developed,
which is based on a different principle (Falmagne and Doignon, 1988b and
Chapter 14 in Falmagne and Doignon, 2011). The stochastic process is a finite
Markov chain, the states of which are subsets of states of the learning space.

8.8 About Practical Implementations

The three axioms [U], [Q] and [R] are the foundation pieces of the assessment
mechanism used by the ALEKS system. As mentioned in Chapter 1, however,
a direct implementation of these axioms as an assessment software is not
possible for two reasons.

One is that students commit careless errors. This means that Axiom [R]
has to be modified by the introduction of a ‘careless error parameter.” An
obvious possibility is the axiom:

[R’] Modified Response Rule. For all positive integers n,

1-p if g € Ky
P(Rn :LKO(Q)|Qn :q,Ln,anl) = {O ! lfquQ,
in which 3, is the probability of making an error in responding to the item ¢
which is in the latent state K.
In some cases, ‘lucky guess’ parameters must also be used, for example to
deal with the case of the multiple choice paradigm.

The second difficulty is that learning spaces formalizing actual curricula
are always very large, with domains typically counting several hundred items.
Such learning spaces may have many million states and cannot be searched in a
straightforward manner. The adopted solution is to partition the domain @ of
the basic learning space K—the parent learning space—into some number N
of subdomains @1, ..., Q. These subdomains are similar in that they contain
approximately the same number of items and are representative of the domain,
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for example in such a way that each would be suitable as a placement test. Via
Theorem 8.4.1, these NV subdomains determine N projection learning spaces
K1, ..., KN of the parent learning space K.

The general idea of the algorithm is to assess the student simultaneously on
all the IV projection learning spaces, with mutual updating of the probability
distributions, according to the scheme outlined below.

8.8.1 The updating steps on trial n. We write UCZ for the subfamily of X7
containing ¢, with 1 < j < Nj; so, ¢ € Q. For K € X7, we denote by L/ (K)
the probability of the state K in the learning space X7 on trial n.

1. On trial n, pick an item ¢ minimizing \2L£L(5<g) —1f,forall 1 <j <N
and ¢ € @;. If more than one item achieves such a minimization, pick
randomly between them!'?.

2. Suppose that the chosen item ¢ belongs to @;. Record the student’s re-

sponse to item ¢. Update the probability distribution L7 according to

Axiom [U] and Equation (8.9), (with L, = L and Ly = L?,_,).

Add item g to all the N —1 subdomains Q; # Q;, and write QF = Q;U{q}.

4. Build the N — 1 projections X of K on the subdomains Q. Note that
K™ can in turn be projected on ;. For any state K in K**, let [K] denote
its equivalence class with respect to the projection on Q;, and let K\q,
denote its projection on @Q;.

That is, M € [K] if M NQ; = KNQ,;, and

©w

LS if g ¢ K,
9TV K\ {q)} ifqeK.

5. For 1 <i < N and i # j, define the probability distributions L%* on X
by the equation: ‘

L,(Kiq,)
(K]

So, the rule L¥*(K) splits equally the probability Lf (K) among the states
created by the addition of ¢ to Q;.

6. Now, update all the N — 1 probabilities L% according to Axiom [U] and
Equation (8.9). For each learning space X}, 1 < ¢ < N and i # j, this
results into a probability distribution L2, ;.

7. Remove item ¢ from all the domains @; U {q}, 1 <i¢ < N and ¢ # j, and
normalize all the Lfl*ﬂ probability distributions. That means: compute
the probability distribution L} ,; on X* from L}’ ; by the formula

LK) = (8.11)

L;H(K) = Z L;*H(M)-
M 8.t. Mg, =K

2 This rule is consistent with Equation (8.10).
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The above scheme can be altered in two major ways. One concerns Step 3,
where more than one question can be added to the subdomains. For instance,
on trial n, one can add the n questions answered so far by the student to each
subdomain, and then ‘replay’ the assessment on such extended subdomains.
Another way concerns Step 5, where the rule L*(K) can split the probability
Li (K) non-equally among the states created by the addition of ¢ to Q;.

8.8.2 The construction of the final state. The procedure described be-
low for the construction of the final state is only one of several possibilities.
Suppose that the assessment ended at trial n. For each item ¢, we define its
likelihood w(q) as

wig)= Y LK), (1 € Q))-

KeX3

Let Ky denote the final knowledge state to be assigned to the student. This
final state is built recursively. With 1 < i < |Q)], let (g;) denote the sequence
of items ordered by decreasing value of w(q;). The procedure starts by setting
K; = @ and proceeds recursively along (g¢;). On step i, the procedure examines
each atom at ¢; and add it to K if it passes the following simple criteria:
for atom A at ¢;

1
e — >
K 2 v@20

qEA\Ky i1

where Ky ;1 is the state of the final knowledge state after item ¢;—; and
6,0 < 6 < 1, is a threshold parameter.

The procedure terminates when it reaches the end of the sequence (g;).
Since Ky is at all times either empty or the union of atoms, the procedure
returns a knowledge state.



